Skip to main content

Part of the book series: New Horizons in Therapeutics ((NHTH))

  • 52 Accesses

Abstract

Phosphatidylinositols are phospholipid precursors of a series of inositol phosphates. Several inositol phosphates function as messenger molecules that evoke responses in cells following stimulation by extracellular agonists. While many different compounds are formed, the functions of only a few are understood. The pathways of formation of the inositol phosphates are complex and only partially worked out. The very complexity of the system implies that many functions may be served by these molecules. Myo-inositol (Fig. 1) is a hexatol that can be substituted with various combinations of phosphate esters and 1,2 cyclic phosphate esters. Allowing for all possible combinations of phosphates, we could have as many as 63 distinct noncyclic inositol phosphates and at least 3 cyclic inositol phosphates. Each of these compounds could specify some function, and the amount of information that could be derived from this system is therefore immense. Thus far, 15 inositol phosphates have been described in tissues or extracts of tissues (listed in Table I).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, K. E., Gish, B., G., Honchar, M. P., and Sherman, W. R., 1987, Evidence that inositol-1-phosphate in brain of lithium-treated rats results mainly from phospha- tidylinositol metabolism, Biochem. J. 242: 517–514.

    Google Scholar 

  • Baehr, W., Derbin, M. J., and Applebury, M. L., 1979, Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments, J. Biol. Chem. 254: 11669–11677.

    PubMed  CAS  Google Scholar 

  • Ballon, C. E., and Pizer, L. I., 1960, The absolute configuration of myoinositol 1-phosphate and a confirmation of bornesitol configurations, J. Am. Chem. Soc. 82: 333–335.

    Google Scholar 

  • Bansal, V. S., Inborn, R. C., and Majerus, P. W., 1987, The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate, J. Biol. Chem. (in press).

    Google Scholar 

  • Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232: 211–215.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1986, Regulation of ion channels by inositol trisphosphate and diacylglycerol, J. Exp. Biol. 124: 323–335.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Biden, T. J., and Wallheim, C. B., 1986, Ca++ regulates the inositol tris/tetrakisphosphate pathways in intact and broken preparations of insulin-secreting RINm5F cells, J. Biol. Chem. 261: 11931–11934.

    PubMed  CAS  Google Scholar 

  • Biswas, S., Maity, I. B., Chakrabarti, S., and Biswas, B. B., 1978, Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaseolus aureus, Arch. Biochem. Biophys. 185: 557–566.

    Article  CAS  Google Scholar 

  • Chakrabarti, S., and Biswas, B. B., 1981, Evidence for the existence of phosphoinositol kinase in chicken erythrocytes, Indian J. Biochem. Biophys. 18: 398–401.

    CAS  Google Scholar 

  • Chandra Sekar, M., Dixon, J. F., and Hokin, L. E., 1987, The formation of inositol 1,2—cyclic 4,5-trisphosphate and inositol 1,2-cyclic 4-bisphosphate on stimulation of mouse pancreatic minilobules with carbamylcholine, J. Biol. Chem. 262: 340–344.

    Google Scholar 

  • Cockcroft, S., 1987, Polyphosphoinositide phosphodiesterase: Regulation by a novel guanine nucleotide binding protein Gp, Trends Biochem. Sci. 12: 75–78.

    CAS  Google Scholar 

  • Connolly, T. M., Bross, T. E., and Majerus, P. W., 1985, Isolation of a phosphomonoesterase from human platelets that specifically hydrolizes the five-phosphate of inositol-(1,4,5)trisphosphate, J. Biol. Chem. 260: 7868–7874.

    PubMed  CAS  Google Scholar 

  • Connolly, T. M., Wilson, D. B., Bross, T. E., and Majerus, P. W., 1986, Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. II. Metabolism in cell free extracts, J. Biol. Chem. 261: 122–126.

    PubMed  CAS  Google Scholar 

  • Connolly, T. M., Lawing, W. J., Jr., and Majerus, P. W., 1986b, Protein kinase C phosphorylates human platelet inositoltrisphosphate 5’-phosphomonoesterase increasing the phosphatase activity, Cell 46: 951–958.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, T. M., Bansal, V. S., Bross, T. E., Irvine, R. F., and Majerus, P. W., 1987, The metabolism of tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J. Biol. Chem. 262: 2146–2149.

    PubMed  CAS  Google Scholar 

  • Deckmyn, H., Tu, S.-M., and Majerus, P. W., 1986, Guanine nucleotides stimulate soluble phosphoinositide-specific phospholipase C in the absence of membranes, J. Biol. Chem. 261: 16553–16558.

    PubMed  CAS  Google Scholar 

  • Downes, C. P., Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203: 169–177.

    PubMed  CAS  Google Scholar 

  • Downes, C. P., Hawkins, P. T., and Irvine, R. F., 1986, Inositol.1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of the inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland, Biochem. J. 238: 501–506.

    PubMed  CAS  Google Scholar 

  • Eisenberg, F., Jr., and Bolden, A. H., 1965, D-myo-inositol-l-phosphate, an intermediate in the biosynthesis of inositol in mammal, Biochem. Biophys. Res. Commun. 21: 100–105.

    Article  CAS  Google Scholar 

  • Eisenberg, F., Jr., and Bolden, A. H., 1965, D-myo-inositol-l-phosphate, an intermediate in the biosynthesis of inositol in mammal, Biochem. Biophys. Res. Commun. 21: 100–105.

    Article  CAS  Google Scholar 

  • Gomperts, B. D., 1980, Involvement of guanine nucleotide binding protein in the gating of CA2+ by receptors, Nature 306: 64–66.

    Article  Google Scholar 

  • Graham, R. A., Meyer, R. A., Szwergold, B. S., and Brown, T. R., 1987, Observation of myo-inositol 1,2-(cyclic)phosphate in a Morris hepatoma by 3113 NMR, J. Biol. chem. 262: 35–37.

    PubMed  CAS  Google Scholar 

  • Guillemette, G., Baukal, A. J., Balla, T., and Catt. K. J.1987, Angiotensin-induced formation and metabolism of inositol polyphosphates in bovine adrenal glomerulosa cells, Biochem. Biophys. Res. Commun. 142: 15–22.

    Article  CAS  Google Scholar 

  • Hansen, C. A., Mah, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261: 8100–8103.

    PubMed  Google Scholar 

  • Haslam, R. J., and Davidson, M. M. L., 1984, Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence for a role for a GTP-binding protein in platelet activation, FEBS Len. 174: 90–95.

    Article  CAS  Google Scholar 

  • Heslop, J. P., Irvine, R. F., Tashjian, A. T., and Berridge, M. J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells, J. Exp. Biol. 119: 395–401.

    PubMed  CAS  Google Scholar 

  • Heslop. J. P., Blakeley, D. M., Brown, K. D., Irvine, R. F., and Berridge, M. J.. 1986, Effects of bombesin and insulin on inositol(1,4,5)trisphosphate and inositol(1,3,4) trisphosphate formation in Swiss 3T3 cells, Cell 47: 703–709.

    Article  Google Scholar 

  • Hofmann, S. L., and Majerus, P. W., 1982, Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicular glands. J. Biol. Chem. 257: 6461–6469.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem. 54: 205–236.

    Article  CAS  Google Scholar 

  • Imai, A., and Gershengorn, M. C., 1986, Phosphatidylinositol 4,5-bisphosphate turnover is transient while phosphatidylinositol turnover is persistent in thyrotropin-releasing hormone-stimulated rat pituitary cells, Proc. Natl. Acad. Sci. U.S.A. 83: 8540–8544.

    Article  PubMed  CAS  Google Scholar 

  • Imai, A., and Gershengorn, M. C., 1986, Phosphatidylinositol 4,5-bisphosphate turnover is transient while phosphatidylinositol turnover is persistent in thyrotropin-releasing hormone-stimulated rat pituitary cells, Proc. Natl. Acad. Sci. U.S.A. 83: 8540–8544.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P.. 1984, Inositol trisphosphates in carbachol-stimulated rat parotid glands, Biochem. J. 223: 237–243.

    PubMed  CAS  Google Scholar 

  • Irvine R. F., Letcher, A. J., Lander, D. J., and Berridge, M. J., 1986a, Specificity of inositol phosphate-stimulated Cat+ mobilization from Swiss-mouse 3T3 cells, Biochem. J. 240: 301–304.

    CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986b, The inositol tris/ tetrakisphosphate pathway-demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues, Nature 320: 631–634.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1987, Inositol(3,4) bisphosphate and inositol(1,3)bisphosphate in GH4 cells-Evidence for complex breakdown of inositol(1,3,4)trisphosphate, Biochem. Biophys. Res. Commun. 143: 353–359.

    Article  CAS  Google Scholar 

  • Isaacks, R., Harkness, D., Sampsell, R., Adler, J., Roth, S., Kim, C., and Goldman, P., 1977, Studies on avian erythrocyte metabolism. Inositol tetrakisphosphate: The major phosphate compound in the erythrocytes of the ostrich (Struthio camelus camelus), Eur. J. Biochem. 77: 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, H., Connolly, T. M., Bross, T. E., and Majerus, P. W., 1986, Inositol cyclic trisphosphate (inositol 1:2-cyclic,4,5-trisphosphate) is formed upon thrombin stimulation of human platelets, Proc. Natl. Acad. Sci. U.S.A. 83: 6397–6401.

    Article  PubMed  CAS  Google Scholar 

  • Kühn, H., 1986, Proteins involved in the control of cGMP phosphodiesterase in retinal rod cells, Fortschr. Zool. 33: 289–297.

    Google Scholar 

  • Litosch, I., and Fain, J. N., 1986, Mini review: Regulation of phosphoinositide breakdown by guanine nucleotides, Life Sci. 39: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Litosch, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown, J. Biol. Chem. 260: 5464–5471.

    Google Scholar 

  • Lochner, J. E., Badway, J. A., Horn, W., and Kamovsky, M. L., 1986, All-trans-retinal stimulates superoxide release and phospholipase C activity in neutrophils without significantly blocking protein kinase C, Proc. Natl. Acad. Sci. U.S.A. 83: 7673–7677.

    Article  PubMed  CAS  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H. Bansal, V. S., and Wilson, D. B., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234: 1519–1526.

    CAS  Google Scholar 

  • Majumder, A. N. L., Mandal, N. C., and Biswas, B. B., 1972, Phosphoinositol kinase from germinating mung bean seeds, Phytochemistry 11: 503–508.

    Article  CAS  Google Scholar 

  • Molina y Vedia, L. M., and Lapetina, E. G., 1986, Phorbol 12,13-dibutyrate and 1-oleoyl-2acetyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets, J. Biol. Chem. 261: 10493–10495.

    Google Scholar 

  • Morgan, R. O., Chang, J. P., and Catt, K. J., 1987, Novel aspects of gonadatropin-releasing hormone action on inositol polyphosphate metabolism in cultured pituitary gonadotrophs, J. Biol. Chem. 262: 1166–1171.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and prospectives of protein kinase C Science 233: 305–312.

    CAS  Google Scholar 

  • Rittenhouse, S. E., and Sasson, J. P., 1985, Mass changes in myo-inositol trisphosphate in human platelets stimulated by thrombin. Inhibitory effects of phorbol ester, J. Biol. Chem. 260: 8657–8660.

    PubMed  CAS  Google Scholar 

  • Ross, T. S., and Majerus, P. W., 1986, Isolation of D-myo-inositol 1:2 cyclic phosphate 2-inositolphosphohydrolase from human placenta, J. Biol. Chem. 261: 11119–11123.

    PubMed  CAS  Google Scholar 

  • Shears, S. B., Storey, D. J., Morris, A. J., Cubitt, A. B., Parry, J. B., Michell, R. H., and Kirk, C. J., 1987, Dephosphorylation of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,3,4-trisphosphate, Biochem. J. 242: 393–402.

    PubMed  CAS  Google Scholar 

  • Siess, W., 1985, Evidence for the formation of inositol 4-monophosphate in stimulated human platelets, FEBS Lett. 185: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Siess, W., 1985, Evidence for the formation of inositol 4-monophosphate in stimulated human platelets, FEBS Lett. 185: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, J. R., Cooper, R. H., Joseph, S. K., and Thomas, A. P., 1985, Inositol tris-phosphate and diacylglycerol as intracellular second messengers in liver, Am. J. Physiol. 248: C203 - C216.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., Bross, T. E., Hofmann, S. L., and Majerus, P. W., 1984, Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes, J. Biol. Chem. 259: 11718–11724.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., Neufeld, E. J., and Majerus, P. W., 1985, Phosphoinositide interconversion in thrombin stimulated human platelets, J. Biol. Chem. 260: 1036–1051.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Majerus, P.W., Connolly, T.M., Bansal, V.S., Inhorn, R.C., Deckmyn, H. (1988). The Metabolism of Inositol Phosphates. In: Poste, G., Crooke, S.T. (eds) Cellular and Molecular Aspects of Inflammation. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5487-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5487-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5489-5

  • Online ISBN: 978-1-4684-5487-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics