Skip to main content

Characteristics of the Voltage-Dependent Calcium Channel in Smooth Muscle: Patch-Clamp Studies

  • Chapter
Regulation of Smooth Muscle Contraction

Abstract

Visceral smooth muscle cells, including vascular smooth muscle cells, possess various types of Ca channels. The voltage-dependent Ca channel is commonly observed in many tissues and is thought to play an important role in the generation of action potentials. Neural transmitters, hormones, autacoids, peptides and other substances activate individual receptors and cause activation of the receptor-operated ion channels which are permeable to Na and Ca, and in some tissues, CI ion. Thus, receptor activation may induce an influx of Ca via activation of the receptor-operated channel and voltage-dependent Ca channel, and also induce release of Ca from the sarcoplasmic reticulum (SR) via synthesis of inositol 1,4,5-trisphosphate (IP3). In addition, the concentration gradient between extra- and intra-cellular Ca (2.5 mM and 100 nM, respectively) may promote the passive influx of Ca. However, analysis of this current has not yet been made in detail. In this chapter, we discuss mainly the features of the voltage-dependent Ca channel recorded from visceral smooth muscle cells using voltage- and patch-clamp procedures, and also compare their characteristics to those in cardiac muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, P. I., Bolton, T. B., Long, R. J., and Mackenzie, I., 1988, Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solution, J. Physiol, 405: 57.

    Google Scholar 

  • Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev., 38: 227.

    PubMed  CAS  Google Scholar 

  • Akaike, N., Kostyuk, P. G., and Osipchuk, Y. V., 1989, Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones, J. Physiol., 412: 181.

    PubMed  CAS  Google Scholar 

  • Amedee, T., Renaud, J. F., Jmari, K., Lombert, A., Mironneau, J., and Lazdunski, M., 1986, The presence of Na+ channels in myometrial smooth muscle cells revealed by specific neurotoxin, Biochem. Biophys. Res. Commun., 137: 675.

    Article  PubMed  CAS  Google Scholar 

  • Ashendel, C. L., Staller, J. M., and Boutwell, R. K., 1983, Identification of a calcium-and phospholipid-dependent phorbol ester binding activity in the solution fraction of mouse tissues, Biochem. Biophys. Res. Commun., 111: 340.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, V. and Kuriyama, H., 1982, Evidence for non-cholinergic and non-adrenergic transmission in the guineapig, J. Physiol., 330: 95.

    PubMed  CAS  Google Scholar 

  • Bechern, M. and Schramm, M., 1987, Calcium-agonists, J. Mol. Cell. Cardiol., 19(Suppl. 2): 63.

    Google Scholar 

  • Benham, C. D., 1989, ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery, J. Physiol., 419: 689.

    PubMed  CAS  Google Scholar 

  • Benham, C. D. and Bolton, T. B., 1983, Patch-clamp studies of slow potential-sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum, J. Physiol, 340: 469.

    PubMed  CAS  Google Scholar 

  • Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., 1985, The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ channels in arterial and intestinal smooth muscle cell membrane, Pflügers Arch., 403: 120.

    Article  PubMed  CAS  Google Scholar 

  • Benham, C. D., Hess, P., and Tsien, R. W., 1987, Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings, Circ. Res., 61(Suppl 1): 10.

    Google Scholar 

  • Benham, C. D. and Tsien, R. W., 1987, A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle, Nature, 328: 275.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, E., Corbier, A., and Dubois, J.-M., 1985, Evidence for two transient sodium currents in the frog node of Ranvier, J. Physiol, 361: 339.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J., 220: 345.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1986, Intracellular signalling through inositol trisphosphate and diacylglycerol, Biol. Chem. Hoppe-Seyler., 367: 447.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1988, Inositol trisphosphate-induced membrane potential oscillations in Xenopus oocytes, J. Physiol, 403: 589.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature, 341: 197.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, T. B. and Large, W. A., 1986, Are junction potentials essential? Dual mechanism of smooth muscle cell activation by transmitter released from autonomic nerves, Quart. J. Exp. Physiol, 71: 1.

    CAS  Google Scholar 

  • Bolton, T. B. and Lim, S. P., 1989, Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine, J. Physiol., 409: 385.

    PubMed  CAS  Google Scholar 

  • Brown, A. M. and Birnbaumer, L., 1988, Direct G protein gating of ion channels, Am. J. Physiol, 254: H401.

    PubMed  CAS  Google Scholar 

  • Brown, A. M., Kunze, D. L., and Yatani, A., 1986, Dual effects of dihydro-pyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig, J. Physiol, 379: 495.

    PubMed  CAS  Google Scholar 

  • Bülbring, E. and Tomita, T., 1987, Catecholamine action on smooth muscle, Pharmacol Rev., 39: 49.

    PubMed  Google Scholar 

  • Burnstock, G, 1980, Cholinergic and purinergic regulation of blood vessels, in: “Handbook of Physiology. The Cardiovascular System, section 2, vol. II”, D. F. Bohr, A. P. Somlyo, H. V. Sparks, Jr., eds., Am. Physiol. Soc, Bethesda, p. 567.

    Google Scholar 

  • Caffrey, J. M., Josephson, I. R., and Brown, A. M., 1986, Calcium channels of amphibian and mammalian aorta smooth muscle cells, Biophys. J., 49: 1237.

    Article  PubMed  CAS  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase C by tumor-promoting phorbol esters, J. Biol Chem., 259: 7849.

    Google Scholar 

  • Chen, G. and Suzuki H., 1988, Dissociation of the ACh-induced hyper-polarization and relaxation by methylene blue or haemoglobin in the rat main pulmonary artery, Jpn. J. Pharmacol., 46: 184p.

    Google Scholar 

  • DeMay, J. G. and Vanhoutte, P. M., 1983, Anoxia and endothelium-dependent reactivity of the canine femoral artery, J. Physiol, 335: 65.

    Google Scholar 

  • Dolphin, A. C. and Scott, R. H., 1989, Interaction between calcium channel ligands and guanine nucleotides in cultured rat sensory and sympathetic neurons, J. Physiol, 413: 271.

    PubMed  CAS  Google Scholar 

  • Droogmans, G. and Callewaert, G, 1986, Ca2+-channel current and its modification by the dihydropyridine agonist BAY K 8644 in the isolated smooth muscle cells, Pflügers Arch., 406: 259.

    Article  PubMed  CAS  Google Scholar 

  • Droogmans, G., Declerck, I., and Casteels, R., 1987, Effects of adrenergic agonists on Ca2+-channel currents in single vascular smooth muscle cells, Pflügers Arch., 409: 7.

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein, A., 1983, History of calcium antagonists, Circ. Res., 52: 3.

    CAS  Google Scholar 

  • Furchgott, R. F. and Zawadzki, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288: 373.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature, 342: 32.

    Article  PubMed  CAS  Google Scholar 

  • Ganitkevich, V. YA., Shuba, M. F., and Sminov, S. V., 1986, Potential-dependent calcium inward current in a single isolated smooth muscle cell of the guinea-pig taenia coli, J. Physiol., 380: 1.

    PubMed  Google Scholar 

  • Gleason, M. M. and Flaim, S. F., 1986, Phorbol ester contracts rabbit thoracic aorta by increasing intracellular calcium and by activating calcium influx, Biochem. Biophys. Res. Comm., 138: 2362.

    Article  Google Scholar 

  • Godfraind, T., Miller, R., and Wibo, M., 1986, Calcium antagonism and calcium entry blockade, Pharmacol. Rev., 38: 321.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., 1983, “Membrane potential-dependent ion channels in cell membrane. Phylogenic and developmental approaches”, Raven Press, New York.

    Google Scholar 

  • Hering, S., Beech, D. J., and Bolton, T. B., 1987, Voltage dependence of the actions of nifedipine and Bay K 8644 on barium currents recorded from single smooth muscle cells from rabbit ear artery, Biomed. Biochem. Acta, 467: S657.

    Google Scholar 

  • Heschler, J., Tang, M., Jastorff, B., and Trautwein, W., 1987, On the mechanism of histamine induced enhancement of the cardiac Ca2+ current, Pflügers Arch., 410: 23.

    Article  Google Scholar 

  • Hess, P., Lamsman, J. B., and Tsien, R. W., 1984, Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists, Nature, 311: 538.

    Article  PubMed  CAS  Google Scholar 

  • Hume, J. R. and Leblanc, N., 1989, Macroscopic K+ currents in single smooth muscle cells of the rabbit portal vein, J. Physiol., 413: 49.

    PubMed  CAS  Google Scholar 

  • Hwang, K. S. and van Breemen, C., 1987, Ryanodine modulation of 45Ca efflux and tension in rabbit aortic smooth muscle, Pflügers Arch., 408: 343.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L. J., 1989, Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein, Circ. Res., 65: 1.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Byrns, R. E., and Wood, K. S., 1987, Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein, Circ. Res., 60: 82.

    PubMed  CAS  Google Scholar 

  • Inoue, R., Kitamura, K., and Kuriyama, H., 1985, Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein, Pflügers Arch., 405: 173.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, R., Kitamura, K., and Kuriyama, H., 1987, Acetylcholine activates single sodium channels in smooth muscle cells, Pflügers Arch., 410: 69.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, R., Okabe, K., Kitamura, K., and Kuriyama, H., 1986, A newly identified Ca2+ dependent K+ channel in the smooth muscle cell membrane of single cells dispersed from the rabbit portal vein, Pflügers Arch., 406: 138.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, Y., Oike, M., Nakao, K., Kitamura, K., and Kuriyama, H, 1990, Endothelin augments unitary Ca channel currents on the smooth muscle cell membrane of guinea-pig portal vein, J. Physiol., 423: 171.

    PubMed  CAS  Google Scholar 

  • Inoue, Y., Xiong, Z., Kitamura, K., and Kuriyama, H., 1989, Modulation produced by nifedipine of the unitary Ba current of dispersed smooth muscle cells of the rabbit ileum, Pflügers Arch., 414: 534.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R. F., 1989, How do inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate regulate intracellular Ca2+?, Biochem. Soc. Trans., 17: 6.

    PubMed  CAS  Google Scholar 

  • Itoh, T., Izumi, H., and Kuriyama, H., 1982, Mechanisms of relaxation induced by activation of β-adrenoceptors in smooth muscle cells of the guinea-pig mesenteric artery, J. Physiol., 326: 475.

    PubMed  CAS  Google Scholar 

  • Itoh, T., Kanmura, Y., and Kuriyama, H., 1988, Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery, J. Physiol., 376: 231.

    Google Scholar 

  • Kajioka, S., Oike, M., and Kitamura, K., 1990, Nicorandil opens a Ca-dependent and ATP-sensitive potassium channel in the smooth muscle cells of the rat portal vein, J. Pharmacol. Exp. Ther., 254: 905.

    PubMed  CAS  Google Scholar 

  • Kass, R. S., 1987, Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K 8644: Implications for channel gating, Circ. Res., 61: 1.

    Google Scholar 

  • Kass, R. S. and Krafte, D. S., 1987, Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines, J. Gen. Physiol, 89: 629.

    Article  PubMed  CAS  Google Scholar 

  • Kawashima, Y. and Ochi, R., 1987, Two types of calcium channels in isolated vascular smooth muscles, J. Physiol Soc. Jpn, 49: 369p.

    Google Scholar 

  • Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1983, Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol Chem., 258: 11442.

    PubMed  CAS  Google Scholar 

  • Klöckner, U. and Isenberg, G., 1985, Calcium current of cesium loaded isolated smooth muscle cells (unitary bladder of the guinea pig), Pflügers Arch., 405: 340.

    Article  PubMed  Google Scholar 

  • Kobayashi, S., Somlyo, A. P., and Somlyo, A. V., 1988, Heparin inhibits the inositol 1,4,5-trisphosphate-dependent, but not the independent, calcium release induced by guanine nucleotide in vascular smooth muscle, Biochem. Biophys. Res. Comm., 153: 625.

    Article  PubMed  CAS  Google Scholar 

  • Kokubun, S., Prod’hom, B., Becker, C., Porzzig, H., and Reuter, H., 1986, Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers, Mol. Pharmacol, 30: 571.

    PubMed  CAS  Google Scholar 

  • Komori, K. and Suzuki, H, 1987a, Electrical responses of smooth muscle cells during cholinergic vasodilation in the rabbit saphenous artery, Circ. Res., 61: 586.

    PubMed  CAS  Google Scholar 

  • Komori, K. and Suzuki, H., 1987b, Heterogenous distribution of muscarinic receptors in the rabbit saphenous artery, Br. J. Pharmacol., 92: 657.

    PubMed  CAS  Google Scholar 

  • Kume, H., Takai, A., Tokuno, M., and Tomita, H, 1989, Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation, Nature, 341: 152.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, N. and Hume, J. R., 1989, D600 block of L-type Ca2+ channel in vascular smooth muscle cells: Comparison with permanently charged derivative, D890, Am. J. Physiol., 257: C689.

    PubMed  CAS  Google Scholar 

  • Lee, K. S. and Tsien, R. W., 1983, Mechanism of calcium channel blockade by verapamil, D600, diltiazem, and nifedipine in single dialyzed heart cells, Nature, 302: 790.

    Article  PubMed  CAS  Google Scholar 

  • Litten, R. Z., Suba, E. A., and Roth, B. L., 1987, Effects of a phorbol ester on rat aortic contraction and calcium influx in the presence or absence of Bay K 8644, Eur. J. Pharmacol., 144: 185.

    Article  PubMed  CAS  Google Scholar 

  • Makita, Y., 1984, Effects of adrenoceptor agonists and antagonists on smooth muscle cells and neuromuscular transmission in the guinea-pig renal artery and vein, Br. J. Pharmacol., 80: 671.

    Google Scholar 

  • Mannhold, R., Rodenkirchen, R., and Bayer, R., 1982, Qualitative and quantitative structure-activity relationships of specific Ca antagonists, Prog. Pharmacol, 5: 25.

    CAS  Google Scholar 

  • McDonald, T. F., Pelzer, D., and Trautwein, W., 1984, Cat ventricular muscle treated with D600: Characteristics of calcium channel block and unblock, J. Physiol, 325: 217.

    Google Scholar 

  • Mironneau, J. and Savineau, J.-P., 1980, Effects of calcium ions on outward membrane currents in rat uterine smooth muscle, J. Physiol., 302: 411.

    PubMed  CAS  Google Scholar 

  • Moncada, S. and Vane, J. R., 1979, Pharmacology and endogenous roles of prostaglandin, endoperoxides, thromboxane A2, and prostacyclin, Pharmacol. Rev., 30: 293.

    Google Scholar 

  • Myers, P. R., Minor, R. L., Guerra, R., Bates, J. N., and Harrison, D. G., 1990, Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide, Nature, 345: 161.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, K., Inoue, Y., Oike, M., Kitamura, K., and Kuriyama, H., 1990, Mechanisms of endothelin-induced augmentation of the electrical and mechanical activity in rat portal vein, Pflügers Arch., 415: 526.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, K., Okabe, K., Kitamura, K., Kuriyama, H., and Weston, A. H., 1988, Characteristics of cromakalim-induced relaxations in the smooth muscle cells of guinea-pig mesenteric artery, Br. J. Pharmacol., 95: 785.

    Google Scholar 

  • Nakazawa, K., Matsui, N., Shigenobu, K., and Kasuya, Y., 1987, Contractile response and electrophysiological properties in enzymatically dispersed smooth muscle cells of rat vas deferens, Pflügers Arch., 408: 112.

    Article  PubMed  CAS  Google Scholar 

  • Nawrath, H., Ten Eick, R. E., McDonald, T. F., and Trautwein, W., 1977, On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardium, Circ. Res., 40: 408.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Standen, N. B., Brayden, J. E., and Worley III, J.F., 1988, Noradrenaline contracts arteries by activating voltage-dependent calcium channel, Nature, 336: 382.

    Article  PubMed  CAS  Google Scholar 

  • Nishiye, E., Nakao, K., Itoh, T., and Kuriyama, H., 1989, Factors inducing endothelium-dependent relaxation in the guinea-pig basilar artery as estimated from the action of haemoglobin, Br. J. Pharmacol., 96: 645.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature, 308: 693.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and prospectives of protein kinase C., Science, 233: 305.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature, 344: 661.

    Article  Google Scholar 

  • Ohya, Y., Kitamura, K., and Kuriyama, H., 1987, Modulation of ionic currents in smooth muscle balls of the intestine by intercellularly perfused ATP and cyclic AMP, Pflügers Arch., 408: 465.

    Article  PubMed  CAS  Google Scholar 

  • Ohya, Y. and Sperelakis, N., 1988, Guanosine triphosphate dependent stimulation of L-type calcium channels of vascular smooth muscle, Physiologist, 31: A38.

    Google Scholar 

  • Ohya, Y., Terada, K., Kitamura, K., and Kuriyama, H., 1986, Membrane currents recorded from a fragment of rabbit intestinal smooth muscle cells, Am. J. Physiol., 251: C335.

    PubMed  CAS  Google Scholar 

  • Ohya, Y., Terada, K., Yamaguchi, K., Inoue, R., Okabe, K., Kitamura, K., Hirata, M., and Kuriyama, H., 1988, Effects of inositol phosphates on the membrane activity of smooth muscle cells of the rabbit portal vein, Pflügers Arch., 412: 382.

    Article  PubMed  CAS  Google Scholar 

  • Oike, M., Inoue, Y., Kitamura, K., and Kuriyama, H., 1990, Dual actions of FRC8653, a novel dihydropyridine derivative, on the Ba current recorded from the rabbit basilar artery, Circ. Res., 67: 993.

    PubMed  CAS  Google Scholar 

  • Okabe, K., Kitamura, K., and Kuriyama, H., 1987, Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery, Pflügers Arch., 409: 561.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, K., Kitamura, K., and Kuriyama, H., 1988, The existence of a highly tetrodotoxin sensitive Na channel in freshly dispersed smooth muscle cells of the rabbit main pulmonary artery, Pflügers Arch., 411: 423.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327: 524.

    Article  PubMed  CAS  Google Scholar 

  • Pelzer, D., Cavalie A., Hofmann, F., Trautwein, W., and McDonald, T. F., 1988, Dual stimulating and inhibitory effects of the phenylalkylamine calcium antagonist D600 on cardiac and skeletal muscle calcium channels, Pflügers Arch., 411: 39.

    Google Scholar 

  • Pidoplichko, V. I., 1986, Two different tetrodotoxin-separable inward sodium currents in the membrane of isolated cardiomyocytes, Gen. Physiol. Biophys., 6: 593.

    Google Scholar 

  • Rosenthal, W., Heschler, J., Trautwein, W., and Schultz, G., 1988, Control of voltage dependent Ca2+ channels by G-protein-coupled receptor, FASEB J., 2: 2784.

    PubMed  CAS  Google Scholar 

  • Sadoshima, J., Akaike, N., Tomoike, H., and Nakamura, M., 1988, Ca-activated K channel in cultured smooth muscle cells of rat aortic media, Am. J. Physiol., 255:H410.

    Google Scholar 

  • Sakai, T., Terada, K., Kitamura, K., and Kuriyama, H., 1988, Ryanodine inhibits the Ca-dependent KL current after depletion of Ca stored in smooth muscle cells of the rabbit ileal longitudinal muscle, Br. J. Pharmacol, 95: 1089.

    PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C. and Kass, R. S., 1984, Voltage-dependent block of calcium channel current in the calf cardiac purkinje fiber by dihydropyridine calcium channel antagonists, Circ. Res., 55: 336.

    PubMed  CAS  Google Scholar 

  • Schmiedtmayer, J., 1985, Behaviour of chemically modified sodium channels in frog nerve supports a three-state model of inactivation, Pflügers Arch., 404: 21.

    Article  Google Scholar 

  • Shearman, M. S., Sekiguchi, K., and Nishizuka, Y., 1989, Modulation of ion channel activity: A key function of the protein kinase C family, Pharmacol. Rev., 41: 211.

    PubMed  CAS  Google Scholar 

  • Shears, S. B., 1989, Metabolism of the inositol phosphates produced upon receptor activation, Biochem. J., 260: 313.

    PubMed  CAS  Google Scholar 

  • Shirahase, H., Usui, H., Kurahashi, K., Fujiwara, M., and Fukui, K., 1987, Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries, Pharmacology, 10: 517.

    CAS  Google Scholar 

  • Somlyo, A. P., Walker, J. W., Goldman, Y. E., Trentham, D. R., Kobayashi, S., Kitazawa, T., and Somlyo, A. V., 1988, Inositol trisphosphate, calcium, and muscle contraction, Phil. Trans. R. Soc. Lond. B, 320: 399.

    Article  CAS  Google Scholar 

  • Sperelakis, N. and Ohya, Y., 1990, Cyclic nucleotide regulation of Ca2+ slow channels and neurotransmitter release in vascular muscle, in: “Frontiers in Smooth Muscle Research”, N. Sperelakis and J. D. Wood, eds., Wiley-Liss, New York, p. 277.

    Google Scholar 

  • Standen, N. B., Quayle, J. M., Davis, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T., 1989, Hyperpolarizing vasodilators activate ATP-sensitive K+-channels in arterial smooth muscle, Science, 245: 177.

    Article  PubMed  CAS  Google Scholar 

  • Sturek, M. and Hermsmeyer, K., 1986, Calcium and sodium channels in spontaneously contracting vascular muscle cells, Science, 233: 475.

    Article  PubMed  CAS  Google Scholar 

  • Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Comm., 120: 481.

    Article  PubMed  CAS  Google Scholar 

  • Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. M., 1988, Solubilization, purification, and characterization of an inositol trisphosphate receptor, J. Biol. Chem., 263: 1530.

    PubMed  CAS  Google Scholar 

  • Sutko, J. L. and Kenyon, J. L., 1983, Ryanodine modification of cardiac muscle responses to potassium-free solutions, J. Gen. Physiol, 82: 385.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, R., Osa, T., and Kobayashi, S., 1983, Cholinergic inhibitory response in the bovine iris dilator muscle, Invest. Ophthalmol. Vis. Sci., 24: 760.

    PubMed  CAS  Google Scholar 

  • Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T., and Numa, S., 1989, Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor, Nature, 339: 439.

    Article  PubMed  CAS  Google Scholar 

  • Toro, L. and Stefani, E., 1987, Ca2+ and K+ currents in cultured vascular smooth muscle cells from rat aorta, Pflügers Arch., 408: 417.

    Article  PubMed  CAS  Google Scholar 

  • Terada, K., Kitamura, K., and Kuriyama, H., 1987a, Blocking actions of Ca2+ antagonists on the Ca2+ channels in the smooth muscle cell membrane of rabbit small intestine, Pflügers Arch., 408: 552.

    Google Scholar 

  • Terada, K., Nakao, K., Okabe, K., Kitamura, K., and Kuriyama, H., 1987b, Action of the 1,4-dihydropyridine derivative, KW-3049, on the smooth muscle membrane of the rabbit mesenteric artery, Br. J. Pharmacol., 92: 615.

    Google Scholar 

  • Terada, K., Ohya, Y., Kitamura, K., and Kuriyama, H., 1987c, Actions of flunarizine, a Ca++ antagonist, on ionic currents in fragmented smooth muscle cells of the rabbit small intestine, J. Pharmacol. Exp. Ther., 240: 978.

    Google Scholar 

  • Triggle, D. J., Skattebol, A., Rampe, D., Joslyn, A., and Gengo, P., 1986, Chemical pharmacology of Ca2+ channel ligands, in: “New Insight Into Cell and Membrane Transport Processes”, G. Post and S. T. Crooke, eds., Plenum Press, New York, p. 125.

    Chapter  Google Scholar 

  • Vanhoutte, P. M., Rubanyi, G. M., Miller, J. M., and Houston, D. S., 1986, Modulation of vascular smooth muscle contraction by the endothelium, Ann. Rev. Physiol., 48: 307.

    Article  CAS  Google Scholar 

  • Vivaudou, M. B., Clapp, L. H., Walsh Jr., J. V., and Singer, J. J., 1988, Regulation of one type of Ca2+ current in smooth muscle cells by diacyl-glycerol and acetylcholine, FASEB J., 2: 2497.

    PubMed  CAS  Google Scholar 

  • Walsh Jr., J. V. and Singer, J. J., 1987, Identification and characterization of major ionic currents in isolated smooth muscle cells using the voltage-clamp technique, Pflügers Arch., 408: 83.

    Article  PubMed  CAS  Google Scholar 

  • Warner, T. D., De Nucci, G. R., and Vane, J. R., 1989, Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat, Eur. J. Pharmacol., 159: 325.

    Article  PubMed  CAS  Google Scholar 

  • Wong, G. K., 1984, Irreversible modification of sodium channel inactivation in toad myelinated nerve fibres by the oxidant chloramine-T, J. Physiol., 346: 127.

    Google Scholar 

  • Worley III, J. F., Deitmer, J. W., and Nelson, M. T., 1986, Single nisoldipine-sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery, Proc. Natl Acad. Sci. U.S.A., 83: 5746.

    Article  PubMed  CAS  Google Scholar 

  • Wright, C. E. and Fozzard, J. R., 1988, Regional vasodilation is a prominent feature of the haemodynamic response to endothelin in anesthetized spontaneous hypertensive rats, Eur. J. Pharmacol., 155: 201.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Z. L., Kitamura, K., and Kuriyama, H., 1991, ATP activates a nonselective cation channel and modulates the voltage-dependent Ca channel in rabbit portal vein, J. Physiol., submitted.

    Google Scholar 

  • Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T., 1988, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature, 332: 411.

    Article  PubMed  CAS  Google Scholar 

  • Yatani, A., Seidel, C. L., Allen, J., and Brown, A. M., 1987, Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein, Circ. Res., 60: 523.

    PubMed  CAS  Google Scholar 

  • Yoshino, M., Someya, T., Nishino, A., and Yabu, H., 1988, Whole-cell and unitary Ca channel currents in mammalian intestinal smooth muscle cells: Evidence for existence of two types of Ca channels, Pflügers Arch., 411: 229.

    Article  PubMed  CAS  Google Scholar 

  • Yoshitomi, T. and Ito, Y., 1986, Double reciprocal innervations in dog iris sphincter and dilator muscles, Invest. Ophthalmol. Vis. Sci., 27: 83.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kitamura, K. et al. (1991). Characteristics of the Voltage-Dependent Calcium Channel in Smooth Muscle: Patch-Clamp Studies. In: Moreland, R.S. (eds) Regulation of Smooth Muscle Contraction. Advances in Experimental Medicine and Biology, vol 304. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6003-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6003-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6005-6

  • Online ISBN: 978-1-4684-6003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics