Skip to main content

Abstract

The application of immunological methods to problems in enzymology has a long history and a very extensive literature. For the most part, this deals with studies using antisera raised against purified enzymes in animals of species other than those from which the enzymes were derived. The use of monoclonal antibodies is, of course, much more recent. Such antibodies have so far only been produced against a modest number of enzymes, though new reports are appearing at an increasing pace and there is little doubt that before long, such antibodies will become the reagents of choice for a wide variety of studies in enzyme immunochemistry. The analytic power of monoclonal antibodies in enzymology largely derives from the fact that each antibody is directed to an antigenic determinant that represents only a small region on the surface of the enzyme protein. Consequently, many antibodies with distinctive specificities can in principle be raised against a single enzyme. This contrasts with antisera, which contain a complex mixture of antibodies directed to different determinants on the enzyme surface and occurring in unknown proportions. The other important advantage is that monoclonal antibodies are single immunoglobulin species, which can, in principle, be produced in unlimited quantities by continued culture of the hybridoma cells that secrete them, whereas the antibody composition of antisera will vary in any particular animal during the course of immunization and will vary from animal to animal immunized with the same antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accolla, R. S., Cina, R., Montesoro, E., and Celada, F., 1981, Antibody-mediated activation of genetically defective Escherichia coli β-galactosidases by monoclonal antibodies produced by somatic cell hybrids, Proc. Natl. Acad. Sci. USA 78:2478–2482.

    Article  Google Scholar 

  • Adolf, G. R., Hartter, E., Ruis, H., and Swetly, P., 1980, Monoclonal antibodies to yeast catalase T, Biochem. Biophys. Res. Commun. 95:350–356.

    Article  Google Scholar 

  • Arklie, J., Trowsdale, J., and Bodmer, W. F., 1981, A monoclonal antibody to intestinal alkaline phosphatase made against D98/Ah-2 (HeLa) cells, Tissue Antigens 17:303–312.

    Article  Google Scholar 

  • Bailyes, E. M., Newby, A. C., Siddle, K., and Luzio, J. P., 1982, Solubilization and purification of rat liver 5′-nucleotidase by use of a zwitterionic detergent and monoclonal antibody immunoadsorbent, Biochem. J. 203:245–251.

    Google Scholar 

  • Brandwein, H., Lewicki, J., and Murad, F., 1981, Production and characterization of monoclonal antibodies to soluble rat lung guanylate cyclase, Proc. Natl. Acad. Sci. 78:4241–4245.

    Article  Google Scholar 

  • Chin, J. J. C., 1982, Monoclonal antibodies that immunoreact with a cation-stimulated plant membrane ATPase, Biochem. J. 203:51–54.

    Google Scholar 

  • Choo, K. H., Myer, J., Cotton, R. G. H., Camakaris, J., and Danks, D. M., 1980, Isolation of a phenylalanine hydroxylase-stimulating monoclonal antibody by rat-myeloma-rat-spleen-cell fusion, Biochem. J. 191:665–668.

    Google Scholar 

  • Choo, K. H., Jennings, I. G., and Cotton, R. G. H., 1981, Comparative studies of four monoclonal antibodies to phenylalanine hydroxylase exhibiting different properties with respect to substrate dependence, species-specificity and a range of effects on enzyme activity, Biochem. J. 188:527–535.

    Google Scholar 

  • Christmann, J. L., and Dahmus, M. E., 1981, Monoclonal antibody specific for calf thymus RNA polymerases IIo and IIa, J. Biol. Chem. 256:11798–11803.

    Google Scholar 

  • Clark, R. E., Martin, G. G., Barton, M. C., and Shapiro, D. J., 1982, Production and characterization of monoclonal antibodies to rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase, Proc. Natl. Acad. Sci. USA 79:3734–3738.

    Article  Google Scholar 

  • Cotton, R. G. H. Jennings, I. G., Choo, K. H., and Fowler, K., 1980, Isolation and characterization of a myeloma-spleen-cell hybrid producing antibody to phenylalanine hydroxylase, Biochem. J. 191:777–783.

    Google Scholar 

  • Crawford, G., Slemmon, J. R., and Salvaterra, P. M., 1982, Monoclonal antibodies selective for Drosophila melanogaster choline acetyltransferase, J. Biol. Chem. 257:3853–3856.

    Google Scholar 

  • Damiani, G., Frascio, M., Benatti, U., Morelli, A., Zocchi, E., Fabbi, M., Bargellesi, A., Pontremoli, S., and DeFlora, A., 1980, Monoclonal antibodies to human erythrocyte glucose 6-phosphate dehydrogenase, FEBS Lett. 119:169–173.

    Article  Google Scholar 

  • Dao, M. L., Johnson, B. C., and Hartman, P. E., 1982, Preparation of a monoclonal antibody to rat liver glucose-6-phosphate dehydrogenase and the study of its immunoreactivity with native and inactivated enzymes, Proc. Natl. Acad. Sci. USA 78:2840–2844.

    Google Scholar 

  • Denney, R. M., Fritz, R. R., Patel, N. T., and Abell, C. W., 1982, Human liver MOA-A and MAO-B separated by immunoaffmity chromatography with MAO-B specific monoclonal antibody, Science 215:1400–1403.

    Article  Google Scholar 

  • Doellgast, G. J., Speigel, J., Guenther, R. A., and Fishman, W. H., 1977, Studies on human placental alkaline phosphatase. Purification by immunoabsorption and comparison of the ‘A’ and ‘B’ forms of the enzyme, Biochim. Biophys. Acta 484:59–78.

    Google Scholar 

  • Fambrough, D. M., Engel, A. G., and Rosenberry, T. L., 1982, Acetylcholinesterase of human erythrocytes and neuromuscular junctions: Homologies revealed by monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79:1078–1082.

    Article  Google Scholar 

  • Fishman, W. H., 1974, Perspectives on alkaline phosphatase isozymes, Am. J. Med. 56:617–650.

    Article  Google Scholar 

  • Frackelton, A. R., Jr., and Rotman, B., 1980, Functional diversity of antibodies elicited by bacterial β-D-galactosidase, J. Biol. Chem. 255:5286–5290.

    Google Scholar 

  • Fujino, T., Park, S. S., West, D., and Gelboin, H. V., 1982, Phenotyping of cytochromes P-450 in human tissues with monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79:3682–3686.

    Article  Google Scholar 

  • Glode, L. M., Epstein, A., and Smith, S. G., 1981, Reduced 7-cystathionase protein in human malignant leukemia cell lines as measured by immunoassy with monoclonal antibody, Cancer Res. 41:2249–2254.

    Google Scholar 

  • Gogolin, K. J., Slaughter, C. A., and Harris, H., 1981, Electrophoresis of enzyme monoclonal antibody complexes: Studies of human placental alkaline phosphatase polymorphism, Proc. Natl. Acad. Sci. 78:5061–5065.

    Article  Google Scholar 

  • Gogolin, K.J., Wray, L. K., Slaughter, C. A., and Harris, H., 1982, A monoclonal antibody that reacts with non-allelic enzyme glycoproteins, Science 216:59–61.

    Article  Google Scholar 

  • Goldstein, D. J., and Harris, H., 1979, Human placental alkaline phosphatase differs from that of other species, Nature 280:602–605.

    Article  Google Scholar 

  • Goldstein, D. J., Rogers, C., and Harris, H., 1982, Evolution of alkaline phosphatase in primates, Proc. Natl. Acad. Sci. USA 79:879–883.

    Article  Google Scholar 

  • Harris, H., 1979, Multilocus enzymes in man, in: Human Genetics: Possibilities and Realities, Ciba Foundation Symposium 66, pp. 187–204.

    Google Scholar 

  • Harris, H., 1982, Multilocus enzyme systems and the evolution of gene expression: The alkaline phosphatases as a model example, in: The Harvey Lectures, Volume 76, Academic Press, New York, pp. 95–124.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A., 1976, Handbook of Enzyme Electrophoresis in Human Genetics, North-Holland, Amsterdam.

    Google Scholar 

  • Harris, H., Hopkinson, D. A., and Robson, E. B., 1974, The incidence of rare alleles determining electrophoretic variants: Data on 43 enzyme loci in man, Ann. Hum. Genet, Lond. 37:237–255.

    Article  Google Scholar 

  • Herion, P., Glineur, C., Dranssen, J. D., Urbain, J., and Bollen, A., 1981, Monoclonal antibodies against urokinase, Biosci. Rep. 1:885–892.

    Article  Google Scholar 

  • Hershfield, M. S., and Francke, U., 1982, The human genes for S-adenosylhomocysteine hydrolase and adenosine deaminase are syntenic on chromosome 20: Science 216:739–742.

    Article  Google Scholar 

  • Hilkens, J., Tager, J. M., Buijs, F., Brower-Kelder, B., van Thienen, G. M., Tegelairs, F. P. W., and Hilgers, J., 1981, Monoclonal antibodies against human acid α-glucosidase, Biochim. Biophys. Acta 678:7–11.

    Article  Google Scholar 

  • Kaltoft, K., Nielsen, L. S., Zeuthen, J., and Dano, K., 1982, Monoclonal antibody that specifically inhibits a human Mr 52,000 plasminogen-activating enzyme, Proc. Natl. Acad. Sci. USA 79:3720–3723.

    Article  Google Scholar 

  • Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibodies of predefined specificity, Nature 256:495–497.

    Article  Google Scholar 

  • Kramer, D., Haars, R., Kabisch, R., Will, H., Bautz, F. A., and Bautz, E. K. F., 1980, Monoclonal antibody directed against RNA polymerase II of drosophila melanogaster, Molec. Gen. Genet. 180:193–199.

    Article  Google Scholar 

  • Lehmann, F.-G., 1975, Immunological relationship between human placental and intestinal alkaline phosphatase, Clin. Chim. Acta 65:257–269.

    Article  Google Scholar 

  • Levey, A. I., and Wainer, B. H., 1982, Cross-species and intraspecies reactivities of monoclonal antibodies against choline acetyltransferase, Brain Res. 243:469–473.

    Article  Google Scholar 

  • Levey, A. I., Aoki, M., Fitch, F. W., and Wainer, B. H., 1981, The production of monoclonal antibodies reactive with bovine choline acetyltransferase, Brain Res. 218:383–387.

    Article  Google Scholar 

  • Lewicki, J. A., Brandwein, H. J., Waldman, S. A., and Murad, F., 1980, Purified guanylate cyclase: Characterization iodination and preparation of monoclonal antibodies, J. Cyclic Nucleotide Res. 6:283–296.

    Google Scholar 

  • Liedgens, W., Grutzmann, R., and Schneider, H. A. W., 1980, Highly efficient purification of the labile plant enzyme 5-aminolevulinate dehydratase (EC 4.2.1.24) by means of monoclonal antibodies, Z. Naturforsch. 35:958–962.

    Google Scholar 

  • Mather, I. H., Nace, C. S., Johnson, V. G., and Goldsby, R. A., 1980, Preparation of monoclonal antibodies to xanthine oxidase and other proteins of bovine milk-fat-globule membrane, Biochem. J. 188:925–928.

    Google Scholar 

  • McKenna, M. J., Hamilton, T. A., and Sussman, H. H., 1979, Comparison of human alkaline phosphatase isoenzymes. Structural evidence for three protein classes, Biochem. J. 181:67–73.

    Google Scholar 

  • Millan, J. L., and Stigbrand, T., 1981, “Sandwich” enzyme immunoassay for placental alkaline phosphatase, Clin. Chem. 27/12:2014–2018.

    Google Scholar 

  • Meyer, L. J., Lafferty, M. A., Raducha, M. G., Foster, C. J., Gogolin, K. J., and Harris, H., 1982, Production of a monoclonal antibody to human liver alkaline phosphatase, Clin. Chem. Acta 126:109–117.

    Article  Google Scholar 

  • Millan, J. L., Beckman, G., Jeppsson, A., and Stigbrand, T., 1982, Genetic variants of placental alkaline phosphatase as detected by a monoclonal antibody, Hum. Genet. 60:145–149.

    Article  Google Scholar 

  • Mulivor, R. A., Plotkin, L. I., and Harry Harris, 1978a, Differential inhibition of the products of the human alkaline phosphatase loci, Ann. Hum. Genet. Lond. 42:1–13.

    Article  Google Scholar 

  • Mulivor, R. A., Hannig, V. L., and Harris, H., 1978b, Developmental change in human intestinal alkaline phosphatase, Proc. Natl. Acad. Sci. USA 75:3909–3912.

    Article  Google Scholar 

  • Nakane, M., and Deguchi, T., 1982, Monoclonal antibody to soluble guanylate cyclase of rat brain, FEBS Lett. 140:89–92.

    Article  Google Scholar 

  • Park, S. S., Persson, A. V., Coon, M. J., and Gelboin, H. V., 1980, Monoclonal antibodies to rabbit liver cytochrome P450 LM2, FEBS Lett. 116:231–235.

    Article  Google Scholar 

  • Park, S. S., Fujino, T., West, D., Guengerich, F. P., and Gelboin, H. V., 1982, Monoclonal antibodies that inhibit enzyme activity of 3-methylcholanthrene-induced cytochrome P-450, Cancer Res. 42:1798–1808.

    Google Scholar 

  • Robson, E. B., and Harris, H., 1967, Further studies on the genetics of placental alkaline phosphatase, Ann. Hum. Genet. London 30:219–232.

    Article  Google Scholar 

  • Robson, E. B., and Harris, H., 1965, Genetics of the alkaline phosphatase polymorphism of the human placenta, Nature 207:1257–1259.

    Article  Google Scholar 

  • Rogers, C. E., and Harris, H., 1982, Differentiation of immunochemically related enzymes in different primate species by monoclonal antibodies, FEBS Lett. 146:93–96.

    Article  Google Scholar 

  • Ross, M. E., Reis, D. J., and Tong, H. J., 1981, Monoclonal antibodies to tryosine hydroxylase: Production and characterization, Brain Res. 208:493–498.

    Article  Google Scholar 

  • Seargeant, L. E., and Stinson, R. A., 1979, Evidence that three structural genes code for human alkaline phosphatases, Nature 281:152–154.

    Article  Google Scholar 

  • Sela, M., 1969, Antigenicity: Some molecular aspects, Science 166:1365–1374.

    Article  Google Scholar 

  • Siddle, K., Bailyes, E. M., and Luzio, J. P., 1981, A monoclonal antibody inhibiting rat liver 5′-nucleotidase, FEBS Lett. 128:103–107.

    Article  Google Scholar 

  • Slaughter, C. A., Coseo, M. C., Abrams, C., Cancro, M. P., and Harris, H., 1980, The use of hybridomas in enzyme genetics, in: Monoclonal antibodies. Hybridomas: A New Dimension in Biological Analyses (R. H. Kennett, T.J. McKearne, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 103–120.

    Google Scholar 

  • Slaughter, C. A., Coseo, M. C., Cancro, M. P., and Harris, H., 1981, Detection of enzyme polymorphism by using monoclonal antibodies, Proc. Natl. Acad. Sci. 78:1124–1128.

    Article  Google Scholar 

  • Slaughter, C. A., Gogolin, K.J., Coseo, M. C., Meyer, L. J., Lesko, J., and Harris, H., 1983, Discrimination of human placental alkaline phosphatase allelic variants by monoclonal antibodies, Am. J. Hum. Genet. 35:1–20.

    Google Scholar 

  • Smith-Gill, S. J., Wilson, A. C., Potter, M., Prager, E. M., Feldman, R. J., and Mainhart, C. R., 1982, Mapping the antigenic epitope for a monoclonal antibody against lysozyme, J. Immunol. 128:314–322.

    Google Scholar 

  • Stahli, C., Staehelin, T., Miggiano, V., Schmidt, J., and Haring, P., 1980, High frequencies of antigen-specific hybridomas: Dependence on immunization parameters and prediction by spleen cell analysis, J. Immunol. Methods 32:297–304.

    Article  Google Scholar 

  • Vora, S., and Francke, U., 1981, Assignment of the human gene for liver-type 6-phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L antibody, Proc. Natl. Acad. Sci. USA 78:3738–3742.

    Article  Google Scholar 

  • Vora, S., Wims, L. A., Durham, S., and Morrison, S. L., 1981, Production and characterization of monoclonal antibodies to the subunits of human phosphofructokinase: New tools for the immunochemical and genetic analysis of isozymes, Blood 58:823–829.

    Google Scholar 

  • Vora, S., Durham, S., DeMartinville, B., George, D. L., and Francke, U., 1982, Assignment of the human gene for muscle-type phosphofructokinase (PFKM) to chromosome 1 (region cen Q32) using somatic cell hybrids and monoclonal anti-M antibody, Somatic Cell Genet. 8:95–104.

    Article  Google Scholar 

  • Wray, L., and Harris, H., 1982, Demonstration using monoclonal antibody of inter-locus hetero meric isozymes of human alkaline phosphatase, J. Immunol. Methods 55:13–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Harris, H. (1984). Monoclonal Antibodies to Enzymes. In: Kennett, R.H., Bechtol, K.B., McKearn, T.J. (eds) Monoclonal Antibodies and Functional Cell Lines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4673-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4673-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4675-3

  • Online ISBN: 978-1-4684-4673-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics