Skip to main content

Concanavalin A as A Probe for Studying the Mechanism of Metabolic Stimulation of Leukocytes

  • Chapter
Concanavalin A

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 55))

Abstract

The disruption of the molecular organization of the plasma membrane of leukocytes by phagocytosable particles, or by agents such as surfactants, antibodies, phospholipase C, fatty acids and chemotactic factors, leads to a stimulation of the phagocyte oxidative metabolism. Concanavalin A (Con A) has been used as a tool to study the mechanism of this metabolic regulation.

The binding of Con A to the surface of polymorphonuclear leukocytes (PMNL) or macrophages produces a rapid enhancement of oxygen uptake and glucose oxidation through the hexose monophosphate pathway (HMP). This is explained by an activation of the granular NADPH oxidase, the key enzyme in the metabolic stimulation. The effect of Con A is not due to endocytosed lectin, since Con A covalently coupled to large sepharose beads still acts as stimulant.

The metabolic changes caused by Con A are reversible. If, after the onset of stimulation, sugars with high affinity for Con A are added to the leukocyte suspension, the activity of granular NADPH oxidase and the rate of respiration and glucose oxidation return to their resting values.

The metabolic burst, while partially supressed by treatment of PMNL with iodoacetate, sodium fluoride and cytochalasin B, is slightly increased by colchicine.

Con A induces a selective release of granular enzymes (β-glucuronidase, peroxidase, alkaline phosphatase) from PMNL, whereas no leakage of cytoplasmic enzymes is observed. The enzyme release is inhibited by iodoacetate and by drugs known to increase cell levels of cyclic AMP.

Based on a current view of the mode of interaction between Con A and cell surfaces, a model of the metabolic disruption of leukocytes is presented.

This work was aided by a grant from the Italian National Research Council (No. 73.00441.04).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aaronson, S. A., and Todaro, G. J. (1968). “Basis for the acquisition of malignant potential by mouse cells cultivated in vitro.” Science 162, 1024.

    CAS  Google Scholar 

  2. Azzi, A. (1969). “Redistribution of the electrical charge of the mitochondrial membrane during energy conservation.” Biochem. Biophys. Res. Commun. 37, 254.

    Article  PubMed  CAS  Google Scholar 

  3. Bergmayer, H. U., Bernt, E., and Hesso, B. (1965). “Lactic dehydrogenase.” In Methods of enzymatic analysis ( H. U. Bergmayer, ed.), Academic Press, New York.

    Google Scholar 

  4. Berlin, R. D. (1972). “Effect of Concanavalin A on phagocytosis.” Nature New Biology 235, 44.

    Article  PubMed  CAS  Google Scholar 

  5. Berlin, R. D., Oliver, J. M., Ukena, T. E., and Yin, H. H. (1974). “Control of cell surface topography.” Nature New Biology 247, 45.

    Article  CAS  Google Scholar 

  6. Burger, M. M. (1970). “A difference in the architecture of the surface membrane of normal and virally transformed cells.” Proc. Nat. Acad. Sci. U. S. A. 62, 994.

    Article  Google Scholar 

  7. Cooper, R. H., Ashcroft, S. J., and Randle, P. J. (1973). “Concentrations of adenosine 3’:5’ - cyclic monophosphate in mouse pancreatic islets measured by a protein-binding radioassay.” Biochem. J. 134, 599.

    PubMed  CAS  Google Scholar 

  8. Cuatrecasas, P. (1969). “Interaction of insulin with the cell membrane: the primary action of insulin.” Proc. Nat. Acad. Sci. U. S. A. 63, 450.

    Article  CAS  Google Scholar 

  9. Curtis, A. S. G. (1967). The cell surface: its molecular role in morphogenesis. Pergamon Press, Oxford.

    Google Scholar 

  10. Fisch, H. U., Pliska, U., and Schwyzer, R. (1972). “A covalent protein-Sepharose complex for the specific adsorption and assay of adenosine 3’:5’ - monophosphate.” Eur. J. Biochem. 30, 1.

    Article  PubMed  CAS  Google Scholar 

  11. Fortes, P. A. G., and Hoffman, J. F. (1971). “Interactions of the fluorescent anion 1-anilino-8-naphthalene sulfonate with membrane charges in human red cell ghosts.” J. Membrane Biol. 5, 154.

    Article  CAS  Google Scholar 

  12. Gianetto, R., and de Duve, C. (1955). “Comparative study of the binding of acid phosphatase, ß-glucuronidase and cathespin by rat-liver particles.” Biochem. J. 59, 433.

    PubMed  CAS  Google Scholar 

  13. Gingell, D. (1973). “Membrane permeability change by aggregation of mobile glycoprotein units.” J. Theor. BioZ. 38, 677.

    Article  CAS  Google Scholar 

  14. Goldstein, I. J. (1975). Personal communication.

    Google Scholar 

  15. Goldstein, I. J., Hollerman, C. E., and Smith, E. E. (1965). “Protein-carbohydrate interaction. II. Inhibition studies on the interactions of Concanavalin A with polysaccharides.” Biochemistry 4, 876.

    Article  PubMed  CAS  Google Scholar 

  16. Gomperts, B., Lanteline, F., and Stock, R. (1970). “Ion association reactions with biological membranes studied with the fluorescent dye 1-anilino-8-naphthalene sulfonate.” J. Membrane Biol. 3, 241.

    Article  CAS  Google Scholar 

  17. Greaves, M. F., and Bauminger, S. (1972). “Activation of T and B cells by insoluble phytomitogens.” Nature New Biol. 235, 67.

    PubMed  CAS  Google Scholar 

  18. Hecht, Y. P., Dellacha, J. M., Santome, J. A., Paladini, A. C., Hurwitz, E., and Sela, M. (1972). Personal Communication.

    Google Scholar 

  19. Henson, P. M. (1972). “Pathologic mechanisms in neutrophilmediated injury.” Am. J. PathoZ. 68, 593.

    CAS  Google Scholar 

  20. Holmes, B., Sater, J., Rodey, G., Park, B., and Good, R. (1969). “Changes in intracellular distribution of lysosomal enzymes during phagocytosis by human polymorphonuclear leukocytes.” Clin. Invest. 48, 39a, 125 abs.

    Google Scholar 

  21. Kornberg, A., and Horecker, B. L. (1955). “Glucose-6-phosphate dehydrogenase.” In Methods in enzymology (S. P. Colowick and N. O. Kaplan, eds.) vol. I.

    Google Scholar 

  22. Ling, N. R. (1968). Lymphocyte stimulation. North Holland Publishing Co., Amsterdam.

    Google Scholar 

  23. Michell, R. H., Karnovsky, M. J., and Karnowsky, M. L. (1970). “The distribution of some granule-associated enzymes in guinea-pig polymorphonuclear leukocytes.” Biochem. J. 116, 207.

    PubMed  CAS  Google Scholar 

  24. Nazakawa, T., Asani, K., Shoger, R., Fujiwara, A., and Yasumasu, I. (1970). “Ca++ uptake, H+ ejection and respiration in sea-urchin eggs on fertilization.” Exp. CeZZ Res. 63, 143.

    Article  Google Scholar 

  25. Nicolson, G. L. (1973). “Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles.” J. Cell Biol. 57, 373.

    Article  PubMed  CAS  Google Scholar 

  26. Oliver, J. M., Ukena, T. E., and Berlin, R. D. (1974). “Effects of phagocytosis and colchicine on the distribution of lectinbinding sites on cell surfaces.” Proc. Nat. Acad. Sci. U. S. A. 71, 394.

    Article  CAS  Google Scholar 

  27. Pastan, I., Roth, J., and Macchia, V. (1966). “Binding of hormone to tissue: the first step in polypeptide hormone action.” Proc. Nat. Acad. Sci. U. S. A. 56, 1802.

    Article  CAS  Google Scholar 

  28. Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F., and Romeo, D. (1971). “Enzymatic basis of metabolic stimulation in leukocytes during phagocytosis: the role of activated NADPH oxidase.” Arch. Biochem. Biophys. 145, 255.

    Article  PubMed  CAS  Google Scholar 

  29. Patriarca, P., Cramer, R., Dri, P., Fant, L., Basford, R. E., and Rossi, F. (1973). “NADPH oxidizing activity in rabbit polymorphonuclear leukocytes: localization in azurophilic granules.” Biochem. Biophys. Res. Commun. 53, 830.

    Article  PubMed  CAS  Google Scholar 

  30. Porath, J., Axen, R., and Ernback, S. (1967). “Chemical coupling of proteins to Agarose.” Nature New Biology 215, 1491.

    Article  CAS  Google Scholar 

  31. Rinderknecht, H. (1962). “Ultra-rapid fluorescent labelling of proteins.” Nature New Biology 193, 167.

    Article  CAS  Google Scholar 

  32. Romeo, D. (1974). “Modulation of phagocyte metabolism by perturbation of their surface with Concanavalin A.” In Comparative biochemistry and physiology of transport (K. Bloch, L. Bolis, and S. E. Luria, eds.), in press.

    Google Scholar 

  33. Romeo, D., Cramer, R., and Rossi, F. (1970). “Use of 1-anilino8-naphthalene sulfonate to study structural transitions in cell membrane of PMN leukocytes.” Biochem. Biophys. Res. Commun. 41, 582.

    Article  PubMed  CAS  Google Scholar 

  34. Romeo, D., Zabucchi, G., and Rossi, F. (1973a). “Reversible metabolic stimulation of polymorphonuclear leukocytes and macrophages by Concanavalin A.” Nature New Biology 243, 111.

    PubMed  CAS  Google Scholar 

  35. Romeo, D., Zabucchi, G., Marzi, T., and Rossi, F. (1973a). “Kinetic and enzymatic features of metabolic stimulation of alveolar and peritoneal macrophages challenged with bacteria.” Exp. Cell Res. 78, 423.

    Article  PubMed  CAS  Google Scholar 

  36. Romeo, D., Cramer, R., Marzi, T., Soranzo, M. R., Zabucchi, G., and Rossi, F. (1973). “Peroxidase activity of alveolar and peritoneal macrophages.” J. ReticuZoend. Soc. 13, 399.

    CAS  Google Scholar 

  37. Romeo, D., Zabucchi, G., Jug, M., and Rossi, F. (1974a). “Alteration of macrophage surface in the course of immunological activation: decay of metabolic response to Concanavalin A.” Cell. Immunol.,in press.

    Google Scholar 

  38. Romeo, D., Jug, J., Zabucchi, G., and Rossi, F. (1974b). “Perturbation of leukocytes metabolism by nonphagocytosable Concanavalin A-coupled beads.” FEBS Letters,in press.

    Google Scholar 

  39. Rossi, F., and Zatti, M. (1964). “Changes in the metabolic pattern of polymorphonuclear leukocytes during phagocytosis.” Brit. J. Exp. PathoZ. 45, 548.

    CAS  Google Scholar 

  40. Rossi, F., and Zatti, M. (1968). “Mechanism of the respiratory stimulation in saponine treated leukocytes. The KCN insensitive oxidation of NADPH.” Biochim. Biophys. Acta 153, 296.

    Article  PubMed  CAS  Google Scholar 

  41. Rossi, F., Romeo, D., and Patriarca, P. (1972). “Mechanism of phagocytosis associated oxidative metabolism in polymorphonuclear leukocytes and macrophages.” RES: J. Reticuloend. Soc. 12, 127.

    CAS  Google Scholar 

  42. Rossi, F., Patriarca, P., and Romeo, D. (1974). “Regulation of oxidative metabolism and functions of phagocytes.” In Future trends in inflammation (D. A. Willoughby, ed.)

    Google Scholar 

  43. Sbarra, A. J., and Karnovsky, M. L. (1959). “The biochemical basis of phagocytosis.” J. BioZ. Chem. 237, 1355.

    Google Scholar 

  44. Selvaraj, R. J., and Sbarra, A. J. (1966). “Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells.” Nature New Biology 211, 1272.

    Article  CAS  Google Scholar 

  45. Selvaraj, R. J., McRipley, R. J., and Sbarra, A. J. (1967). “The metabolic activities of leukocytes from limphoproliferative and myeloproliferative disorders during phagocytosis.” Cancer Res. 27, 2287.

    PubMed  CAS  Google Scholar 

  46. Simberkoff, M. S., and Elsback, P. (1971). “The interaction in vitro between polymorphonuclear leukocytes and mycoplasma.” J. Exp. Med. 134, 1417.

    Article  PubMed  CAS  Google Scholar 

  47. Singer, S. J., and Nicolson, G. L. (1972). “The fluid mosaic model of the structure of cell membranes.” Science 175, 720.

    Article  PubMed  CAS  Google Scholar 

  48. Smith, C. W. and Hollers, J. C. (1970). “The pattern of binding of fluorescein-labeled Concanavalin A to motil lymphocyte.” J. ReticuZoend. Soc. 8, 458.

    CAS  Google Scholar 

  49. Smith, S. B., and Revel, J. (1972). “Mapping of Concanavalin A binding sites on the surface of several cell types.” Develop. BioZ. 27, 434.

    Article  CAS  Google Scholar 

  50. Taylor, R. B., Duffus, P. H., Raff, M. C., and de Petris, S. (1971). “Redistribution and pinocytosis of lymphocyte surface immunoglobulins molecules induced by anti-immunoglobulin antibody.” Nature New Biology 233, 225.

    Article  PubMed  CAS  Google Scholar 

  51. Wright, D. G., and Malawista, S. E. (1972). “The mobilization and extracellular release of granular enzymes from human leukocytes during phagocytosis.” J. CeZZ BioZ. 53, 788.

    Google Scholar 

  52. Zigmond, S. H., and Hirsch, J. G. (1972). “Cytochalasin B: inhibition of D-2-deoxyglucose transport into leukocytes and fibroblasts.” Science 176, 1432.

    Article  PubMed  CAS  Google Scholar 

  53. Zurier, R. B., Hoffstein, S., and Weissmann, G. (1973). “Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine.” J. Cell Biol. 58, 27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Romeo, D., Zabucchi, G., Jug, M., Miani, N., Soranzo, M.R. (1975). Concanavalin A as A Probe for Studying the Mechanism of Metabolic Stimulation of Leukocytes. In: Chowdhury, T.K., Weiss, A.K. (eds) Concanavalin A. Advances in Experimental Medicine and Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0949-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0949-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0951-2

  • Online ISBN: 978-1-4684-0949-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics