Skip to main content

Evolution of Avian Ontogenies

  • Chapter
Book cover Current Ornithology

Part of the book series: Current Ornithology ((CUOR,volume 10))

Abstract

Avian hatchlings display remarkable differences in their external appearance, activity, and behavior. At the one extreme we find independent hatchlings (Fig. 1a), which locomote actively and feed themselves independently; in the case of the moundbuilders (megapodes), the young birds have no contact at all with their parents. At the other extreme are helpless, embryolike hatchlings (Fig. 1b) that are bound to the nest for some time after hatching and that depend completely on parental care. In nature, there is a wide spectrum of avian hatchlings from the precocial extreme to the altricial extreme. This spectrum is unevenly occupied, with most species found in the altricial groups. For comparative purpose, avian hatchlings are described with reference to their external appearance, motor activity, locomotion patterns, feeding behavior, capability of endothermy, parental feeding behavior, parental attendance, and developmental stage of tissue maturation, for example, natal down, sense organs, muscle, and brain. Avian hatchlings also differ in their postnatal growth rate. Altricial birds grow about three to four times more rapidly than precocial birds of the same body size (KG values, rate constants of Gompertz sigmoidal equations fitted to growth curves; Ricklefs, 1979a,b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, K., 1901, Einige Beiträge zur Entwicklungsgeschichte des Wellensittichs, Anat. Hefte, Abt. 1; Arb. a. Anat. Inst. 17(3/4), Heft 56 /57.

    Google Scholar 

  • Ar, A., and Yom-Tov, Y., 1978, The evolution of parental care in birds, Evolution 32: 655–669.

    Article  Google Scholar 

  • Ashmole, N. P., 1971, Sea bird ecology and the marine environment: in: Avian Biology, Vol. I (D. S. Farner, J. R. King, and K. C. Parkes), Academic Press, New York, pp. 223–286.

    Google Scholar 

  • Baer, K. E., von, 1828, Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion. Bornträger, Königsberg.

    Google Scholar 

  • Becker, R., 1959, Die Strukturanalyse der Gefiederfolgen von Megapodius freycinet reinwartd und ihre Beziehung zu der Nestlingsdune der Hühnervögel, Rev. Suisse Zool. 66: 411–527.

    Google Scholar 

  • Beebe, W., 1917, Further notes on the life history of Hoatzins, in: TYopical Wildlife in British Guiana, New York.

    Google Scholar 

  • Beebe, W., 1920, Jungle Peace, Henry and Holt & Co., New York.

    Google Scholar 

  • Beer, G. R. de, 1958, Embryos and Ancestors, Clarendon Press, Oxford.

    Google Scholar 

  • Bennett, P. M., and Harvey, P. H., 1985a, Relative brain size and ecology in birds, J. Zool., Lond. (A) 207: 151–169.

    Google Scholar 

  • Bennett, P. M., and Harvey, P. H., 1985b, Brain size, development and metabolism in birds and mammals, J. Zool., Lond. (A) 207: 491–509.

    Article  Google Scholar 

  • Bennett, P. M., and Harvey, P. H., 1987, Active and resting metabolism in birds: allometry, phylogeny and ecology, J. Zool., Lond. (A) 213: 327–363.

    Google Scholar 

  • Björnhag, G. 1979, Growth in newly hatched birds, Swed. J. Agr. Res. 9: 121–125.

    Google Scholar 

  • Bock, W. J., 1980, The definition and recognition of biological adaptation, Am. Zool. 20: 217–227.

    Google Scholar 

  • Bock, W. J., 1988, The nature of explanations in morphology, Am. Zool. 28: 205–215.

    Google Scholar 

  • Bock, W. J., 1989a, The homology concept: its philosophical foundation and practical methodology, Zool. Beitr. N. F. 32: 327–353.

    Google Scholar 

  • Bock, W. J., 1989b, Principles in biological comparison, Acta MorphoJ. Neerl. -Scand. 27: 17–32.

    Google Scholar 

  • Bock, W. J., and Wahlert, G. von, 1965, Adaptation and the form-function complex, Evolution 19: 269–299.

    Article  Google Scholar 

  • Böni, A., 1942, Über die Entwicklung der Temperaturregulation bei verschiedenen Nesthockern (Wellensittich, Neuntöter und Wendehals ), Schweiz. Arch. Orn. 2: 3–58.

    Google Scholar 

  • Brom, T. G. f and Dekker, R. W. R. J., 1990, Current studies on megapode phylogeny, Abstract Int. Orn. Congr., Christchurch, New Zealand.

    Google Scholar 

  • Broman, I., 1941, Über die Entstehung und Bedeutung der Embryonaldunen, Morph. Jb. 86: 141–217.

    Google Scholar 

  • Bücher, T. L., 1983, Parrot eggs, embryos, and nestlings: patterns and energetics of growth and development, Physio J. Zool. 56: 465–483.

    Google Scholar 

  • Bucher, T. L., 1986, Ratios of hatchling and adult mass-independent metabolism: a physiological index to the altricial precocial continuum, Respir. Physiol. 65: 69–83.

    Google Scholar 

  • Bucher, T. L., 1987, Patterns in the mass-independent energetics of avian development, J. Exp. Zool. Suppl. 1: 139–150.

    PubMed  CAS  Google Scholar 

  • Bucher, T. L., and Bartholomew, G. A., 1986, The early ontogeny of ventilation and homo-thermy in an altricial bird, Agapornis roscicollis ( Psittaciformes ), Resp. Physiol. 65: 197–212.

    Google Scholar 

  • Burckhard, D., 1954, Beitrag zur embryonalen Pterylose einiger Nesthocker, Rev. Suisse Zool. 61: 551–633.

    Google Scholar 

  • Calder, W. A., 1984, Size, Function, and Life History, Harvard University Press, Cambridge.

    Google Scholar 

  • Carey, C., 1983, Structure and function of avian eggs, in: Current Ornithology, Vol. 1 (R. F. Johnston, ed.), Plenum Press, New York.

    Google Scholar 

  • Case, T. J., 1978, On the evolution and adaptive significance of postnatal growth rates in terrestrial vertebrates, Q. Rev. Biol. 53: 243–282.

    Google Scholar 

  • Clark, G. A., 1960, Notes on the embryology and evolution of the megapodes, Postilla, Yale Peabody Mus. 45: 1–7.

    Google Scholar 

  • Clark, G. A., 1961, Occurrence and timing of egg teeth in birds, Wilson Bull. 73: 268–278.

    Google Scholar 

  • Clark, G. A., 1964a, Ontogeny and evolution of the megapodes, Postilla, Yale Peabody Mus. 78: 1–37.

    Google Scholar 

  • Clark, G. A., 1964b, Life history and the evolution of megapodes, Living Bird 1964: 149–167.

    Google Scholar 

  • Clutton-Brock, T. H., 1991, The Evolution of Parental Care, Monographs in Behavior and Ecology (J. R. Krebs and T. H. Clutton-Brock), Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Cracraft, J., 1981, Towards a phylogenetic classification of the recent birds of the world, Auk 98: 681–714.

    Google Scholar 

  • Cracraft, J., 1988, The major clades of birds, in: The Phylogeny and Classification of the Tetrapodes, The Systematics Association Special Volume, 35A(1) ( M. J. Benton, ed.), Clarendon Press, London.

    Google Scholar 

  • Crile, G., and Quiring, D. P., 1940, A record of the body weight and certain organ weights of 3690 animals, Ohio J. sci. 40: 219–259.

    Google Scholar 

  • Dekker, R. W. R. J., 1989, Predation and the western limits of megapode distribution (Mega-podiidae, Aves), J. Biogeogr. 16: 317–321.

    Article  Google Scholar 

  • Dekker, R. W. R. J., 1990, Evolution of Megapode Incubation Strategies, PhD. thesis, Aca-demisch Proefschrift ter verkrijging va de graaad von doctor aan de Universiteit van Amsterdam.

    Google Scholar 

  • Dekker, R. W. R. J., and Brom, T. G., 1990a, Maleo eggs and the amount of yolk in relation to different incubation strategies in megapodes, Austral. J. Zool. 38: 19–24.

    Article  Google Scholar 

  • Dekker, R. W. R. J., and Brom, T. G., 1990b, Megapode phylogeny and the interpretation of incubation strategies, Abstract, Int. Orn. Congr., Christchurch, New Zealand.

    Google Scholar 

  • Dunn, E. H., 1975, The timing of endothermy in the development of altricial birds, Condor 77: 288–293.

    Article  Google Scholar 

  • Edson, J. M., 1930, Recession of weight in nestling birds, Condor 32: 137–141.

    Article  Google Scholar 

  • Elzanowski, A., 1981, Results of the Polish-Mongolian palaeontological expeditions-Part IX: Embryonic bird skeletons from the late cretaceous of Mongolia, Palaeontologica Polonica 42: 147–179.

    Google Scholar 

  • Elzanowski, A., 1985, The evolution of parental care in birds with reference to fossil embryos, Acta XVIII Congr. Int. Ornith., Moscow 16–25, Aug., 1982, Vol. 1, pp. 178–183.

    Google Scholar 

  • Erdmann, K., 1939, Zur Entwicklungsgeschichte der Knochen im Schädel des Huhnes bis zum Zeitpunkt des Auschlüpfens aus dem Ei, Z. Morpho J. Ökol. Tiere 36: 315–400.

    Article  Google Scholar 

  • Fjeldsä, J., 1977, Guide to the Young of European Precocial Birds, Skarv Nature Publications, Tisvildeleje.

    Google Scholar 

  • Frith, H. J., 1956, Breeding habits in the family megapodiidae, Ibis 98: 620–640.

    Article  Google Scholar 

  • Frith, H. J., 1962, The Mallee Fowl. The Bird that Builds an Incubator, Angus and Robertson Ltd., Sidney.

    Google Scholar 

  • Fritz, W., 1949, Vergleichende Untersuchungen über den Anteil von Striatumteilen am Hemisphärenvolumen des Vogelgehirns, Rev. Suisse Zool. 56: 461–491.

    Google Scholar 

  • Gerber, A., 1939, Die embryonale und postembryonale Pterylose der Alectoromorphae, Rev. Suisse Zoo J. 46: 161–321.

    Google Scholar 

  • Golliez, R., 1966, Beitrag zur Pterylose von Melopsittacus undulatus Shaw mit besonderer Berücksichtigung der Filoplumae, Verh. Naturforsch. Ges. Basel 77: 315–364.

    Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Belknap Press, Cambridge, MA.

    Google Scholar 

  • Grosser, O., and Tandler, J., 1909, Normentafeln zur Entwicklungsgeschichte des Kiebitzes, (Vdnellus cristatus Meyer), Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Haefelfinger, H. -R., 1958, Beiträge zur vergleichenden Ontogenese des Vorderhirnes bei Vögeln, Heibig & Lichtenhahn, Basel.

    Google Scholar 

  • Hamburger, V., and Hamilton, H. L., 1951, A series of normal stages in the development of the chick embryo, J. Morph. 88: 49–98.

    Article  Google Scholar 

  • Heinroth, O., 1922, Die Beziehungen zwischen Vogelgewicht, Eigewicht, Gelegegewicht und Brutdauer, J. Orn. 70: 172–285.

    Google Scholar 

  • Heinroth, O., and Heinroth, M., 1924–1932, Die Vögel Mitteleuropas, Vol. 1–4, Hugo Ber-müller Verlag, Berlin.

    Google Scholar 

  • Hendrickx, A. G., and Hanzlik, R., 1965, Developmental stages of the Bob-white Quail embryo ( Colinus virginianus ), Biol Bull. 129: 523–531.

    Google Scholar 

  • Horner, J. R., and Weishampel, D. B., 1988, A comparative embryological study of two ornithischian dinosaurs, Nature 332: 256–257.

    Article  Google Scholar 

  • Hoyt, D. F., 1987, A new model of avian embryonic metabolism, J. Exp. Zool. Suppl. 1: 127–138.

    Google Scholar 

  • Janoschek, A., 1957, Das reaktionskinetische Grundgesetz und scine Beziehungen zum Wachstums-und Ertragsgesetz, Stat. Vjschr. 10: 25–37.

    Google Scholar 

  • Kaminski, P., and Konarzewski, M., 1984, Changes of body weight, chemical composition, and energetic value in the nestlings of the Jackdaw, Corvus monedula L., during their development in the nest, Ekol. Pol. 32: 125–139.

    Google Scholar 

  • Keibel, F., and Abraham, K., 1900, Normentafel zur Entwicklungsgeschichte des Huhnes (Gallus domestic us), Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Kember, N. F., and Kirkwood, J. K., 1987, Cell kinetics and longitudinal bone growth in birds, Cell Tissue Kinet. 20: 625–629.

    PubMed  CAS  Google Scholar 

  • Kendeigh, C. S., 1952, Parental care and its evolution in birds, III. Biol. Monogr. 22: 1–358.

    Google Scholar 

  • Khayutin, S. N., 1985, Sensory factors in the behavioral ontogeny of altricial birds, Adv. Study Behav. 15: 105–152.

    Article  Google Scholar 

  • Kirkwood, J. K., Spratt, D. M. J., and Duignan, P. J., 1989a, Patterns of cell proliferation and growth rates in limb bones of the domestic fowl ( Gallus domesticus ), Res. Vet. sci. 47: 139–147.

    Google Scholar 

  • Kirkwood, J. K., Duignan, P. J., Kember, N. F., Bennett, P. M., and Price, D. J., 1989b, The growth rate of the tarsometatarsus bone in birds, J. Zool., London 217: 403–416.

    Article  Google Scholar 

  • Klepacek, I., 1992, Comparison of chick and quail embryogenesis, I: Time and duration of individual developmental stages, Fol. MorphoJ., Prague (in press).

    Google Scholar 

  • Kocher, C., 1948, Das Wachstum des Gehirnes beim Alpensegler (Micropus m. meJba L. ), Rev. Suisse Zool. 55: 57–116.

    Google Scholar 

  • Koecke, H. U., 1958, Normalstadien der Embryonalentwicklung bei der Hausente ( Anas boschas ), Embryologia 4: 55–78.

    Google Scholar 

  • Konarzewski, M., 1988, A model of growth in altricial birds based on changes in water content of tissues, Orn. Scandin. 19: 290–296.

    Article  Google Scholar 

  • Konarzewski, M., Kozlowski, J., and Ziölko, M., 1989, Optimal allocation of energy to growth of the alimentary tract in birds, Funct. Ecol. 3: 589–596.

    Google Scholar 

  • Konarzewski, M., Kozlowski, J., Ziölko, M., and Lewonczuk, B., 1990, On the optimal growth of alimentary tract in avian postembryonic development, J. Zool., London 222: 89–101.

    Google Scholar 

  • Kramer, G., 1953, Über Wachstum und Entwicklung der Vögel, J. Orn. 94: 194–199.

    Article  Google Scholar 

  • Lack, D., 1968, Ecological Adaptations for Breeding in Birds, Chapman and Hall, London.

    Google Scholar 

  • Laird, A. K., 1965, Dynamics of relative growth, Growth 29: 249–263.

    PubMed  CAS  Google Scholar 

  • Lawton, M. F., and Lawton, R. O., 1985, Heterochrony, deferred breeding, and avian sociality, in: Current Ornithology, Vol. 3 ( R. F. Johnston, ed.), Plenum Press, New York, pp. 187–222.

    Google Scholar 

  • Leisler, B., and Winkler, H., 1985, Ecomorphology, in: Current Ornithology, Vol. 2 ( R. F. Johnston, ed.), Plenum Press, New York, pp. 15–185.

    Google Scholar 

  • Lilja, C., 1981, Postnatal growth and organ development in the goose ( Anser anser ), Growth 45: 329–341.

    Google Scholar 

  • Lilja, C., 1982a, Postnatal growth and organ development in the quail ( Coturnix coturnix japonica ), Growth 46: 88–99.

    CAS  Google Scholar 

  • Lilja, C., 1982b, Postnatal growth and organ development in the Fieldfare and the Jackdaw ( Turdus pilaris and Corvus moneduJa ), Growth 46: 367–387.

    Google Scholar 

  • Lilja, C., 1983, A comparative study of postnatal growth and organ development in some species of birds, Growth, 47: 317–339.

    PubMed  CAS  Google Scholar 

  • Lilja, C., Sperber, I., and Marks, H. L., 1985, Postnatal growth and organ development in Japanese quail selected for high growth rate, Growth 49: 51–62.

    PubMed  CAS  Google Scholar 

  • Maillard, J., 1948, Recherches embyrologiques sur Catharacta skua Brünn (pterylose et ossification), Rev. Suisse Zool. 55: 1–113.

    Google Scholar 

  • Martin, T. E., 1987, Food as a limit on breeding birds: a life-history perspective, Ann. Rev. Ecol. Syst. 18: 453–487.

    Google Scholar 

  • Mayr, E., and Amadon, D., 1951, A classification of recent birds, Am. Mus. Novitates 1494: 1–42.

    Google Scholar 

  • McGowan, C., 1985, Tarsal development in birds: evidence for homology with the theropod condition, J. Zool., London (A) 206: 53–67.

    Google Scholar 

  • Menon, G. K., Baptista, L. F., Elias, P. M., and Bouvier, M., 1988, Fine structural basis of the cutaneous water barrier in nestling Zebra Finch Poephila guttata, Ibis 130: 503–511.

    Article  Google Scholar 

  • Morton, E. S., 1973, On the evolutionary advantages and disadvantages of fruit eating in tropical birds, Am. Nat. 107: 8–22.

    Google Scholar 

  • Müller, F., 1968, Methodische Gesichtspunkte zum Studium der Evolution der Säuger-Ontogenesen, Rev. Suisse Zool. 75: 630–643.

    PubMed  Google Scholar 

  • Müller, F., 1972a, Zur stammesgeschichtlichen Veränderung der Eutheria-Ontogenesen, Teil I: Zur Evolution der Geburtsgestalt, Rev. Suisse Zool. 79: 1–97.

    Google Scholar 

  • Müller, F., 1972b, Zur stammesgeschichtlichen Veränderung der Eutheria-Ontogenesen, Teil III: Zeitliche Aspekte in der Evolution der Ontogenesetypen, Rev. Suisse Zool. 79: 567–612.

    Google Scholar 

  • Mun, A. M., and Kosin, I. L., 1969, Developmental stages of the broad breasted Bronze I\irkey embryo, Biol. Bull. 119: 90–97.

    Google Scholar 

  • Neff, M., 1973, Untersuchungen über das embryonale und postembryonale Organ Wachstum bei Vogelarten mit verschiedenem Ontogenesemodus, Rev. Suisse Zool. 79: 1471–1597.

    Google Scholar 

  • Nice, M. M., 1962, Development of behavior in precocial birds, Trans. Linn. Soc., N. Y. 8: 1–211.

    Google Scholar 

  • O’Connor, R., 1977, Differential growth and body composition in altricial passerines, Ibis 119: 147–166.

    Article  Google Scholar 

  • O’Connor, R., 1978, Structure in avian growth patterns: a multivariate study of passerine development, J. ZooL, London 185: 147–172.

    Google Scholar 

  • O’Connor, R., 1984, The Growth and Development of Birds, John Wiley & Sons, Chichester.

    Google Scholar 

  • Padgett, C. S., and Ivey, W. D„ 1960, The normal development of the Coturnix quail, Anat. Ree. 137: 1–11.

    Google Scholar 

  • Perlich, E., 1991, Der zeitliche und quantitative Ablauf der Ontogenese des Darmtraktes von Europäischer Wachtel und Wellensittich, unpubl. Diplomarbeit im Fachbereich Biologie der Justus Liebig-Universität, Giessen 1991.

    Google Scholar 

  • Peters, H. M., and Müller, R., 1951, Die junge Silbermöve (Larus argentatus) als “Platzhocker,” Die Vogelwarte 16: 62–69.

    Google Scholar 

  • Peters, R. H., 1983, The Ecological Implications of Body Size, Cambridge University Press, Cambridge.

    Google Scholar 

  • Portmann, A., 1935, Die Ontogenese der Vögel als Evolutionsproblem, Acta Biotheo r., A 1: 59–90.

    Article  Google Scholar 

  • Portmann, A., 1936, Die Ontogenese der Vögel als Evolutionsproblem, Verh. Schweiz. Naturforsch. Ges. 1936: 224–214.

    Google Scholar 

  • Portmann, A., 1937, Beobachtungen über die postembryonale Entwicklung des Rosenpelikans, Rev. Suisse Zool. 44: 363–370.

    Google Scholar 

  • Portmann, A., 1938, Beiträge zur Kenntnis der Postembryonalentwicklung der Vögel, Revue Suisse Zool. 45: 273–348.

    Google Scholar 

  • Portmann, A., 1939, Nestflüchter und Nesthocker als Entwicklungszustände von verschiedener Wertigkeit bei Vögeln und Säugern, Rev. Suisse Zoo J. 46: 385–390.

    Google Scholar 

  • Portmann, A., 1942, Die Ontogenese und das Problem der morphologischen Wertigkeit, GeneraJvers. Schweiz. Naturforsch. Ges., Freiburg 28. -29. März 1942.

    Google Scholar 

  • Portmann, A., 1947a, Études sur la cérébralisation chez les oiseaux 1, Alauda 14: 2–20.

    Google Scholar 

  • Portmann, A., 1947b, Études sur la cérébralisation chez les oiseaux 2, Alauda 15: 1–15.

    Google Scholar 

  • Portmann, A., 1950, Le développement postembryonaire, in: Traité de Zoologie, Masson and Company, Paris, Vol. 15 (P. -P. Grassé, ed.), pp. 521–535.

    Google Scholar 

  • Portmann, A., 1954, Die postembryonale Entwicklung der Vögel als Evolutionsproblem, Acta XI Congr. Intern. Orn., Basel, pp. 138–151.

    Google Scholar 

  • Portmann, A., 1959, Die Entwicklungsperiode vom 11. bis. 14. Bruttag und die Verkürzung der Brutzeit bei Vögeln, Vierteljahresschrift Naturforsch. Ges. Zürich (Festschrift Steiner) 104: 200–207.

    Google Scholar 

  • Portmann, A., 1962, Cérébralisation und Ontogenese, Medizin. Grundlagenforsch. 4: 1–62.

    Google Scholar 

  • Portmann, A., 1963, Die Vogelfeder als morphologisches Problem, Verh. Naturforsch. Ges. Basel 74: 106–132.

    Google Scholar 

  • Portmann, A., and Stingelin, W., 1961, The central nervous system, in: Biology and Comparative Physiology of Birds, Vol. II ( A. J. Marshall, ed.), Academic Press, New York, pp. 1–36.

    Google Scholar 

  • Portmann, A., and Sutter, E., 1940, Ober die postembryonale Entwicklung des Gehirnes bei Vögeln, Rev. Suisse Zool. 47: 195–202.

    Google Scholar 

  • Portmann, A., and Vischer, L., 1942, Ober das Verhältnis von Sinnesorganen, Stoffwechselorganen und Bewegungsapparat in der Körpermasse der Vögel, Rev. Suisse Zool. 49: 277–282.

    Google Scholar 

  • Prinzinger, R., 1990a, Die Lebensstadien und ihre physiologische Zeit bei Vögeln-eine allometrische Betrachtung, f. Orn. 131: 47–61.

    Article  Google Scholar 

  • Prinzinger, R., 1990b, Lebensalter und physiologische Zeit, Forschung Frankfurt 3 /1990: 3–11.

    Google Scholar 

  • Rahn, H., Paganelli, C. V., and Ar, A., 1975, Relation of avian egg weight to body weight, Auk 92: 750–765.

    Google Scholar 

  • Rehkámper, G., Frahm, H. D. and Zilles, K, 1991a, Quantitative development of brain and brain structures in birds (Galliformes and Passeriformes) compared to that in mammals ( Insec-tivores and Primates ), Brain Behav. Evol. 37: 125–143.

    Google Scholar 

  • Rehkámper, G., Schuchmann, K. -L., Schleicher, A., and Zilles, K., 1991b, Encephalization in hummingbirds (frochilidae), Brain Behav. Evol. 37: 85–91.

    Article  Google Scholar 

  • Reiss, J. O., 1989, The meaning of developmental time: a metric for comparative embryology, Am. Nat. 134: 170–189.

    Google Scholar 

  • Rempel, A. G., and Eastlick, H. J., 1957, Developmental stages of normal white silkie embryos, Northw. Sci. 31: 1–31.

    Google Scholar 

  • Renoux, J., 1971, L’embryon de Poulet, Traucaux practiques de biologie anímale, Doin Editeurs, Paris.

    Google Scholar 

  • Richards, F. J., 1959, A flexible growth function for empirical use, J. Exp. Bot. 10: 290–300.

    Article  Google Scholar 

  • Ricklefs, R. E., 1967, A graphical method of fitting equations to growth curves, Ecology 48: 978–980.

    Article  Google Scholar 

  • Ricklefs, R. E., 1968a, Weight recession in birds, Auk 85: 30–35.

    Google Scholar 

  • Ricklefs, R. E., 1968b, Patterns of growth in birds, Ibis 110: 419–451.

    Article  Google Scholar 

  • Ricklefs, R. E., 1969a, An analysis of nestling mortality in birds, Smiths. Contrib. Zool. 9: 1–48.

    Google Scholar 

  • Ricklefs, R. E„ 1969b, Preliminary models for growth rates in altricial birds, Ecology 50: 1031–1039.

    Google Scholar 

  • Ricklefs, R. E., 1976, Growth rates of birds in the humid new world tropics, Ibis 118: 179–207.

    Article  Google Scholar 

  • Ricklefs, R. E., 1977, Composition of eggs in several bird species, Auk 94: 350–356.

    Google Scholar 

  • Ricklefs, R. E., 1979a, Adaptation, constraint, and compromise in avian postnatal development, Biol. Rev. 54: 269–290.

    Article  CAS  Google Scholar 

  • Ricklefs, R. E., 1979b, Patterns of growth in birds. V: a comparative study of development in the Starling, Common Tern and Japanese Quail, Auk 96: 10–30.

    Google Scholar 

  • Ricklefs, R. E., 1982, Some considerations on sibling competition and avian growth rates, Auk 99: 141–147.

    Google Scholar 

  • Ricklefs, R. E., 1983, Avian postnatal development, in; Avian Biol. Vol. VII (D. S. Famer, J. R. King, and K. C. Parkes), Academic Press, New York, pp. 1–83.

    Google Scholar 

  • Ricklefs, R. E., 1984, The optimization of growth rate in altricial birds, Ecology 65: 1602–1616.

    Article  Google Scholar 

  • Ricklefs, R. E., 1987a, Comparative analysis of avian embryonic growth, J. Exp. Zool. Supp J. 1: 309–323.

    Google Scholar 

  • Ricklefs, R. E., 1987b, Characterizing the development of homeothermy by rate of body cooling, Funct. Ecol. 1: 151–157.

    Article  Google Scholar 

  • Ricklefs, R. E., 1991, Structures and transformations of life histories, Funct. Ecol. 5: 174–183.

    Google Scholar 

  • Ricklefs, R. E., and Webb, T., 1985, Water content, thermogenesis, and growth rate of skeletal muscle in the European starling, Auk 102: 369–376.

    Google Scholar 

  • Ricklefs, R. E., and Weremiuk, S., 1977, Dynamics of muscle growth in the starling and Japanese quail: a preliminary study, Com p. Biochem. Physiol. 56A: 419–423.

    Google Scholar 

  • Ricklefs, R. E., Bruning, D. F., and Archibald, G. W., 1986, Growth rates of cranes reared in captivity, Auk 103: 125–134.

    Google Scholar 

  • Ricklefs, R. E., Place, A. R., and Anderson, D. J., 1987, An experimental investigation of the influence of diet quality on growth in Leach’s Storm Petrel, Am. Nat 130: 300–305.

    Google Scholar 

  • Ricklefs, R. E., White, S., and Cullen, J., 1980a, Energetics of postnatal growth in Leach’s storm-petrel, Auk 97: 566–575.

    Google Scholar 

  • Ricklefs, R. E., White, S., and Cullen, J., 1980b, Postnatal development of Leach’s storm-petrel, Auk 97: 768–781.

    Google Scholar 

  • Ripley, S. D., 1958, Distribution and niche differentiation in species of megapodes in the Moluccas and Western Papuan area, Proc. XII Intl. Orni. Congr., Helsinki 5. -12. 6. 1958, Vol. 2, 631–640.

    Google Scholar 

  • Rogulska, T., 1962, Differences in the process of ossification during the embryonic development of the chick (Gallus domesticus L.), Rook (Corvus frugilegus L.) and Black-headed Gull ( Larus ridibundus L. ), Zool. Poloniae 12: 223–238.

    Google Scholar 

  • Sager, G., Salomon, F. -V., AI Hallak, M., and Pingel, H., 1986, Wachstumspezifische Approximationen von 11 Körperdimensionen bei Geflügel 1. Mitteilung: Mathematische Grundlagen, Arch. Geflügelt 50: 173–178.

    Google Scholar 

  • Salomon, F. -V., and Anger, T., 1989, Wachstumsstudie bei Puten anhand postnataler Messungen, Verh. Anat. Ges. 82 (Anat. Anz. Suppl. 164 ): 281–284.

    Google Scholar 

  • Salomon, F. -V., Sager, G., AI Hallak, M., and Pingel, H., 1986, Wachstumspezifische Approximationen von 11 Körperdimensionen bei Geflügel 2. Mitteilung: Analyse der Wachstumsreihen bei Hühnern, Arch. Geflügelk. 50: 245–252.

    Google Scholar 

  • Salomon, F. -V., Säger, G., AI Hallak, M., and Pingel, H., 1987a, Wachstumspezifische Approximationen von 11 Körperdimensionen bei Geflügel 3. Mitteilung: Analyse der Wachstumsreihen bei Enten, Arch. Geflügelk. 51: 136–141.

    Google Scholar 

  • Salomon, F. -V., Sager, G., AI Hallak, M., and Pingel, H., 1987b, Wachstumspezifische Approximationen von 11 Körperdimensionen bei Geflügel 4. Mitteilung: Analyse der Wachstumsreihen bei Gänsen, Arch. Geflügelk. 51: 205–209.

    Google Scholar 

  • Salomon, F. -V., Sager, G., AI Hallak, M., and Pingel, H., 1988, Wachstumspezifische Approximationen von 11 Körperdimensionen bei Geflügel 5. Mitteilung: Vergleichende Betrachtung des Wachstums von Hühnern, Enten und Gänsen, Arch. Geflügelk. 52: 176–180.

    Google Scholar 

  • Salomon, F. -V., Anger, T., Krug, H., Gille, U., and Pingel, H., 1990, Zum Wachstum von Skelett, Körpermasse und Muskelfaserdurchmesser der Pute (MeJeagris gallipavo) vom Schlupf bis zum 224. Lebenstag, Anat. Histol. Embryol. 19, in press.

    Google Scholar 

  • Scheibe, K., 1991, Skeletentwicklung bei drei Greifvogelarten (Falco tinnunculus, Falco sparverius und Microhierax caerulescens), unpubl. Zulassungsarbeit der Fakultät für Biologie, Eberhard Karls-Universität Tübingen, Tübingen.

    Google Scholar 

  • Schiess, L. R., 1963, Die postembryonale Ausbildung der Körperproportionen bei Vögeln ( Unter besonderer Berücksichtigung der Limicolen ), Rev. Suisse Zool. 70: 689–741.

    Google Scholar 

  • Schinz, H. R., and Zangerl, R., 1937, Beiträge zur Osteogenese beim Haushuhn, bei der Haustaube und beim Steißfuß. -Eine vergleichend osteologische Studie, Denkschr. Schweizer. Naturforsch. Ges. 72: 116–179.

    Google Scholar 

  • Schmidt, K. M., 1990, Die Embryogenese des Stoffwechsels bei Kohl-und Blaumeise (Parus major L. und Parus caeruleus L.), unpubl. Diplomarbeit im Fachbereich Biologie der Johann Wolfgang Goethe-Universität, Frankfurt am Main.

    Google Scholar 

  • Schmidt-Nielsen, K., 1984, Scaling: Why is Animal Size so Important?, Cambridge University Press, Cambridge.

    Google Scholar 

  • Schumacher, G. -H., and Wolff, E., 1966a, Zur vergleichenden Osteogenese von Gallus domesticus L., Larus ridibundus L., und Larus canus L.; I: Zeitliches Erscheinen der Ossifikationen bei Gallus domesticus L., Morphol. Jb. 110: 359–373.

    Google Scholar 

  • Schumacher, G. -H., and Wolff, E., 1966b, Zur vergleichenden Osteogenese von Gallus domesticus L., Larus ridibundus L. und Larus canus L.; II: Zeitliches Erscheinen der Ossifikationen bei Larus ridibundus und Larus canus, Morphol. Jb. 110: 620–635.

    Google Scholar 

  • Seymour, R. S., and Ackerman, R. A., 1980, Adaptations to underground nesting in birds and reptiles, Am. Zool. 20: 437–447.

    Google Scholar 

  • Shea, R. E., and Ricklefs, R. E., 1985, An experimental test of the idea that food supply limits growth rate in a tropical pelagic seabird, Am. Nat. 126: 116–122.

    Article  Google Scholar 

  • Sibley, C. G., and Ahlquist, J. E. 1990, Phylogeny and Classification of Birds. A Study in Molecular Evolution, Yale University Press, New Haven.

    Google Scholar 

  • Sibley, C. G., Ahlquist, J. E., and Monroe, B. L., 1988, A classification of the living birds of the world based on DNA-DNA hybridization studies, Auk 105: 409–423.

    Google Scholar 

  • Sibly, R., Calow, P., and Nichols, N., 1985, Are patterns of growth adaptive?, J. Theor. Biol. 112: 553–574.

    Google Scholar 

  • Skutch, A., 1976, Parent Birds and their Young, The Corrie Herring Hooks series, No. 2, University of Texas Press, Austin.

    Google Scholar 

  • Snow, B. K., 1970, A field study of the bearded bell bird in Trinidad, Ibis 112: 299–329.

    Article  Google Scholar 

  • Stamps, J,. Clark, A., Arrowood, P., and Kus, B., 1985, Parent-offspring conflict in budgerigars, Behavior 94: 1–40.

    Article  Google Scholar 

  • Starck, J. M., 1989, Zeitmuster der Ontogenesen bei nestflüchtenden und nesthockenden Vögeln, Cour. Forsch. -Inst. Senckenberg 114: 1–319.

    Google Scholar 

  • Starck, J. M., 1991, Biogeography and life history of Turnix suscitator (Gmelin 1789). Small adult body size as a consequence of selection for rapid growth, Z. Zoo I. Syst. Evolut. -Forsch. 29: 213–237.

    Google Scholar 

  • Strahl, S. D., 1988, The social organisation and behavior of the Hoatzin Opisthocomus hoazin in central Venezuela, Ibis 130: 483–502.

    Article  Google Scholar 

  • Stingelin, W., 1955, Studien am Vorderhirn von Waldkauz (Strix aluco L.) und Hirmfalk (Falcotinnunculus L.), Dissertation Phil. Faculty, Basel.

    Google Scholar 

  • Stingelin, W., 1958a, Vergleichend morphologische Untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage-Heibig & Lichtenhahn, Basel.

    Google Scholar 

  • Stingelin, W., 1958b, Differenzierung und Gestalt des Vorderhirns der Vögel, Rev. Suisse, Zool. 65: 427–434.

    Google Scholar 

  • Stingelin, W., 1962, Ergebnisse der Vogelgehirnforschung, Verh. Naturforsch. Ges. Basel. 73: 300–317.

    Google Scholar 

  • Stingelin, W., 1965, Qualitativ und quantitative Untersuchungen an Kerngebieten der Medulla oblongata bei Vögeln, Bibl. Anatomica 6: 1–116.

    Google Scholar 

  • Stingelin, W., and Senn, D. G., 1969, Morphological studies on the brain of sauropsida, Ann. N. Y. Acad. sci. 167: 156–163.

    Article  Google Scholar 

  • Stresemann, E., 1927–1934, Sauropsida: Aves, in: Handbuch der Zoologie, Vol. 7/2 (W. Kükenthal and T. Krumbach), Walter de Gruyter & Co., Berlin.

    Google Scholar 

  • Sutter, E., 1943, Über das embryonale und postembryonale Hirnwachstum bei Hühnern und Sperlingsvöglen, Denkschr. Schweiz. Naturforsch. Ges. 75: 1–110.

    Google Scholar 

  • Sutter, E., 1946, Über das Wachstum des Kleinhirnes bei Vögeln, Rev. Suisse Zool. 53: 447–454.

    Google Scholar 

  • Verbeek, N. A. M., 1988, Development of a stable body temperature and growth rates in nestlings of three ground nesting passerines in alpine tundra, J. Orn. 129: 449–456.

    Article  Google Scholar 

  • Vleck, C. M., and Vleck, D., 1987, Metabolism and energetics of avian embryos, J. Exp. Zool. Suppl. 1: 111–125.

    PubMed  CAS  Google Scholar 

  • Vleck, C. M., Hoyt, D. F., and Vleck, D., 1979, Metabolism of avian embryos, Physiol. Zool. 52: 363–3 77.

    Google Scholar 

  • Vleck, C. M., Vleck, D., and Hoyt, D. F., 1980, Patterns of metabolism and growth in birds, Am. Zool. 20: 405–416.

    Google Scholar 

  • Weber, R., 1950, Transitorische Verschlüsse von Fernsinnesorganen in der Embryonalentwicklung von Amnioten, Rev. Suisse Zool. 57: 19–108.

    Google Scholar 

  • Werschkul, D. F., and Jackson, J. A., 1979, Sibling competition and avian growth rates, Ibis 121: 97–102.

    Article  Google Scholar 

  • Williams, A. J., Siegfried, W. R., and Cooper, J., 1982, Egg composition and hatchling precocity in seabirds, Ibis 124: 456–470.

    Article  Google Scholar 

  • Yamasaki, M., and Tonosaki, A., 1988, Developmental stages of the Society Finch, Lonchura striata var. domestica, Dev. Growth Differ. 30: 515–542.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Plenum Press, New York

About this chapter

Cite this chapter

Starck, J.M. (1993). Evolution of Avian Ontogenies. In: Power, D.M. (eds) Current Ornithology. Current Ornithology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9582-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9582-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9584-7

  • Online ISBN: 978-1-4615-9582-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics