Skip to main content

Chemical Anatomy of the Basal Ganglia in Primates

  • Conference paper
The Basal Ganglia II

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 32))

Abstract

This paper summarizes the results of our recent studies of the cellular localization of different neurotransmitters or neurotransmitter-related substances within the basal ganglia of the squirrel monkey (Saimiri sciureus). Although most of these results pertained to the primate striatum, other components of the basal ganglia in monkeys as well as some data obtained in rats and cats will also be considered. The distribution and morphological characteristics of cholinergic neurons such as visualized by means of a pharmacohistochemical technique to reveal the acetylcholinesterase (AChE) or the immunohistochemical identification of choline acetyltransferase (ChAT) will be described first. This will be followed by a survey of the immunohistochemical localization of three different neuropeptides: (1) neuropeptide Y (NPY) belonging to the pancreatic polypeptide family, (2) enkephalins (ENK), a member of the abundant and highly diversified family of opiate peptides, and (3) substance P (SP) belonging to the tachykinin family. Then, a summary of the distribution of gamma-aminobutyric acid (GABA)-immunoreactive cell bodies and terminals in the basal ganglia and of dopamine (DA)-immunoreactive cell bodies in the midbrain of the squirrel monkey will be provided. Finally, the significance of all these findings will be discussed in the light of the wealth of information presently available on the complex organization of the various chemospecific neuronal systems involved in the functional organization of the primate basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Araki, M., McGeer, P.L. and McGeer, E.G., 1984, Retrograde HRP tracing combined with a pharmacohistochemical method for GABA Transaminase for the identification of presumptive GABAergic projections to the habenula, Brain Res., 304: 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Araki, M., McGeer, P.L. and McGeer, E.G., 1985a, Striatonigral and pallidonigral pathways studied by a combination of retrograde horseradish peroxidase tracing and a pharmacohistochemical method for γ-aminobutyric acid transaminase, Brain Res., 331: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Araki, M., McGeer, P.L. and McGeer, E.G., 1985b, Presumptive γ-aminobutyric acid pathways from the midbrain to the superior colliculus studied by combined horseradish peroxidase-γ-aminobutyric acid transaminase pharmacohistochemical method, Neuroscience, 13: 433–439.

    Article  Google Scholar 

  • Armstrong, D.M., Saper, C.B., Levey, A.I., Wainer, B.H. and Terry, R.D., 1983, Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase, J. Comp. Neurol., 216: 53–68.

    Article  PubMed  CAS  Google Scholar 

  • Aronin, N., DiFiglia, M., Graveland, G.A., Schwartz, W.J. and Wu, J.-Y., 1984, Localization of immunoreactive enkephalins in GABA synthesizing neurons in the rat neostriatum, Brain Res., 300: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Beach, T.G. and McGeer, E.G., 1984, The distribution of substance P in the primate basal ganglia: An immunohistochemical study of baboon and human brain, Neuroscience, 13: 29–52.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Frank, R.C., Ellison, D.W. and Martin, J.B., 1986, The effect of neuropeptide Y on striatal catecholamines, Neurosci. Lett., 71: 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F. and Martin, J.B., 1984, The effect of somatostatin on striatal catecholamines, Neurosci. Lett., 44: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead, R.M. and Cruz, C.J., 1986, Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat, Neuroscience, 19: 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead, R.M. and Kersey, K.S., 1985, Immunohistochemical demonstration of differential substance P-, met-enkephalin-, and glutamic-acid-decarboxylase-containing cell body and axon distributions in the corpus striatum of the cat, J. Comp. Neurol., 232: 481–498.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, R., Bohlen, P., Ling, N., Briskin, A., Esch, F., Brazeau, P., Ying, S.-Y. and Guillemin, R., 1982, Presence of somatostatin-28 (1–12) in hypothalamus and pancreas, Proc. Natl Acad. Sci. (USA), 79: 917–921.

    Article  CAS  Google Scholar 

  • Bishop, G.A., Chang, H.T. and Kitai, S.T., 1982, Morphological and physiological properties of neostriatal neurons: An intracellular horseradish peroxidase study in the rat, Neuroscience, 7: 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Björklund, A. and Lindvall, O., 1984, Dopamine-containing systems in the CNS, in: “Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS”, Vol. 2, Part I, A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Bolam, J.P., Clark, D.J., Smith, A.D., and Somogyi, P., 1983, A type of aspiny neuron in the rat neostriatum accumulates [3H]-γ-aminobutyric acid: Combination of Golgi-staining, autoradiography, and electron microscopy, J. Comp. Neurol., 213: 121–134.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Ingham, C.A. and Smith, A.D., 1984a, The section-Golgiimpregnation procedure. 3. Combination of Golgi impregnation with enzyme histochemistry and electron microscopy to characterize acetylcholinesterase-containing neurons in the rat neostriatum, Neuroscience, 12: 687–709.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Powell, J.F., Totterdell, S. and Smith, A.D., 1981, The proportion of neurons in the rat neostriatum that project to the substantia nigra demonstrated using horseradish peroxidase conjugated with wheat-germ agglutinin, Brain Res., 220: 339–343.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Powell, J.F., Wu, J.-Y. and Smith, A.D., 1985, Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunohistochemistry, J. Comp. Neurol., 237: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Bolara, J.P., Wainer, B.H. and Smith, A.D., 1984b, Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgiimpregnation and electron microscopy, Neuroscience, 12: 711–718.

    Article  Google Scholar 

  • Bouras, C., Taban, C.H. and Constantinidis, J., 1984, Mapping of enkephalin in human brain. An immunofluorescence study on brains from patients with senile and presenile dementia, Neuroscience, 12: 179–190.

    Article  PubMed  CAS  Google Scholar 

  • Brann, M.R. and Emson, P.C., 1980, Microiontophoretic injection of fluorescent tracer combined with simultaneous immunofluorescent histochemistry for the demonstration of efferents from the caudate-putamen projecting to the globus pallidus, Neurosci. Lett., 16: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein, M.J., Mroz, E.A., Tappaz, M.L. and Leeman, S.E., 1977, On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra, Brain Res., 135: 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, L.L., Talbot, K. and Bilezikjian, L., 1975, Acetylcholinesterase neurons in dopamine-containing regions of the brain, J. Neural Transm., 37: 127–153.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, L.L. and Woolf, N.J., 1984, Histochemical distribution of acetylcholinesterase in the central nervous system: Clues to the localization of cholinergic neurons,in: “Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS”, Vol. 3, Part II, A. Björklund, T. Hökfelt and M.J. Kuhar, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Cajal, S. Ramon y, 1895, Sur le corps strié, Bibl. Anat. (Basel), 3: 58–62.

    Google Scholar 

  • Cheramy, A., Leviel, V. and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra, Nature, 289: 537–542.

    Article  PubMed  CAS  Google Scholar 

  • Chesselet, M.F. and Graybiel, A.M., 1986, Striatal neurons expressing somatostatin-like immunoreactivity: Evidence for a peptidergic interneuronal system in the cat, Neuroscience, 17: 547–571.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier, G., Thierry, A.M., Shibazaki, T. and Féger, J., 1981, Evidence for a gabaergic inhibitory nigrotectal pathway in the rat, Neurosci. Lett., 21: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Childs, J.A. and Gale, K., 1983, Neurochemical evidence for a nigrotegmental GABAergic projection, Brain Res., 258: 109–114.

    Article  CAS  Google Scholar 

  • Christensson-Nylander, I., Herrera-Marschitz, M., Staines, W., Hökfelt, T., Terenius, L., Ungerstedt, U., Cuello, C., Oertel, W. and Goldstein, M., 1986, Striato-nigral dynorphin and substance P pathways in the rat. I. Biochemical and immunohistochemical studies, Exp. Brain Res., 64: 169–192.

    Article  PubMed  CAS  Google Scholar 

  • Chronwall, B.M., Dimaggio, D.A., Massari, V.J., Pickel, V.M., Ruggiero, D.A. and O’Donohue, T.L., 1985, The anatomy of neuropeptide-Y-containing neurons in rat brain, Neuroscience, 15: 1159–1181.

    Article  PubMed  CAS  Google Scholar 

  • Coons, A.H., 1958, Fluorescent antibody methods, in: “General Cytochemical Methods”, J.F. Danielli, ed., Academic Press, New York.

    Google Scholar 

  • Cuello, A.C. and Kanazawa, I., 1978, The distribution of substance P immunoreactive fibers in the rat central nervous system, J. Comp. Neurol., 178: 129–150.

    Article  PubMed  CAS  Google Scholar 

  • Cuello, A.C., and Paxinos, G., 1978, Evidence for a long leu-enkephalin striopallidal pathway in rat brain, Nature, 271: 178–180.

    Article  PubMed  CAS  Google Scholar 

  • Dalhström, A. and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons, Acta Physiol. Scand., Suppl. 232: 1–55.

    Google Scholar 

  • Dawbarn, D., De Quidt, M.E. and Emson, P.C., 1985, Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease, Brain Res., 340: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Dawbarn, D., Hunt, S.P. and Emson, P.C., 1984, Neuropeptide Y: regional distribution, chromatographic characterization and immunohistochemical demonstration in post-mortem human brain, Brain Res., 296: 168–173.

    Article  PubMed  CAS  Google Scholar 

  • Del Fiacco, M., Dessi, M.L. and Levanti, M.C., 1984, Topographical localization of substance P in the human post-mortem brainstem. An immunohistochemical study in the newborn and adult tissue, Neuroscience, 12: 591–611.

    Article  PubMed  Google Scholar 

  • Del Fiacco, M., Paxinos, G. and Cuello, A.C., 1982, Neostriatal enkephalin-immunoreactive neurones project to the globus pallidus, Brain Res., 231: 1–17.

    Article  PubMed  Google Scholar 

  • Deniau, J.M., Lackner, D. and Féger, J., 1978, Effect of substantia nigra stimulation on identified neurons in the VL-VA thalamic complex: comparison between intact and chronically decorticated cats, Brain Res., 145: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • De Quidt, M.E. and Emson, P.C., 1986, Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system — II. Immunohistochemical analysis, Neuroscience, 18: 545–618.

    Article  PubMed  Google Scholar 

  • DiCarlo, V., Hubbard, J.E. and Pate, P., 1973, Fluorescence histochemistry of monoamine-containing cell bodies in the brainstem of the squirrel monkey, J. Comp. Neurol., 152: 347–372.

    Article  CAS  Google Scholar 

  • DiChiara, G., Morelli, M., Porceddu, M.L., Mulas, M. and Del Fiacco, M., 1980, Effect of discrete kainic acid-induced lesions of the corpus caudatus and globus pallidus on glutamic acid decarboxylase or rat substantia nigra, Brain Res., 189: 193–208.

    Article  CAS  Google Scholar 

  • DiChiara, G., Porceddu, M.L., Morelli, M., Mulas, M.L. and Gessa, G.L., 1979, Evidence for gabaergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat, Brain Res., 176: 273–284.

    Article  CAS  Google Scholar 

  • DiFiglia, M. and Aronin, N., 1982, Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus, J. Neurosci., 2: 1267–1274.

    PubMed  CAS  Google Scholar 

  • DiFiglia, M., Aronin, N. and Martin, J.B., 1982, Light and electron microscopic localization of immunoreactive leu-enkephalin in the monkey basal ganglia, J. Neurosci., 2: 303–320.

    PubMed  CAS  Google Scholar 

  • DiFiglia, M., Aronin, N. and Leeman, S.E., 1981, Immunoreactive substance P in the substantia nigra of the monkey: light and electron microscopic localization, Brain Res., 233: 381–388.

    Article  Google Scholar 

  • DiFiglia, M., Pasik, P. and Pasik, T., 1976, A Golgi study of neuronal types in the neostriatum of monkeys, Brain Res., 114: 245–256.

    Article  PubMed  CAS  Google Scholar 

  • Dimova, R., Vuillet, J. and Seite, R., 1980, Study of the rat neostriatum using a combined Golgi- electron microscope technique and serial sections, Neuroscience, 5: 1581–1596.

    Article  PubMed  CAS  Google Scholar 

  • Domesick, V.B., Stinus, L. and Paskevitch, P.A., 1983, The cytology of dopaminergic and nondopaminergic neurons in the substantia nigra and ventral tegmental area of the rat: A light and electron-microscpic study, Neuroscience, 8: 743–765.

    Article  PubMed  CAS  Google Scholar 

  • Eckenstein, F. and Sofroniew, M.V., 1983, Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase, J. Neurosci., 3: 2286–2291.

    PubMed  CAS  Google Scholar 

  • Elde, R., Hökfelt, T., Johansson, O. and Terenius, L., 1976, Immunohistochemical studies using antibodies to leucine-enkephalin: Initial observations on the nervous system of the rat, Neuroscience, 1: 349–351.

    Article  PubMed  CAS  Google Scholar 

  • Emson, P.C., Arregui, A., Clement-Jones, V., Sandberg, B.E. and Rossor, M., 1980, Regional distribution of met-enkephalin and substance P immunoreactivity in normal human brain and in Huntington’s disease, [Brain Res., 199: 147–160.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J.H. and Leslie, F.M., 1986, Distribution of dynorphin and enkephalin peptides in the rat brain, J. Comp. Neurol., 249: 293–336.

    Article  PubMed  CAS  Google Scholar 

  • Feiten, D.L., Laties, A.M. and Carpenter, M.B., 1974, Monoaminecontaining cell bodies in the squirrel monkey brain, Amer. J. Anat., 139: 153–166.

    Article  Google Scholar 

  • Felten, D.L. and Sladek Jr., J.R., 1983, Monoamine distribution in primate brain. V. Monoaminergic nuclei: Anatomy, pathways and local organization, Brain Res. Bull., 10: 171–284.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson Jr., E.P., Bird, E.D. and Martin, J.B., 1985, Selective sparing of a class of striatal neurons in Huntington’s disease, Science, 230: 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Finley, J.C.W., Maderdrut, J.L. and Petrusz, P., 1981, The Immunocytochemical localization on enkephalin in the central nervous system of the rat, J. Comp. Neurol., 198: 541–565.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R.S., Buchwald, N.A., Hull, C.D. and Levine, M.S., 1986, The GABAergic striatonigral neurons of the cat: demonstration by double peroxidase labeling, Brain Res., 398: 148–156.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., Gottesfeld, Z. and Grofova, I., 1978a, Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoento-peduncular and striatonigral gabaergic fibers, Brain Res., 143: 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., Grofova, I. and Rinvik, E., 1978b, Origin and distribution of glutamate decarboxylase in the nucleus subthalamicus of the cat, Brain Res., 153: 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J. and Walberg, F., 1974, Origin and distribution of glutamate decarboxylase in the substantia nigra of the cat, Brain Res., 71: 77–92.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K., Agnati, L.F., Kalia, M., Goldstein, M., Andersson, K. and Härfstrand, A., 1985, Dopaminergic systems in the brain and pituitary,in: “The Dopaminergic System”, E. Flückiger, E.E. Müller and M.O. Thorner, eds., Springer-Verlag, Heidelberg.

    Google Scholar 

  • Gale, K., Hong, J.-S. and Guidotti, A., 1977, Presence of substance P and GABA in separate striatonigral neurons, Brain Res., 136: 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Garver, D.L. and Sladek, Jr., J.R., 1975, Monoamine distribution in primate brain. I. Catecholamine-containing perikarya in the brainstem of Macaca speciosa, J. Comp. Neurol., 159: 289–304.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, P., Berger, B., Gay, M., Hamon, M., Cesselin, F., Vigny, A., Javoy-Agid, F. and Agid, Y., 1983, Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon, J. Neurol. Sci., 58: 247–267.

    Article  PubMed  CAS  Google Scholar 

  • Gauchy, C., Beajouan, J.C., Besson, M.J., Kerdelhue, B., Glowinski, J. and Michelot, R., 1979, Topographical distribution of substance P in cat substantia nigra, Neurosci. Lett., 12: 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Geffard, M., Buijs, R.M., Séguéla, P., Pool, C.W. and LeMoal, M., 1984, First demonstration of highly specific and sensitive antibodies against dopamine, Brain Res., 294: 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld, Z., Brandon, C. and Wu, J.-Y., 1981, Immunocytochemistry of glutamate decarboxylase in the deafferented habenula, Brain Res., 208: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M. and Ragsdale Jr., C.W., 1983, Biochemical Anatomy of the striatum,in: “Chemical Neuroanatomy”, P.C. Emson, ed., Raven Press, New York.

    Google Scholar 

  • Groenewegen, H.-J. and Russchen, F.T., 1984, Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic and mesencephalic structures. A tracing and immunohistochemical study in the cat, J. Comp. Neurol., 223: 347–367.

    Article  PubMed  CAS  Google Scholar 

  • Grofova, I., 1975, Identification of striatal and pallidal neurons projecting to substantia nigra. An experimental study by means retrograde axonal transport of horseradish peroxidase, Brain Res., 91: 286–291.

    Article  PubMed  CAS  Google Scholar 

  • Gulley, R.L. and Wood, R.L., 1971, The fine structure of the neurons in the rat substantia nigra, Tissue and Cell, 3: 675–690.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S. and Elde, R., 1981, Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus, Neuroscience, 6: 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S. and Elde, R., 1982, The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: An immunohistochemical study, Neuroscience, 7: 1049– 1095.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S.N. and Nauta, W.J.H., 1983, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry, Neuroscience, 9: 245–260.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S.N. and Watson, S.J., 1985, The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain, Neuroscience, 14: 1011–1024.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, T., McGeer, P.L., Fibiger, H.C. and McGeer, E.G., 1973, On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies, Brain Res., 54: 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Hedreen, J.C., Bacon, S.J., Cork, L.C., Kitt, C.A., Crawford, G.D., Salvaterra, M. and Price, D.L., 1983, Immunocytochemical identification of cholinergic neurons in the monkey central nervous system using monoclonal antibodies against choline acetyltransferase, Neurosci. Lett., 43: 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, Z., 1981, Ulstrastructure and acetylcholinesterase content of neurons forming connections between the striatum and substantia nigra of rat, J. Comp. Neurol., 197: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S.H.C, Jones, E.G. and Emson, P.C., 1984, Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex, J. Neurosci., 4: 2497–2517.

    PubMed  CAS  Google Scholar 

  • Hökfelt, T., Johansson, O., Fuxe, K., Goldstein, M. and Park, D., 1976, Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon, Med. Biol., 54: 427– 453.

    PubMed  Google Scholar 

  • Hökfelt, T., Martensson, R., Björklund, A., Kleinau, S. and Goldstein, M., 1984, Distributional maps of tyrosine-hydroxylase immunoreactive neurons in the rat brain,in: “Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS”, Vol. 2, Part I, A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Holstein, G.R., Pasik, P. and Hamori, J., 1986, Synapses between GABA-immunoreactive axonal and dendritic elements in monkey substantia nigra, Neurosci. Lett., 66: 316–323.

    Article  PubMed  CAS  Google Scholar 

  • Hong, J.-S., Yang, H.Y., Racagni, G. and Costa, E., 1977, Projections of substance P containing neurons from neostriatum to substantia nigra, Brain Res., 122: 541–544.

    Article  PubMed  CAS  Google Scholar 

  • Houser, C.R., Crawford, G.D., Barber, R.P., Salvaterra, P.M. and Vaughn, J.E., 1983, Organization and morphological characteristics of cholinergic neurons: An immunocytochemical study with a monoclonal antibody to choline acetyltransferase, Brain Res., 266: 97–119.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, S.M., Raine, L. and Fanger, H., 1981, Use of avidin-biotinperoxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem., 29: 577–580.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, T. and Hirata, Y., 1986, Organization of choline acetyltransferase-containing structures in the forebrain of the rat, J. Neurosci., 6: 281–292.

    PubMed  CAS  Google Scholar 

  • Inagaki, S. and Parent, A., 1984, Distribution of substance P and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkey, Brain Res. Bull., 13: 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, S. and Parent, A., 1985, Distribution of enkephalin-immunoreactive neurons in the forebrain and upper brainstem of the squirrel monkey, Brain Res., 359: 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, S., Sakanaka, M., Shiosaka, J., Senba, E., Takatsuki, K., Takagi, H., Kawai, T., Minagawa, H. and Tohyama, M., 1981, Ontogeny of substance-P-containing neuron system of the rat. Immunohistochemical analysis. I. Forebrain and upper brainstem, Neuroscience, 7: 639–645.

    Article  Google Scholar 

  • Jacobowitz, D.M. and MacLean, P.D., 1978, A brainstem atlas of catecholaminergic neurons and serotonergic perikarya in a pygmy primate (Cebuella pygmaea), J. Comp. Neurol., 177: 397–416.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, A., 1980, Anatomical evidence for cortical projections from the striatum in the cat, Brain Res., 195: 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Jessell, T.M., Emson, P.C., Paxinos, G. and Cuello, A.C., 1978, Topographic projections of substance P and GABA pathways in the striato- and pallido-nigral system: A biochemical and immunohistochemical study, Brain Res., 152: 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Juraska, J.M., Wilson, C.J. and Grover, P.M., 1977, The substantia nigra of the rat: A Golgi study, J. Comp. Neurol., 172: 585–600.

    Article  PubMed  CAS  Google Scholar 

  • Kaiya, H., Kreutzberg, G.W. and Namba, M., 1980, Ultrastructure of acetylcholinesterase synthesizing neurons in the neostriatum, Brain Res., 187: 369–382.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, I., Emson, P.C. and Cuello, A.C., 1977, Evidence for the existence of substance P-containing fibers in the striato-nigral and pallido-nigral pathways in rat brain, Brain Res., 119: 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, I., Mogaki, S., Muramoto, O. and Kuzuhara, S., 1980, On the origin of substance P-containing fibres in the entopeduncular nucleus and the substantia nigra of the rat, Brain Res., 184: 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Karabelas, A.B. and Moschovakis, A.K., 1985, Nigral inhibitory termination on efferent neurons of the superior colliculus: An intracellular horseradish peroxidase study in the cat, J. Comp. Neurol., 239: 309–329.

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky, M.J. and Roots, L., 1964, A “direct-coloring” thiocholine method for Cholinesterase, J. Histochem. Cytochem., 12: 219–221.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka, K., Bak, I.J., Hassler, R., Kim, J.S. and Wagner, A., 1974, L-Glutamate decarboxylase and choline acetyltransferase activity in the substantia nigra and the striatum after surgical interruption of the strio-nigral fibres of the baboon, Exp. Brain Res., 19: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Kerkérian, L., Bosler, O., Pelletier, G. and Nieoullon, A., 1986, Striatal neuropeptide Y neurones are under the influence of the nigrostriatal dopaminergic pathway: immunohistochemical evidence, Neurosci. Lett., 66: 106–112.

    Article  PubMed  Google Scholar 

  • Khachaturian, H., Lweis, M.E., Hollt, V. and Watson, S.J., 1983, Telencephalic enkephalinergic systems in the rat brain, J. Neurosci., 3: 844–855.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, I.C, Starr, M.S., Fletcher, A., James, T.A. and MacLeod, N.K., 1980, Evidence for a GABAergic nigrothalamic pathway in the rat. I. Behavioural and biochemical studies, Exp. Brain Res., 40: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Bak, I.J., Hassler, R. and Okada, Y., 1971, Role of γ- aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons, Exp. Brain Res., 14: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, H., McGeer, P.L., Peng, J.H. and McGeer, E.G., 1981, The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat, J. Comp. Neurol., 200: 151–201.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, J., Shiosaka, S., Shinoda, K., Inagaki, S. and Tohyama, M., 1984, Two distinct strio-nigral substance P pathways in the rat: An experimental immunohistochemical study, Brain Res., 308: 309– 317.

    Article  PubMed  CAS  Google Scholar 

  • Levey, A.I., Wainer, B.H., Mufson, E.J. and Mesulam, M.-M., 1983, Colocalization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum, Neuroscience, 9: 9–22.

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, A., Hökfelt, T. and Nilsson, G., 1978, Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals, Neuroscience, 3: 861–943.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., Greenfield, S.A. and Jahsen, H., 1984, Electrophysiology of pars compacta cells in the in vitro substantia nigra — A possible mechanism for dentritic release, Brain Res., 294: 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Loughlin, S.E. and Fallon, J.H., 1984, Substantia nigra and ventral tegmental area projections to cortex: Topography and collateralization, Neuroscience, 11: 425–435.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, N.K., James, T.A., Kilpatrick, I.C. and Starr, M.S., 1980, Evidence for a GABAergic nigrothalamic pathway in the rat. II. Electrophysiological studies, Exp. Brain Res., 40: 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, P.E., Landis, D.M.D. and Zalneraitis, E.L., 1983, Immunocytochemical studies of substance P and leucine-enkephalin in Huntington’s disease, Brain Res., 289: 11–26.

    Article  PubMed  CAS  Google Scholar 

  • McLean, S., Skirboll, L.R. and Pert, C., 1985, Comparison of substance P and enkephalin distribution in rat brain: An overview using radioimmunohistochemistry, Neuroscience, 14: 837–852.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.-M., 1976, A horseradish peroxidase method for the identification of the efferents of acetylcholinesterase-containing neurons, J. Histochem. Cytochem., 24: 1281–1286.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Levey, A.I. and Wainer, B.H., 1984, Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry, Neuroscience, 12: 669–686.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.-M., Mufson, E.J., Wainer, B.H. and Levey, A.I., 1983, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Chl-Ch6), Neuroscience, 10: 1185–1201.

    Article  PubMed  CAS  Google Scholar 

  • Morelli, M., Del Fiacco, M., Wu, J.-Y. and DiChiara, G., 1983, Immunohistochemical localization of Leu-enkephalin and Glutamicacid-decarboxylase in the nucleus caudatus of the rat, in: “Neuromodulation and Brain Function”, G. Biggio, P.F. Spano, G. Toffano and G.L. Gessa, eds., Pergamon Press, New York.

    Google Scholar 

  • Mugnaini, E. and Oertel, W.H., 1985, An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immnunohistochemistry,in: “Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS”, Vol. 4, Part I, A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Nagai, T., McGeer, P.L. and McGeer, E.G., 1983, Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain, J. Comp. Neurol., 218: 220–238.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J.I., Carter, D.A. and Fibiger, H.C., 1978a, Anterior striatal projections to the globus pallidus, entopeduncular nucleus and substantia nigra in the rat: the GABA connection, Brain Res., 158: 15–29.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J.I., Carter, D.A., Lehman, J. and Fibiger, H.C., 1978b, Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat, Brain Res., 145: 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J.I. and Fibiger, H.C., 1980, A striatal source of glutamic acid decarboxylase activity in the substantia nigra, Brain Res., 187: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Shiosaka, S., Emson, P.C. and Tohyama, M., 1985, Distribution of neuropeptide Y in the forebrain and diencephalon: an immunohistochemical analysis, Brain Res., 361: 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Nobin, A. and Björklund, A., 1973, Topography of monoamine neurons systems in the human brain as revealed in fetuses, Acta Physiol. Scand., 388: 1–40.

    CAS  Google Scholar 

  • Oertel, W.H. and Mugnaini, E., 1984, Immunocytochemical studies of gabaergic neurons in rat basal ganglia and their relations to other neuronal systems, Neurosci. Lett., 47: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, W.H., Nitsch, C. and Mugnaini, E., 1984, Immuunocytochemical demonstration of the GABA-ergic neurons in rat globus pallidus and nucleus entopeduncularis and their GABA-ergic innervation, in: “Advances in Neurology”, R.G. Hassler and J.F. Christ, eds., Raven Press, New York, 40: 91–98.

    Google Scholar 

  • Oertel, W.H., Tappaz, M.L., Berod, A. and Mugnaini, E., 1982, Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta, Brain Res. Bull., 9: 463–474.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L., Boreus, L.O. and Seiger, A., 1973, Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholaminecontaining neuron systems in the human fetal brain, Zeit. für Anat. und Entwickl., 139: 259–282.

    Article  CAS  Google Scholar 

  • Ottersen, O.P. and Storm-Mathisen, J., 1984, Neurons containing or accumulating transmitter amino acid,in: “Handbook of Chemical Neuroanatomy: Classical Transmitters and Transmitter receptors in CNS”, Vol. 3, Part II, A. Björklund, T. Hökfelt and M.J. Kuhar, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Panula, P., Wu, J.-Y. and Emson, P., 1981, Ultrastructure of GABA-neurons in cultures of rat neostriatum, Brain Res., 219: 202– 207.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., 1986, “Comparative Neurobiology of the Basal Ganglia”, John Wiley & Sons, New York, pp. 335.

    Google Scholar 

  • Parent, A., Boucher, R. and O’Reilly-Fromentin, J., 1981, Acetylcholinesterase-containing neurons in cat pallidal complex: morphological characteristics and projection towards the neocortex, Brain Res., 230: 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A. and De Bellefeuille, L., 1983, The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method, Brain Res., 278: 11–27.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., Gravel, S. and Olivier, A., 1979, The extrapyramidal and limbic systems relationship at the globus pallidus level: A comparative histochemical study in the rat, cat and monkey, in: “Advances in Neurology”, L.J. Poirier, T.L. Sourkes and P.J. Bédard, eds., Raven Press, New York, 24: 1–11.

    Google Scholar 

  • Parent, A., Mackey, A., Smith, Y. and Boucher, R., 1983, The output organization of the substantia nigra in primate as revealed by retrograde double labeling method, Brain Res. Bull., 10: 529–537.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., O’Reilley-Fromentin, J. and Boucher, R., 1980, Acetylcholinesterase-containing neurons in cat neostriatum: a morphological and quantitative analysis, Neurosci. Lett., 20: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., Smith, Y. and De Bellefeuille, L., 1984, The output organization of the pallidum and substantia nigra in primate as revealed by a retrograde double-labeling method,in: “The Basal Ganglia”, J.S. McKenzie, R.E. Kemm and L.N. Wilcock, eds., Plenum Press, New York.

    Google Scholar 

  • Pasik, P., Pasik, T., Hamori, J. and Holstein, G.R., 1986, Light and electron microscopic visualization of GABAergic elements in the monkey brain by means of a direct GABA antibody,in: “GABA and endocrine function”, G. Racagni and A.O. Donoso, eds., Raven Press, New York.

    Google Scholar 

  • Pearson, J., Goldstein, M., Markey, K. and Brandeis, L., 1983, Human brainstem catecholamine neuronal anatomy as revealed by immunocytochemistry with antibodies to tyrosine hydroxylase, Neuroscience, 8: 3–32.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, G., Désy, L., Kerkérian, L. and Côté, J., 1984, Immunocytochemical localization of Neuropeptide Y (NPY) in the human hypothalamus, Cell tissue Res., 238: 203–205.

    Article  PubMed  CAS  Google Scholar 

  • Penney, J.B. and Young, A.B., 1981, GABA as the pallidothalamic neurotransmitter: implications for basal ganglia function, Brain Res., 207: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Penny, G.R., Afsharpour, S. and Kitai, S.T., 1986, The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap, Neuroscience, 17: 1011–1045.

    Article  PubMed  CAS  Google Scholar 

  • Pérez de 1a Mora, M., Possani, L.D., Tapia, R., Teran, L., Palacios, R., Fuxe, K., Hökfelt, T. and Ljungdahl, A., 1981, Demonstration of central γ-aminobutyrate-containing nerve terminals by means of antibodies against glutamate decarboxylase, Neuroscience, 6: 875–895.

    Article  PubMed  Google Scholar 

  • Petrusz, P., Merchenthaler, I. and Maderdrut, J.L., 1985, Distribution of enkephalin-containing neurons in the central nervous system, in: “Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS”, Vol., 4, Part I, A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Phelps, P.E., Houser, C.R. and Vaughn, J.E., 1985, Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: A correlated light and electron microscopic study of cholinergic neurons and synapses, J. Comp. Neurol., 238: 286–307.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V.M., Khushdev, K.S., Beckley, S.C., Miller, R.J. and Reis, D.J., 1980a, Immunocytochemical localization of enkephalin in the neostriatum of rat brain: A light and electron microscopic study, J. Comp. Neurol., 189: 721–740.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V.M., Specht, L.A., Sumai, K.K., Joh, T.H., Reis, D.J. and Hervonen, A., 1980b, Immunocytochemical localization of tyrosine-hydroxylase in the human fetal neuron systems, J. Comp. Neurol., 194: 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Pioro, E.P.J., Hugues, J.T. and Cuello, A.C., 1984, Loss of substance P and enkephalin immunoreactivity in the human substantia nigra after striato-pallidal infarction, Brain Res., 292: 339–347.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, L.J., Giguère, M. and Marchand, R., 1983, Comparative morphology of the substantia nigra and ventral tegmental area on the monkey, cat, and rat, Brain Res. Bull., 11: 371–397.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, L.J., Parent, A., Marchand, R. and Butcher, L.L., 1977, Morphological characteristics of the acetylcholinesterase-containing neurons in the CNS of DFP-treated monkeys. Part I. Extrapyramidal and related structures, J. Neurol. Sci., 31: 181–198.

    Article  PubMed  CAS  Google Scholar 

  • Poitras, D. and Parent, A., 1978, Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat, J. Comp. Neurol., 179: 699–718.

    Article  PubMed  CAS  Google Scholar 

  • Reinoso-Suarez, F., Llamas, A. and Avendano, C., 1982, Pallido-cortical projections in the cat studied by means of horseradish peroxidase retrograde transport technique, Neurosci. Lett., 29: 255–259.

    Article  Google Scholar 

  • Ribak, C.E. and Kramer, W.G. III, 1982, Cholinergic neurons in the basal forebrain of the cat have direct projections to the sensorimotor cortex, Exp. Neurol., 75: 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C.E., Vaughn, J.E. and Roberts, E., 1979, The GABA neurons and their axon terminals in the rat corpus striatum as demonstrated by GAD immunocytochemistry, J. Comp. Neurol., 187: 261–284.

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C.E., Vaughn, J.E. and Roberts, E. 1980, Gabaergic nerve terminals decrease in the substantia nigra following hemitransections of the striatonigral and pallidonigral pathways, Brain Res., 192: 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C.E., Vaughn, J.E., Saito, K., Barber, R. and Roberts, E., 1976, Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra, Brain Res., 116: 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois, B., Hammond, C., Hamon, B. and Féger, J., 1980, Pharmacological blockade of the globus pallidus-induced inhibitory response of subthalamic cells in the rat, Brain Res., 200: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Royce, G.J. and Laine, E., 1984, Efferent connections of the caudate nucleus, including cortical projections of the striatum and other basal ganglia: An autoradiographic and horseradish peroxidase investigation in the cat, J. Comp. Neurol., 226: 28–49.

    Article  PubMed  CAS  Google Scholar 

  • Sandell, J.H., Graybiel, A.M. and Chesselet, M.-F., 1986, A new marker for striatal compartmentalization: NADPH diaphorase activity in the caudate nucleus and putamen of the cat, J. Comp. Neurol., 243: 326–334.

    Article  PubMed  CAS  Google Scholar 

  • Sar, M., Stumpf, W.E., Miller, R.S., Chang, K.-J. and Cuatrecasas, P., 1978, Immunohistochemical localization of enkephalin in rat brain and spinal cord, J. Comp. Neurol., 182: 17–38.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, K., Armstrong, D.M. and Fibiger, E.G., 1983a, A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry, Brain Res. Bull., 11: 693–720.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, K. and Fibiger, H.C., 1985a, Distribution of central cholinergic neurons in the baboon (Papio papio) I. General morphology, J. Comp. Neurol., 236: 197–214.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, K. and Fibiger, H.C., 1985b, Distribution of central cholinergic neurons in the baboon (Papio papio) II. A topographic atlas correlated with catecholamine neurons, J. Comp. Neurol., 236: 215–233.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, K., Staines, W.A., Atmadja, S. and Fibiger, H.C., 1983b, Ultrastructural observations of the cholinergic neurons in the rat striatum as identified by acetylcholinesterase pharmacohistochemistry, Neuroscience, 10: 1121–1136.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, S.P.M. and Everitt, B.J., 1981, The organization of catecholamine-containing neurons in the brain of the rhesus monkey (Macaca mulatta), J. Anat., 132: 391–418.

    PubMed  CAS  Google Scholar 

  • Schwyn, R.C. and Fox, C.A., 1974, The primate substantia nigra: A Golgi and electron microscopic study, J. Hirnforsch., 15: 95–126.

    PubMed  CAS  Google Scholar 

  • Séguéla, P., Geffard, M., Buijs, R.M. and LeMoal, M., 1984, Antibodies against γ-aminobutyric acid: Specificity studies and immunocytochemical results, Proc. Natl Acad. Sci. (USA), 81: 3888–3892.

    Article  Google Scholar 

  • Smith, Y. and Parent, A., 1986, Neuropeptide Y-imraunoreactive neurons in striatum of cat and monkey: morphological characteristics, intrinsic organization and co-localization with somatostatin, Brain Res., 372: 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y. and Parent, A., 1984, Distribution of acetylcholinesterase-containing neurons in the basal forebrain and upper brainstem of the squirrel monkey (Saimiri sciureus), Brain Res. Bull., 12: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., Parent, A., Kerkérian, L. and Pelletier, G., 1985, Distribution of neuropeptide Y-immunoreactivity in the basal forebrain and upper brainstem of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol., 236: 71–89.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Bolam, J.P. and Smith, A.D., 1981, Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure, J. Comp. Neurol., 195: 567–584.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P. and Smith, A.D., 1979, Projection of neostriatal spiny neurons to the substantia nigra. Application of a combined Golgi-staining and horseradish peroxidase transport procedure at both light and electron microscopic levels, Brain Res., 178: 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Staines, W.A., Nagy, J.I., Vincent, S.R. and Fibiger, H.C., 1980, Neurotransmitters contained in the efferents of the striatum, Brain Res., 194: 391–402.

    Article  PubMed  CAS  Google Scholar 

  • Sternberger, L.A., 1974, “Immunocytochemistry”, John Wiley & Sons, New York.

    Google Scholar 

  • Streit, P., 1980, Selective retrograde labeling indicating the transmitter of neuronal pathways, J. Comp. Neurol., 191: 429–463.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., 1982, The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat, Brain Res. Bull., 9: 321–353.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, C., Ishikawa, M. and Shimada, S., 1982, Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain, Brain Res. Bull., 9: 255–270.

    Article  PubMed  CAS  Google Scholar 

  • Tramu, G., Pillez, A. and Leonardell, J., 1978, An effective method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry, J. Histochem. Cytochem., 26: 322–324.

    Article  PubMed  CAS  Google Scholar 

  • Tsubokawa, T. and Sutin, J., 1972, Pallidal and tegmental inhibition of oscillatory slow waves and unit activity in the subthalamic nucleus, Brain Res., 41: 101–118.

    Article  PubMed  CAS  Google Scholar 

  • Ueki, A., 1983, The mode of nigro-thalamic transmission investigated with intracellular recording in the cat, Exp. Brain Res., 49: 116–124.

    Article  PubMed  CAS  Google Scholar 

  • Uno, M., Ozawa, N. and Yoshida, M., 1978, The mode of pallido-thalamic transmission investigated with intracellular recording from the cat thalamus, Exp. Brain Res., 33: 493–507.

    Article  PubMed  CAS  Google Scholar 

  • Van del Pol, A.N., Smith, A.D. and Powell, J.F., 1985, GABA axons in synaptic contact with dopamine neurons in the substantia nigra: double immunocytochemistry with biotin-peroxidase and protein A-colloidal gold, Brain Res., 348: 146–154.

    Article  PubMed  Google Scholar 

  • Vincent, S.R., Hattori, T. and McGeer, E.G., 1978, The nigrotectal projection: a biochemical and ultrastructural characterization, Brain Res., 151: 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R. and Johansson, O., 1983, Striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-Diaphorase activity: A light and electron microscopic study, J. Comp. Neurol., 217: 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R., Kimura, H. and McGeer, E.G., 1981, The histochemical localization of GABA-transaminase in the efferents of the striatum, Brain Res., 222: 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R., Kimura, H. and McGeer, E.G., 1982, A histochemical study of GABA-transaminase in the efferents of the pallidum, Brain Res., 241: 162–165.

    Article  PubMed  CAS  Google Scholar 

  • Wainer, B.H., Levey, A.I., Mufson, E.J. and Mesulam, M.-M., 1984, Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase, Neurochem. Int., 6: 163–182.

    Article  PubMed  CAS  Google Scholar 

  • Wainer, B.H. and Rye, D.B., 1984, Retrograde horseradish peroxidase tracing combined with localization of choline acetyltransferase immunoreactivity, J. Histochem. Cytochem., 32: 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J.K., Young, W.S. III and Kuhar, M.J., 1980, Immunohistochemical localization of enkephalin in rat forebrain, Brain Res., 190: 153–174.

    Article  PubMed  CAS  Google Scholar 

  • Wiklund, L., Léger, L. and Persson, M., 1981, Monoamine cell distribution in the rat brain stem. A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups, J. Comp. Neurol., 203: 613–647.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.G. and Dockray, G.J., 1983, Distribution of enkephalinrelated peptides in rat brain: Immunohistochemical studies using antisera to met-enkephalin and met-enkephalin-Arg 6Phe 7, Neuroscience, 9: 563–586.

    Article  PubMed  CAS  Google Scholar 

  • Woodhams, P.L., Allen, Y.S., McGovern, J., Allen, J.M., Bloom, S.R., Balazs, R. and Polak, J.M., 1985, Immunohistochemical analysis of the early ontogeny of the neuropeptide Y system in rat brain, Neuroscience, 15: 173–202.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, N. and Butcher, L.L., 1981, Cholinergic neurons in the caudateputamen complex proper are intrinsically organized: A combined Evans blue and acetylcholinesterase analysis, Brain Res. Bull., 7: 487–507.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M. and Omata, S., 1979, Blocking by picrotoxin of nigra-evoked inhibition of neurons of ventromedial nucleus of the thalamus, Experientia, 35: 794.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M. and Precht, W., 1971, Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers, Brain Res., 32: 225–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Parent, A., Smith, Y., Arsenault, MY. (1987). Chemical Anatomy of the Basal Ganglia in Primates. In: Carpenter, M.B., Jayaraman, A. (eds) The Basal Ganglia II. Advances in Behavioral Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5347-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5347-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5349-2

  • Online ISBN: 978-1-4684-5347-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics