Skip to main content

Respiration in the Fetal-Placental Unit

  • Chapter
Principles of Perinatal-Neonatal Metabolism

Abstract

Development of the embryo, fetus, and neonate requires appropriate respiratory exchange of oxygen and carbon dioxide. During intrauterine life the placenta serves as the lung for the fetus and fulfills the functions of many organs essential to extrauterine existence. With birth, physiologically one of the most tumultuous events of life, the responsibility for respiratory function shifts from the placenta to the neonatal lung, which must change within a matter of seconds from a relative passive structure with fluid-filled airways to an active member with relatively full functional capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Longo LD, Hill EP, Power GG. Theoretical analysis of factors affecting placental O2 transfer. Am J Physiol 1972;22:730–739.

    Google Scholar 

  2. Longo LD. Respiratory gas exchange in the placenta. In Fishman AP, Farhi LE, Tenney SM, eds: Handbook of Physiology, Sec. 3. The Respiratory System, Vol. IV. Gas Exchange. Washington, DC: American Physiological Society 1987;351–401.

    Google Scholar 

  3. Longo LD, Power GG, Forster RE II. Respiratory function of the placenta as determined with carbon monoxide in sheep and dogs. J Clin Invest 1967;46:812–828.

    Article  PubMed  CAS  Google Scholar 

  4. Meschia G, Battaglia FC, Hay WW Jr, et al. Utilization of substrates by the ovine placenta in vivo. Fed Proc 1980;39:245–249.

    PubMed  CAS  Google Scholar 

  5. Longo LD, Power GG. Analysis of Po2 and Pco2 differences between maternal and fetal blood in the placenta. J Appl Physiol 1969;26:48–55.

    PubMed  CAS  Google Scholar 

  6. Power GG, Longo LD, Wagner HN Jr, et al. Uneven distribution of maternal and fetal placental blood flow, as demonstrated using macroaggregates, and its response to hypoxia. J Clin Invest 1967;46:2053–2063.

    Article  PubMed  CAS  Google Scholar 

  7. Power GG, Hill EP, Longo LD. Analysis of uneven distribution of diffusing capacity and blood flow in the placenta. Am J Physiol 1972;222:740–746.

    PubMed  CAS  Google Scholar 

  8. Bissonnette JM, Longo LD, Novy MJ, et al. Placental diffusing capacity and its relation to fetal growth. J Dev Physiol 1979;1:351–359.

    PubMed  CAS  Google Scholar 

  9. Bissonnette JM, Wickham WK. Placental diffusing capacity for carbon monoxide in unanesthetized guinea pigs. Respir Physiol 1977;31:161–168.

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert RD, Cummings LA, Jachau MR, et al. Placental diffusing capacity and fetal development in exercising or hypoxic guinea pigs. J Appl Physiol 1979;46:828–834.

    PubMed  CAS  Google Scholar 

  11. Longo LD, Ching K. Placental diffusing capacity for carbon monoxide and oxygen in unanesthetized sheep. J Appl Physiol 1977;43:885–893.

    PubMed  CAS  Google Scholar 

  12. Bacon BJ, Gilbert RD, Kaufmann P, et al. Placental anatomy and diffusing capacity in guinea pigs following long-term maternal hypoxia. Placenta 1984; 5:465–488.

    Article  Google Scholar 

  13. Nelson PS, Gilbert RD, Longo LD. Fetal growth and placental diffusing capacity in guinea pigs following long-term maternal exercise. J Dev Physiol 1983;5: 1–10.

    PubMed  Google Scholar 

  14. Smith AD, Gilbert RD, Lammers RJ, et al. Placental exchange area in guinea pigs following long-term maternal exercise: a stereological analysis. J Dev Physiol 1983;5:11–21.

    PubMed  CAS  Google Scholar 

  15. Power GG, Jenkins F. Factors affecting O2 transfer in the sheep and rabbit placenta perfused in situ. Am J Physiol 1975;229:1147–1153.

    PubMed  CAS  Google Scholar 

  16. Power GG, Dale PS, Nelson PS. Distribution of maternal and fetal blood flow within cotyledons of the sheep placenta. Am J Physiol 1981;241:H486–H496.

    PubMed  CAS  Google Scholar 

  17. Longo LD, Hardesty JS. Maternal blood volume: measurement, hypothesis of control, and clinical considerations. Rev Perinatol Med 1984;5:35–59.

    Google Scholar 

  18. Pritchard JA, Hunt CF. A comparison of the hematologic responses following the routine prenatal administration of intramuscular and oral iron. Surg Gynecol Obstet 1958;106:516–518.

    PubMed  CAS  Google Scholar 

  19. Oski FA. Hematological problems. In Avery GB, ed: Neonatalogy, Pathophysiology and Management of the Newborn. Philadelphia: Lippincott, 1975;379–422.

    Google Scholar 

  20. Bartels H. Prenatal Respiration. Amsterdam: North Holland, 1970.

    Google Scholar 

  21. Hill EP, Power GG, Longo LD. A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen. Am J Physiol 1973;224:283–299.

    PubMed  CAS  Google Scholar 

  22. Assali NS, Douglas RA Jr, Baird WW, et al. Measurements of uterine blood flow and uterine metabolism. IV. Results in normal pregnancy. Am J Obstet Gynecol 1953;66:248–253.

    PubMed  CAS  Google Scholar 

  23. Metcalfe J, Romney SL, Ramsey LH, et al. Estimation of uterine blood flow in normal human pregnancy at term. J Clin Invest 1955;34:1632–1638.

    Article  PubMed  CAS  Google Scholar 

  24. Parer JT, de Lannoy CW, Hoversland AS, et al. Effect of decreased uterine blood flow on uterine oxygen consumption in pregnant macaques. Am J Obstet Gynecol 1968;100:813–820.

    PubMed  CAS  Google Scholar 

  25. Fuller EO, Manning MW, Nutter DO, et al. A perfused uterine preparation for the study of uterine and fetal physiology. In Longo LD, Reneau DD, eds.: Fetal and Newborn Cardiovascular Physiology. Vol. 2. Fetal and Newborn Circulation. New York: Garland Press, 1978; 421–435.

    Google Scholar 

  26. Clapp JF III. The relationship between blood flow and oxygen uptake in the uterine and umbilical circulations. Am J Obstet Gynecol 1978;132:410–413.

    PubMed  Google Scholar 

  27. Dawes GS, Mott JC. Changes in O2 distribution and consumption in foetal lambs with variations in umbilical blood flow. J Physiol (Lond) 1964;170:524–540.

    CAS  Google Scholar 

  28. Power GG, Longo LD. Sluice flow in placenta: maternal vascular pressure effects on fetal circulation. Am J Physiol 1973;225:1490–1496.

    PubMed  CAS  Google Scholar 

  29. Cottle MKW, Van Petten GR, Van Muyden P. Depression of uterine blood flow in response to cord compression in sheep. Can J Physiol Pharmacol 1982;60:825–829.

    Article  PubMed  CAS  Google Scholar 

  30. Hasaart THM, De Haan J. Depression of uterine blood flow during total umbilical cord occlusion in sheep. Eur J Obstet Gynecol Reprod Biol 1985;19:125–131.

    Article  PubMed  CAS  Google Scholar 

  31. Born GVR, Dawes GS, Mott JC. Oxygen lack and autonomic nervous control of the foetal circulation in the lamb. J Physiol (Lond) 1956;134:149–166.

    CAS  Google Scholar 

  32. Adamsons K, Beard RW, Myers RE. Comparison of the composition of arterial, venous, and capillary blood of the fetal monkey during labor. Am J Obstet Gynecol 1970;107:435–440.

    PubMed  CAS  Google Scholar 

  33. Avery ME, Cook CD. Volume-pressure relationships of lungs and thorax in fetal, newborn, and adult goats. J Appl Physiol 1961;16:1034–1038.

    PubMed  CAS  Google Scholar 

  34. Dickson KA, Maloney JE, Berger PJ. State-related changes in lung liquid secretion and tracheal flow rate in fetal lambs. J Appl Physiol 1987;62:34–38.

    PubMed  CAS  Google Scholar 

  35. Adamson TM, Boyd RDH, Platt HS, et al. Composition of alveolar liquid in the foetal lamb. J Physiol (Lond) 1969;204:159–168.

    CAS  Google Scholar 

  36. Humphreys PW, Normand ICS, Reynolds EOR, et al. Pulmonary lymph flow and the uptake of liquid from lungs of the lamb at the start of breathing. J Physiol (Lond) 1967;193:1–29.

    CAS  Google Scholar 

  37. Kulovich MV, Hallman MB, Gluck L. The lung profile. I. Normal pregnancy. Am J Obstet Gynecol 1979; 135: 57–63.

    PubMed  CAS  Google Scholar 

  38. Koos BJ. Central stimulation of breathing movements in fetal lambs by prostaglandin synthetase inhibitors. J Physiol (Lond) 1985;362:455–466.

    CAS  Google Scholar 

  39. Anderson DV, Bissonnette JM, Faber JJ, et al. Central shunt flows and pressures in the mature fetal lamb. Am J Physiol 1981;241:H60–H66.

    PubMed  CAS  Google Scholar 

  40. Gilbert RD. Control of fetal cardiac output during changes in blood volume. Am J Physiol 1980;238:H80–H86.

    PubMed  CAS  Google Scholar 

  41. Rudolph AM, Heymann MA. Circulatory changes during growth in the fetal lamb. Circ Res 1970;26: 289–299.

    PubMed  CAS  Google Scholar 

  42. Cassin S, Winikor I, Tod M, et al. Effects of prostacyclin on the fetal pulmonary circulation. Pediatr Pharmacol 1981;1:197–207.

    CAS  Google Scholar 

  43. Tripp ME, Heymann MA, Rudolph AM. Prostaglandin E1 and pulmonary vascular resistance in neonatal lambs. Pediatr Res 1977;11:401A.

    Google Scholar 

  44. Blanco CE, Dawes GS, Hanson MA, et al. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol (Lond) 1984;351:25–37.

    CAS  Google Scholar 

  45. Thibeault DW, Clutario B, Auld PAM. The oxygen cost of breathing in the premature infant. Pediatrics 1966; 37:954–959.

    PubMed  CAS  Google Scholar 

  46. Nelson NM. Neonatal pulmonary function. Pediatr Clin North Am 1966;13:769–799.

    PubMed  CAS  Google Scholar 

  47. West JB. Ventilation/Blood Flow and Gas Exchange. Oxford: Blackwell Scientific Publications, 1965.

    Google Scholar 

  48. Cross KW, Warner P. The effect of inhalation of high and low oxygen concentrations in the respiration of the newborn infant. J Physiol (Lond) 1951; 114:238–295.

    Google Scholar 

  49. Cross KW, Oppé TE. The effect of inhalation of high and low concentrations of oxygen on the respiration of the premature infant. J Physiol (Lond) 1952; 177: 38–55.

    Google Scholar 

  50. Brady JP, Ceruti E. Chemoreceptor reflexes in the new-born infant: effects of varying degrees of hypoxia on heart rate and ventilation in a warm environment. J Physiol (Lond) 1966;184:631–645.

    CAS  Google Scholar 

  51. Ceruti E. Chemoreceptor reflexes in the newborn infant: effect of cooling on the response to hypoxia. Pediatrics 1966;37:556–564.

    PubMed  CAS  Google Scholar 

  52. Cross KW, Klaus M, Tooley. WH, et al. The response of the new-born baby to inflation of the lungs. J Physiol (Lond) 1960;151:661–665.

    Google Scholar 

  53. Barcroft J. The Respiratory Function of the Blood. Part II. Haemoglobin. Cambridge: Cambridge University Press, 1928;52.

    Google Scholar 

  54. Avery GB, ed. Neonatology. Pathophysiology and Management of the Newborn, 3rd ed. Philadelphia: Lippin-cott, 1987.

    Google Scholar 

  55. Dawes GS. Foetal and Neonatal Physiology. A Comparative Study of the Changes at Birth. Chicago: Year Book, 1968;185.

    Google Scholar 

  56. Smith CA, Nelson NM. The Physiology of the Newborn Infant, 4th ed. Springfield, IL: Charles C Thomas, 1976;207.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Longo, L.D. (1991). Respiration in the Fetal-Placental Unit. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics