Skip to main content

Neurogenesis and Maturation of Cell Morphology in the Development of the Mammalian Retina

  • Chapter
Development of the Vertebrate Retina

Abstract

The cellular organization and morphology of the adult mammalian retina results from a complex series of interacting developmental events. These events may occur sequentially or simultaneously, alone or in combination. Each individual event of development may have pervasive influences that modify or direct morphogenesis of the retina as a whole, or it may have local effects on birth and differentiation of individual populations of neural and glial cells. The time period during which individual modulatory phenomena may be effective can vary with the stage of development. In this review we limit our discussion to the production of neuroblasts, the maturation of their cellular morphology, and the contributions of their processes to the structure and the circuitry of the adult mammalian retina. The role of cell death in the development of the retina is considered elsewhere in this volume (Chapters 7, 9, and 10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R., 1986, Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Dev. Biol. 117:520–527.

    Article  PubMed  CAS  Google Scholar 

  • Angevine, J. B., Bodian, D., Coulombre, A. J., Eddes, M. V., Hamburger, V., Jacobson, M., Lyser, K. M., Prestige, M. C., Sidman, R. L., Varon, S., and Weiss, P., 1970, Embryonic vertebrate central nervous system: Revised terminology, Anat. Ree. 166:257–261.

    Article  Google Scholar 

  • Barber, A. N., 1955 Embryology of the Human Eye, C. V. Mosby, St. Louis.

    Google Scholar 

  • Barnstable, C. J., Hofstein, R., and Akagawa, K., 1985, A marker of early amacrine cell development in rat retina. Dev. Brain Res. 20:286–290.

    Article  CAS  Google Scholar 

  • Borwein, B., 1985, Scanning electron microscopy in retinal research. Scan. Electron Microsc. 1:279–301.

    Google Scholar 

  • Constantine-Paton, M., Blum, A. S., Mendez-Otero, R., and Barnstable, C., 1986, A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina. Nature (London) 324:459–462.

    Article  CAS  Google Scholar 

  • Crisanti, P., Lorinet, A. M., Calothy, G., and Pessac, B., 1985, Glutamic acid decarboxylase activity is stimulated in quail retina neuronal cells transformed by Rous sarcoma virus and is regulated by pp60v-src, EMBO J. 4:1467–1470.

    PubMed  CAS  Google Scholar 

  • Duke-Elder, S., and Cook, C., 1963, Embryology, in System of Ophthalmology, Volume III. Normal and Abnormal Development (S. Duke-Elder, ed.), pp. 11–57 and 81–99, C. V. Mosby, St. Louis.

    Google Scholar 

  • Dütting, D., Gierer, A., and Hansman, G., 1983, Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina, Dev. Brain Res. 10:21–32.

    Article  Google Scholar 

  • Erickson, P. A., Fisher, S. K., Anderson, D. H., Stern, W. H., and Borgula, G. A., 1983, Retinal detachment in the cat: The outer nuclear and outer plexiform layers. Invest. Ophthalmol. Vis. Sci. 24:927–942.

    PubMed  CAS  Google Scholar 

  • Famiglietti, E. V. Jr., Kaneko, A., and Tachibana, M., 1977, Neuronal architecture of on and off pathways in carp retina, Science 198:1267–1269.

    Article  PubMed  Google Scholar 

  • Famiglietti, E. V. Jr., and Kolb, H., 1976, Structural basis ON-and OFF-center responses in retinal ganglion cells, Science 194:193–195.

    Article  PubMed  Google Scholar 

  • Fujisawa, H., 1982, Formation of gap junctions by stem cells in the developing retina of the clawed frog (Xenopus laevis), Anat. Embryol. (Berlin) 165:141–149.

    Article  CAS  Google Scholar 

  • Fujita, S., 1963, The matrix cell and cytogenesis in the developing central nervous system, J. Comp. Neurol. 120:37–42.

    Article  PubMed  CAS  Google Scholar 

  • Glücksmann, A., 1940, Differentiation of tadpole eye. Br. J. Ophthalmol. 24:153–178.

    Article  PubMed  Google Scholar 

  • Grady, E. F., Schwab, M., and Rosenau, W., 1987, Expression of N-myc and c-src during the development of fetal human brain, Cancer Res. 47:2931–2936.

    PubMed  CAS  Google Scholar 

  • Greiner, J. V., and Weidman, T. A., 1980, Histogenesis of the cat retina. Exp. Eye Res. 30: 439–453.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, T. L., Whikehart, D. R., Jackson, C. A., Hitchcock, P. F., and Paduzzi, J. D., 1983, Tritiated thymidine experiments in the cat: A description of techniques and experiments to define the time-course of radioactive thymidine availability, J.Neurosci. Methods 8:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Hilfer, S. R., 1983, Development of the eye of the chick embryo, Scan. Electron Microsc. 111:1353–1369.

    Google Scholar 

  • Hinds, J. W., and Hinds, P. L., 1974, Early ganglion cell differentiation in the mouse retina: An electron microscopic analysis utilizing serial sections. Dev. Biol. 37:381–416.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W., and Hinds, P. L., 1978, Early development of amacrine cells in the mouse retina: An electron microscopic, serial section analysis, J. Comp. Neurol. 179:277–300.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W., and Hinds, P. L., 1983, Development of retinal amacrine cells in the mouse embryo: Evidence for two modes of formation, J. Comp. Neurol. 213:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W., and Ruffett, T. L., 1971, Cell proliferation in the neural tube: An electron microscopic and Golgi analysis in the mouse cerebral vesicle, Z. Zellforsch. 115:226–264.

    Article  PubMed  CAS  Google Scholar 

  • Holt, C. E., Bertsch, T. W., Ellis, H. M., and Harris, W. A., 1988, Cellular determination in the Xenopus retina is independent of lineage and birth date, Neuron 1:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P., Rusoff, A., and Dubin, M. W., 1979, Postnatal neurogenesis in the kitten retina, J. Comp. Neurol. 187:545–556.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Nelson, R., and Mariani, A., 1981, Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study, Vision Res. 21:1081–1114.

    Article  PubMed  CAS  Google Scholar 

  • Koontz, M. A., and Hendrickson, A. E., 1987, Stratified distribution of synapses in the inner plexiform layer of the primate retina, J. Comp. Neurol. 263:581–592.

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin, N. M., 1986, Cell line segregation during peripheral nervous system ontogeny, Science 231:1515–1522.

    Article  PubMed  Google Scholar 

  • Levitt, P. R., Cooper, M. L., and Rakic, P., 1981, Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis, J. Neuro sci. 1:27–39.

    CAS  Google Scholar 

  • Lia, B., Williams, R. W., and Chalupa, L. M., 1987, Formation of retinal ganglion cell topography during prenatal development. Science 236:848–850.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, S. A., Brugge, J. S., and Levine, J. M., 1986, Induction of altered c-src product during neural differentiation of embryonal carcinoma cells. Science 234:873–876.

    Article  PubMed  CAS  Google Scholar 

  • Mann, I., 1969, The Development of the Human Eye, Grune & Stratton, New York.

    Google Scholar 

  • Marc, R. E., 1986, Neurochemical stratification in the inner plexiform layer of the vertebrate retina. Vision Res. 26:223–238.

    Article  PubMed  CAS  Google Scholar 

  • Marshak, D., Ariel, M., and Dowling, J. E., 1984, Laminar distribution of retinal ganglion cell inputs in the goldfish. Invest. Ophthalmol. Vis. Sci. (Suppl.) 25:284.

    Google Scholar 

  • Martinez, R., Mathey-Prevot, B., Bernards, A., and Baltimore, D., 1987, Neuronal pp60c-src contains a six-amino acid insertion relative to its non-neuronal counterpart. Science 237:411–415.

    Article  PubMed  CAS  Google Scholar 

  • Maslim, J., and Stone, J., 1986, Synaptogenesis in the retina of the cat. Brain Res. 373:35–46.

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde, D. N., Thibeault, M. A., and Dubin, M. W., 1984, Non-uniform postnatal growth of the cat retina, J. Comp. Neurol. 228:598–608.

    Article  PubMed  CAS  Google Scholar 

  • McArdle, C. B., Dowling, J. E., and Masland, R. H., 1977, Development of outer segments and synapses in the rabbit retina, J. Comp. Neurol. 175:253–274.

    Article  PubMed  CAS  Google Scholar 

  • Morest, D. K., 1970, The pattern of neurogenesis in the retina of the rat, Z. Anat. Entwicklungsgesch. 131:45–67.

    Article  PubMed  CAS  Google Scholar 

  • Morse, D. E., and McCann, P. S., 1984, Neuroectoderm of the early embryonic rat eye. Invest. Ophthalmol. Vis. Sci. 25:899–907.

    PubMed  CAS  Google Scholar 

  • Morrison, J. D., 1982, Postnatal development of the area centralis of the kitten retina: An electron microscopic study, J. Anat. 135:255–271.

    PubMed  CAS  Google Scholar 

  • Negishi, K., Teranishi, T., and Kato, S., 1982, New dopaminergic and indoleamine-accumulating cells in the growth zone of goldfish retinas after neurotoxic destruction. Science 216:747–749.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R., Famiglietti, E. V. Jr., and Kolb, H., 1978, Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina, J.Neurophysiol. 41:472–483.

    PubMed  CAS  Google Scholar 

  • Patterson, P. H., 1978, Environmental determination of autonomic neurotransmitter functions, Annu. Rev. Neurosci. 1:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Polley, E. H., Walsh, C., and Hickey, T. L., 1982, Neurogenesis in the inner nuclear layer (INL) and outer nuclear layer (ONL) of the cat retina: A study using 3H-thymidine, Invest. Ophthalmol Vis. Sci. (Suppl.) 22:114 (Abstract).

    Google Scholar 

  • Polley, E. H., Zimmerman, R. P., and Fortney, R. L., 1985, Development of the outer plexiform layer (OPL) of the cat retina, Soc. Neurosci. Abstr. 11:14 (Abstract).

    Google Scholar 

  • Polley, E. H., Zimmerman, R. P., and Fortney, R. L., 1986, Interaction of a temporal sequence of cell birthdays and a spatial gradient of morphological maturation in the mammalian retina. Invest. Ophthalmol Vis. Sci. (Suppl) 27:326 (Abstract).

    Google Scholar 

  • Polyak, S. L., 1941, The Retina, University of Chicago Press, Chicago.

    Google Scholar 

  • Rakic, P., 1982, Organizing principles for development of primate cerebral cortex, in Organizing Principles of Neural Development (S. C. Sharma, ed.), pp. 21–48, Plenum Press, New York.

    Google Scholar 

  • Ramoa, A. S., Campbell, G., and Shatz, C. J., 1987, Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science 237:522–525.

    Article  PubMed  CAS  Google Scholar 

  • Ramony Cajal, S., 1893, La retine des vertebres, English translation by D. Maguire and R. W. Rodieck, Appendix I in The Vertebrate Retina, Principles of Structure and Function (R. W. Rodieck, ed.), W. H. Freeman, San Francisco, 1973.

    Google Scholar 

  • Ramony Cajal, S., 1929, Studies on Vertebrate Neurogenesis (translated by L. Guth), C. C. Thomas, Springfield, IL, 1960.

    Google Scholar 

  • Rapaport, D. H., and Stone, J., 1984, The area centralis of the retina in the cat and other mammals: Focal point for function and development of the visual system, Neuro science 11:289–301.

    CAS  Google Scholar 

  • Raymond, P. A., and Rivlin, P. K., 1987, Germinal cells in the goldfish retina that produce rod photoreceptors, Dev. Biol. 122:120–138.

    Article  PubMed  CAS  Google Scholar 

  • Ready, D. F., Tomlinson, A., and Lebovitz, R. M., 1986, Building an ommatidium: Geometry and genes, in Development of Order in the Visual System (S. R. Hilfer and J. M. Sheffield, eds.), pp. 97–125, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Reh, T. A., 1987, Cell-specific regulation of neuronal production in the larval frog retina, J. Neuro sci. 7:3317–3324.

    CAS  Google Scholar 

  • Reh, T. A., and Tully, T., 1986, Regulation of tyrosine hydroxylase containing amacrine cell number in larval frog retina. Dev. Biol. 114:463–469.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. R., 1987, Ontogeny of the area centralis in the cat, J. Comp. Neurol. 255:50–67.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. R., Rappaport, D. H., and Stone, J., 1985, Cell division in the developing cat retina occurs in two zones. Dev. Brain Res. 19:101–109.

    Article  Google Scholar 

  • Sauer, F. C., 1935, Mitosis in the neural tube, J. Comp. Neurol. 62:377–405.

    Article  Google Scholar 

  • Schnitzer, J., and Rusoff, A. C., 1984, Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages, J. Neuro sci. 4:2948–2955.

    CAS  Google Scholar 

  • Scholes, J., 1976, Neuronal connections and cellular arrangements in the fish retina, inNeural Principles in Vision (F. Zettler and R. Weiler, eds.), pp. 63–93, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Scholes, J., 1987, Uncertainties in the retina. Nature 328:114–115.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, J. B., and Fischman, D. A., 1970, Intercellular junctions in the developing neural retina of the chick embryo, Z. Zellforsch. 104:405–418.

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R. L., 1961, Histogenesis of mouse retina studied with thymidine-3H, The Structure of the Eye (G. Smelser, ed.). Academic Press, New York.

    Google Scholar 

  • Sorge, L. K., Levy, B. T., and Maness, P. F., 1984, pp60c-srcis is developmentally regulated in the neural retina. Cell 36:249–257.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, R. H., Reid, M., and Lacy, P. L., 1973, The distribution of rods and cones in the retina of the cat (Felis domesticus), J. Comp. Neurol. 148:229–248.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., Maslim, J., and Rapaport, D., 1984, The development of the topographical organisation of the cat’s retina, inDevelopment of Visual Pathways in Mammals (J. Stone, B. Dreher, and D. H. Rapaport, eds.), pp. 3–21, Alan R. Liss, New York.

    Google Scholar 

  • Tomlinson, A., and Ready, D. F., 1986, Sevenless, a cell-specific homoeotic mutation of the Drosophila eye, Science 231:400–402.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D. L., and Cepko, C. L., 1987, A common progenitor for neurons and glia persists in rat retina late in development, Nature (London) 328:131–136.

    Article  CAS  Google Scholar 

  • Vardimon, L., Fox, L. E., and Moscona, A. A., 1986, Accumulation of c-src mRNA is developmentally regulated in embryonic neural retina, Mol. Cell Biol. 6:4109–4111.

    PubMed  CAS  Google Scholar 

  • Vogel, M., 1978, Postnatal development of the cat’s retina. Adv. Anat. Emhryol. Cell Biol. 54(4): 1–107.

    CAS  Google Scholar 

  • Walsh, C., Polley, E. H., Hickey, T. L., and Guillery, R. W., 1983, Generation of cat retinal ganglion cells in relation to central pathways, Nature (London) 302:611–614.

    Article  CAS  Google Scholar 

  • Wässle, H., and Boycott, B., 1978, Receptor contacts of horizontal cells in the retina of the domestic cat, Proc. R. Soc. London Sec. B 203:247–267.

    Article  Google Scholar 

  • Wässle, H., and Reimann, H. J., 1978, The mosaic of nerve cells in mammalian retina, Proc. R. Soc. London Ser. B 200:441–461.

    Article  Google Scholar 

  • Wässle, H., Peichl, L., and Boycott, B., 1978, Topography of horizontal cells in the retina of the domestic cat, Proc. R. Soc. London Ser. B 203:269–291.

    Article  Google Scholar 

  • Wässle, H., Chun, M. H., and Müller, F., 1987, Amacrine cells of the ganglion cell layer of the cat retina, J. Comp. Neurol. 265:391–408.

    Article  PubMed  Google Scholar 

  • Walsh, C., and Polley, E. H., 1985, The topography of ganglion cell production in the cat’s retina, J. Neuro sci. 5:741–750.

    CAS  Google Scholar 

  • Wetts, R., and Eraser, S. E., 1988, Multipotent precursors can give rise to all major cell types of the frog retina, Science 239:1142–1145.

    Article  PubMed  CAS  Google Scholar 

  • Whiteley, H. E., and Young, S., 1986, The external limiting membrane in developing normal and dysplastic canine retina, Tissue Cell 18:231–239.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve, J. Comp. Neurol 246:32–69.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. O., and Hughes, A., 1987, The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina, J. Comp. Neurol. 255:159–177.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. W., 1983, The life history of retinal cells. Trans. Am. Ophthalmol. Soc. 81:193–228.

    PubMed  CAS  Google Scholar 

  • Young, R. W., 1985, Cell differentiation in the retina of the mouse, Anat. Ree. 212:199–205.

    Article  CAS  Google Scholar 

  • Zimmerman, R. P., 1983, The organization of the ganglion cell dendritic grids in the retina of Astronotus, Soc. Neurosci. Ahstr. 9:802 (Abstract).

    Google Scholar 

  • Zimmerman, R. P., Polley, E. H., and Fortney, R. L., 1985, Stages in the development of the inner plexiform layer of the cat retina, Soc. Neurosci. Abstr. 11:14 (Abstract).

    Google Scholar 

  • Zimmerman, R. P., Polley, E. H., and Fortney, R. L., 1987, The ultrastructure of the cat’s retina during ganglion cell neurogenesis. Invest. Ophthalmol. Vis. Sci. (Suppl.) 28:286 (Abstract).

    Google Scholar 

  • Zimmerman, R. P., Polley, E. H., and Fortney, R. L., 1988, Cell birthdays and rate of differentiation of ganglion and horizontal cells of the developing cat’s retina, J. Comp. Neurol. 274:77–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Polley, E.H., Zimmerman, R.P., Fortney, R.L. (1989). Neurogenesis and Maturation of Cell Morphology in the Development of the Mammalian Retina. In: Finlay, B.L., Sengelaub, D.R. (eds) Development of the Vertebrate Retina. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5592-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5592-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5594-6

  • Online ISBN: 978-1-4684-5592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics