Skip to main content

Effect of Spermine on Transfer RNA and Transfer RNA-Ribosome Interactions

  • Chapter
Progress in Polyamine Research

Abstract

Translation of genetic message requires a coordianted interplay of more than a hundred kinds of macromolecules. Besides the ribosomes, which are multicomponent ribonucleoprotein particles by their own nature, molecules of transfer RNA, aminoacyl-tRNA synthetases, soluble protein factors and mRNA are involved in the process. Ribosomes provide an unspecific stage for the codon-anticodon interaction and catalyze the peptide bond formation. Molecules of tRNA play a crucial and highly specific role in the over-all process: they are recognized by specific aminoacyl-tRNA synthetases to be charged with their cognate amino acids; the resulting aminoacyl-tRNAs are then brought, in the form of ternary complexes with GTP and the elongation factor Tu, to the decoding or A site of the ribo-some. There they are screened for the proper codon-anticodon matching and only the correct aminoacyl-tRNA is allowed to enter the transpeptidation reaction. The resulting peptidyl-tRNA is then translocated to the peptidyl or P site to serve as the peptidyl donor in the next round of translation. The process in its simplified form is shown in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.T. Sakai and S.S. Cohen, Effects of Polyamines on the Structure and Reactivity of tRNA, Prog. Nucleic Acid Res. Mol.Biol., 17: 15 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. A.H. Schreier and P.R. Schimmel, Interaction of Polyamines with Fragments and Whole Molecules of Yeast Phenylalanine-Specific tRNA, J. Mol. Biol., 93: 323 (1975).

    Article  PubMed  CAS  Google Scholar 

  3. P.H. Bolton and D.R. Kearns, Effects of Magnesium and Polyamines on the Structure of Yeast tRNATyi, Biochem. Biophys. Acta, 477: 10(1977).

    PubMed  CAS  Google Scholar 

  4. S. Chousterman and F. Chapeville, Tyrosyl-tRNA Synthetase of E. coli B. Role of Magnesium Ions in the Reaction Catalyzed by the Enzyme, Eur. J. Biochem., 35: 46 (1973).

    Article  PubMed  CAS  Google Scholar 

  5. T.N.E. Lövgren, A. Peterson, and R.B. Loftfield, The Mechanism of Aminoacylation of Transfer Ribonucelic Acid. The Role of Magnesium and Spermine in the Synthesis of Isoleucyl-tRNA, J. Biol. Chem., 253: 6702 (1978).

    PubMed  Google Scholar 

  6. C. Jelenc and CG. Kurland, Nucleoside Triphosphate Regeneration Decreases the Frequency of Translation Errors, Proc. Natl. Acad. Sci. USA, 76: 3174 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. M. Plohl and Ž. Kućan, Effects of Spermine and Magnesium Ions on the Aminoacylation of Yeast tRNATyr, Biochemie, in press (1988).

    Google Scholar 

  8. G.J. Quigley and A. Rich, Structural Domains of Transfer RNA Molecules, Science, 194: 796 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. J.D. Robertus, J.E. Ladner, J.T. Finch, D. Rhodes, R.S. Brown, B.F.C. Clark, and A. Klug, Structure of Yeast Phenylalanine tRNA at 3Å resolution, Nature, 250: 546 (1974).

    Article  PubMed  CAS  Google Scholar 

  10. G.J. Quigley, M.M. Teeter, and A. Rich, Structural Analysis of Spermine and Magnesium Ion Binding to Yeast Phenylalanine Transfer RNA, Proc. Natl. Acad. Sci. USA, 75: 64 (1978).

    Article  PubMed  CAS  Google Scholar 

  11. S.R. Holbrook, J.L. Sussman, R.W. Warant, and S.H. Kim, Crystal Structure of Yeast Phenylalanine Transfer RNA II. Structural Features and Functional Implications, J. Mol. Biol., 123: 631 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. K. Zakrzewska and B. Pullman, Spermine-Nucleic Acid Interactions: A Theoretical Study, Biopolymers, 25: 375 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. T.T. Sakai, R. Forget, I. Jacqueline, C.E. Freda, and S.S. Cohen, The Binding of Polyamines and of Ethidium Bromide to tRNA, Nucleic Acid Res., 2: 1005 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. Y. Takeda and T. Ohnishi, Polyamines and Protein Synthesis. IV. Stimulation of Aminoacyl tRNA Formation by Polyamines, Biochem. Biophys. Res. Commun., 37: 917 (1969).

    Article  PubMed  CAS  Google Scholar 

  15. J.L. Leroy and M. Gueron, Electrostatic Effects in Divalent Ion Binding to tRNA, Biopolymers, 16: 2429 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. I. Weygand-Durašević, V. Nöthig-Laslo, J.N. Herak, and Ž. Kućan, Conformational Changes in Yeast tRNATyr Revealed by EPR Spectra of Spin-Labelled N6-(△2-Isopentenyl)-adenosine Residue. Biochim. Biophys. Acta, 479: 332 (1977).

    PubMed  Google Scholar 

  17. I. Weygand-Durašević, V. Nöthig-Laslo, and Ž. Kućan, Involvement of the 3’ Side of the Anticodon Loop of Yeast tRNATyr in Messenger-Free Binding to Ribosomes. An Electron-Spin Resonance Study, Eur. J. Biochem., 139: 541 (1984).

    Article  PubMed  Google Scholar 

  18. I. Weygand-Durasevic, T.A. Cruse, and B.F.C. Clark, The Influence of Elongation Factor-Tu GTP and Anticodon-Anticodon Interaction on the Anticodon Loop Conformation of Yeast tRNATyr, Eur. J. Biochem., 116: 59 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. V. Nöthig-Laslo, I. Weygand-Durašević, T. Živković, and Ž. Kućan, Binding of Spermine to tRNATyr Stabilizes the Conformation of the Anticodon Loop and Creates Binding Sites for Divalent Cations, Eur. J. Biochem., 117: 263 (1981).

    Article  PubMed  Google Scholar 

  20. V. Nöthig-Laslo, I. Weygand-Durašević, and Ž. Kućan, Structural Changes of Yeast tRNATyr Caused by the Binding of Divalent Ions in the Presence of Spermine, J. Biomol. Struct. Dynamics, 2: 941 (1985).

    Article  Google Scholar 

  21. C.C. Allende, J.E. Allende, M. Gatica, J. Celis, G. Mora, and M. Matamala, The Aminoacyl Ribonucleic Acid Synthetase I. Properties of the Threonyladenylate-Enzyme Complex, J. Biol. Chem., 241: 2245 (1966).

    PubMed  CAS  Google Scholar 

  22. E. Holler, Isoleucyl Acid Synthetase of E. coli B. Effects of Magnesium and Spermine on the Amino Acid Activation Reaction, Biochemistry, 12: 1142 (1973).

    Article  PubMed  CAS  Google Scholar 

  23. Ž. Kućan and R.W. Chambers, Purification of Tyrosine-tRNA Ligase from Saccharomyces cerevisiae S288C, J. Biochem. (Tokyo), 73: 811 (1973).

    Google Scholar 

  24. A.C. Carr, G.L. Igois, G.R. Penzer, and J.A. Plumbridge, The Effect of Spermine and Mg2+ on the Catalytic Mechanism of Isoleucin: tRNA Ligase, Eur. J. Biochem., 54: 169 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. S. Pestka, Inhibitors of Protein Synthesis, in “Molecular Mechanism of Protein Synthesis”, H. Weissbac and S. Pestka, eds., Academic Press, New York (1977).

    Google Scholar 

  26. R. Rosset and L. Gorini, A Ribosomal Ambiguity Mutation, J. Mol. Biol., 39: 95 (1969).

    Article  PubMed  CAS  Google Scholar 

  27. K.A. Abraham, S. Olsnes, and A. Pihl, Fidelity of Protein Synthesis in vitro is Increased in the Presence of Spermidine, FEBS Lett., 101: 93 (1979).

    Article  PubMed  CAS  Google Scholar 

  28. G.Z. Yusupova, N.V. Belitsina, and A.S. Spirin, Template-Free Ribosomal Synthesis of Polypeptide Chains from Aminoacyl-tRNA, FEBS Lett., 206: 42 (1986.

    Article  Google Scholar 

  29. Ž. Kućan, On the Role of Spermine in Protein Synthesis, in “The Roots of Modern Biochemistry”, H. Kleinkauf, H. von Döhren, and L. Jaenicke, eds. Walter de Gruyter, Berlin (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kućan, Ž., Naranda, T., Plohl, M., Nöthig-Laslo, V., Weygand-Durašević, I. (1988). Effect of Spermine on Transfer RNA and Transfer RNA-Ribosome Interactions. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics