Skip to main content

Evolutionary Rates under Environmental Stress

  • Chapter
Book cover Evolutionary Biology

Abstract

A debate in evolution has arisen due to the contention by some that macroevolutionary patterns cannot be totally explained from an understanding of microevolutionary patterns. A theory of punctuated change has been put forward to explain the observation that much evolutionary change as assessed morphologically occurs in rapid bursts, with such punctuational events separated by long periods during which observable morphological change is small to nonexistent (Eldredge and Gould, 1972; Stanley, 1979). A decoupling of macroevolutionary and microevolutionary events is not, however, supportable on genetic grounds (Charlesworth et al., 1982; Mayr, 1982; Turner, 1982; Parsons, 1983a). A leading genetic question therefore concerns the interpretation of the rapid bursts. The underlying emphasis of this chapter is that environmental stresses are of major importance for any consideration of evolutionary rates in particular periods of rapid change.

It should always be remembered, that in most cases the checks are recurrent yearly in a small, regular degree, and in an extreme degree during unusually cold, hot, dry, or wet years, according to the contribution of the being in question. (Darwin, in Darwin and Wallace, 1859)

What is needed, at the present stage of our understanding of evolution, is not so much a greater elaboration of formal theories of quantitative and population genetics, or even more analyses of wild populations in terms of genetics divorced from their ecology. What we need is more knowledge about the ways in which populations, in fact, meet evolutionary challenges. (Waddington, 1965)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alahiotis, S. N., 1982, Adaptation of Drosophila enzymes to temperature. IV. Natural selection at the alcohol-dehydrogenase locus, Genetica 59: 81–87.

    Article  CAS  Google Scholar 

  • Anderson, W. W., 1966, Genetic divergence in M. Vetukhiv’s experimental populations of Drosophila pseudoobscura. 3. Divergence in body size, Genet. Res. 7: 255–266.

    Article  Google Scholar 

  • Andrewartha, H. G., and Birch, L. C., 1954, The Distribution and Abundance of Animals, University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Atkinson, B. G., and Walden, D. B., 1985, Change in Eukaryotic Gene Expression in Response to Environmental Stress, Academic Press, London.

    Google Scholar 

  • Bateman, K. G., 1959, Genetic assimilation of four venation phenocopies, J. Genet. 56: 443474.

    Google Scholar 

  • Belyaev, D. K., and Borodin, P. M., 1982, The influence of stress on variation and its role in evolution, Biol. Zentralbi. 100: 705–714.

    Google Scholar 

  • Birch, L. C., 1979, The effects of species of animals which share common resources on one another’s distribution and abundance, Fortschr. Zool. 25: 197–221.

    PubMed  CAS  Google Scholar 

  • Boag, P. T., 1983, The heritability of external morphology in Darwin’s ground finches (Geospiza) on Isla Daphne Major, Galapagos, Evolution 37: 877–894.

    Google Scholar 

  • Boag, P. T., and Grant, P. R., 1981, Intense natural selection in a population of Darwin’s finches (Geospinizinae) in the Galapagos, Science 214: 82–84.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, J., 1985, Mechanism of transcriptional control during heat shock, in: Changes in Eukaryotic Gene Expression in Response to Environmental Stress ( B. G. Atkinson and D. B. Walden, eds.), pp. 31–51, Academic Press, London.

    Google Scholar 

  • Bregliano, J. C., and Kidwell, M. G., 1983, Hybrid dysgenesis determinants, in: Mobile Genetic Elements ( A. Shapiro, ed.), pp. 363–410, Academic Press, New York.

    Google Scholar 

  • Brock, T. D., 1985, Life at high temperatures, Science 220: 132–138.

    Article  Google Scholar 

  • Bumpus, H. C., 1899, The variations and mutations of the introduced sparrow, Passer domesticus, Biol. Lectures Mar. Biol. Lab. Wood’s Hole 1899: 1–15.

    Google Scholar 

  • Carson, H. L., 1959, Genetic conditions which promote or retard the formation of species, Cold Spring Harbor Symp. Quant. Biol. 24: 87–105.

    Article  PubMed  CAS  Google Scholar 

  • Carson, H. L., 1978, Speciation and sexual selection in Hawaiian Drosophila, in: Ecological Genetics: The Interface ( P. F. Brussard, ed.), pp. 93–107, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Chao, L., and McBroom, S. M., 1985, Evolution of transposable elements: An ISIO insertion increases fitness in Escherichia coli, Mol. Biol. Evol. 2: 359–369.

    CAS  Google Scholar 

  • Charlesworth, B., Lande, R., and Slatkin, B., 1982, A neo-Darwinian commentary on macroevolution, Evolution 36: 474–498.

    Article  Google Scholar 

  • Clare, M. J., and Luckinbill, L. S., 1985, The effects of gene—environment interaction on the expression of longevity, Heredity 55: 19–29.

    Article  PubMed  Google Scholar 

  • Clayton, G. A., and Robertson, A., 1964, The effects of X-rays on quantitative characters, Genet. Res. 5: 410–422.

    Article  Google Scholar 

  • Clegg, M. T., and Allard, R. W., 1972, Patterns of genetic differentiation in the slender wild oat species Avena barbata, Proc. Natl. Acad. Sci. USA 69: 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J. A., and Lande, R., 1985, The genetic basis of species differences in plants, Am. Nat. 126: 141–145.

    Article  Google Scholar 

  • Crow, J. F., 1957, Genetics of insect resistance to chemicals, Annu. Rev. Entomol. 2: 227246.

    Google Scholar 

  • Darwin, C., 1859, On the Origin of Species by Means of Natural Selection, Murray, London. Darwin, C., and Wallace, A., 1859, On the tendency of species to form varieties; and on the perpetuation of varieties and species by means of selection, J. Linn. Soc. Lond. (Zool.) 3: 45–62.

    Google Scholar 

  • Datta, A. R., Randolph, B. W., and Rosner, J. L., 1983, Detection of chemicals that stimulate Tn9 transposition in Escherichia coli K12, Mol. Gen. Genet. 189: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Derr, J. A., 1980, The nature of variation in life history characters of Dysdercus bimaculatus (Heteroptera: Pyrrhocoridae), a colonizing species, Evolution 34: 548–557.

    Article  Google Scholar 

  • Dingley, F., and Maynard Smith, J., 1968, Temperature acclimatization in the absence of protein synthesis in Drosophila subobscura, J. Insect. Physiol. 14: 1185–1194.

    Article  PubMed  CAS  Google Scholar 

  • Echols, H., 1982, Mutation rate: Some biological and biochemical considerations, Biochimie 64: 571–575.

    Article  PubMed  CAS  Google Scholar 

  • Edlin, G., Lee, S. W., and Green, M. M., 1986, Tn10 transposition does not respond to environmental stress, Mutat. Res. Lett. (in press).

    Google Scholar 

  • Ehrlich, P. R., Murphy, D. D., Singer, M. C., Sherwood, C. B., White, R. R., and Brown, I. L., 1980, Extinction, reduction, stability and increase: The responses of the checkerspot butterfly (Euphydryas) populations to the Californian drought, Oecologia 46: 101–105.

    Article  Google Scholar 

  • Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Palaebiology ( T. J. M. Schopf, ed.), pp. 82–115, Freeman, Cooper, and Co., San Francisco.

    Google Scholar 

  • Flexon, P. B., and Rodell, C. F., 1982, Genetic recombination and directional selection for DDT resistance in Drosophila melanogaster, Nature 298: 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Forman, R. T. T., 1964, Growth under controlled conditions to explain the hierarchical distributions of a moss, Tetraphis pellucida, Ecol. Monogr. 34: 1–25.

    Article  Google Scholar 

  • Garton, D. W., Koehn, R. K., and Scott, T. M., 1984, Multiple-locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population, Genetics 108: 445–455.

    PubMed  CAS  Google Scholar 

  • George, D. G., and Harris, G. P., 1985, The effect of climate on long-term changes in the crustacean zooplankton biomass of Lake Windemere, U.K., Nature 316: 536–539.

    Article  Google Scholar 

  • Georghiou, G. P., 1972, The evolution of resistance to pesticides, Annu. Rev. Ecol. Syst. 3: 133–168.

    Article  CAS  Google Scholar 

  • Gerasimova, T. I., Mizrokhi, L. J., and Georgiev, G. P., 1984, Transposition bursts in genetically unstable Drosophila melanogaster, Nature 309: 714–716.

    Article  Google Scholar 

  • Gottlieb, L. D., 1984, Genetics and morphological evolution in plants, Am. Nat. 123: 681709.

    Google Scholar 

  • Green, M. M., 1967, The genetics of a mutable gene at the white locus of Drosophila melanogaster, Genetics 56: 467–482.

    PubMed  CAS  Google Scholar 

  • Green, M. M., 1977, Genetic instability in Drosophila melanogaster: De novo induction of putative insertion mutants, Proc. Natl. Acad. Sci. USA 74: 3490–3493.

    Article  PubMed  CAS  Google Scholar 

  • Green, M. M., 1978, The genetic control of mutation in Drosophila, Stadler Symp. 10: 95104.

    Google Scholar 

  • Gupta, A. P., and Lewontin, R. C., 1982, A study of reaction norms in natural populations of Drosophila pseudoobscura, Evolution 36: 934–948.

    Article  Google Scholar 

  • Hartl, D. L., Dykhuizen, D. E., Miller, R. D., Green, L., and de Framond, J., 1983, Transposable element IS50 improves growth rate of E. coli cells without transposition, Cell 35: 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Hayman, D. L., and Parsons, P. A., 1960, The effect of temperature, age and an inversion on recombination values and interference in the X-chromosome of Drosophila melanogaster, Genetica 32: 74–88.

    Article  Google Scholar 

  • Henderson, S. A., 1970, The time and place of meiotic crossing-over, Annu. Rev. Genet. 4: 295–324.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, A. A., Nielsen, K. M., and Parsons, P. A., 1984, Spatial variation of biochemical and ecological phenotypes in Drosophila: Electrophoretic and quantitative variation, Dev. Genet. 4: 439–450.

    Article  CAS  Google Scholar 

  • Holmes, R. S., Moxon, L. N., and Parsons, P. A., 1980, Genetic variability of alcohol dehydrogenase among Australian Drosophila species: Correlation of ADH biochemical phenotype with ethanol resource utilization, J. Exp. Zool. 214: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, K. J., et al., 1982, Mass mortality and its environmental and evolutionary consequences, Science 216: 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Ives, P. T., 1963, Patterns of spontaneous and radiation induced mutation rates during spermiogenesis in Drosophila melanogaster, Genetics 48: 981–996.

    PubMed  CAS  Google Scholar 

  • Kerkis, J. J., 1975, Some problems of spontaneous and induced mutagenesis in mammals and man, Mutat. Res. 29: 271–277.

    Article  PubMed  CAS  Google Scholar 

  • King, J. C., and Somme, L., 1958, Chromosomal analysis of the genetic factors for resistance to DDT in two resistant lines of Drosophila melanogaster, Genetics 43: 577–593.

    PubMed  CAS  Google Scholar 

  • King, M., 1982, A case for simultaneous multiple chromosome rearrangements, Genetica 59: 53–60.

    Article  Google Scholar 

  • Koehn, R. K., Newell, R. I. E., and Immermann, F., 1980, Maintenance of an aminopeptidase allele frequency cline by natural selection, Proc. Natl. Acad. Sci. USA 77: 53855389.

    Google Scholar 

  • Lande, R., 1981, The minimum number of genes contributing to quantitative variation between and within populations, Genetics 99: 541–553.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1983, The response to selection on major and minor mutations affecting a metrical trait, Heredity 50: 47–65.

    Article  Google Scholar 

  • Lande, R., and Arnold, S. J., 1983, The measurement of selection on correlated characters, Evolution 37: 1210–1226.

    Article  Google Scholar 

  • Langridge, J., 1963, Biochemical aspects of temperature response, Annu. Rev. Plant Physiol. 14: 441–462.

    Article  CAS  Google Scholar 

  • Langridge, J., and Griffing, B., 1959, A study of high temperature lesions in Arabidopsis thaliana, Aust. J. Biol. Sci. 12: 117–135.

    CAS  Google Scholar 

  • Langridge, J., and McWilliam, J. R., 1967, Heat response of higher plants, in: Thermobiology ( A. Rose, ed.), pp. 232–292, Academic Press, New York.

    Google Scholar 

  • Levins, R., 1969, Thermal acclimation and heat resistance in Drosophila species, Am. Nat. 103: 483–99.

    Article  Google Scholar 

  • Lewin, R., 1984, A thermal filter to extinction, Science 223: 383–385.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, H., 1962, Catastrophic selection as a factor in speciation, Evolution 16: 257–271.

    Article  Google Scholar 

  • Lewontin, R. C., and Birch, L. C., 1966, Hybridization as a source of variation for adaptation to new environments, Evolution 30: 315–336.

    Article  Google Scholar 

  • Li, G. C., and Laszlo, A., 1985, Thermotolerance in mammalian cells: A possible role for heat shock proteins, in: Changes in Eukaryotic Gene Expression in Response to Environmental Stress ( B. G. Atkinson and D. B. Walden, eds.), pp. 227–254, Academic Press, London.

    Google Scholar 

  • Lindgren, D., 1972, The temperature influence on the spontaneous mutation rate. I. Literature review, Hereditas 70: 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Lints, F. A., and Hoste, C., 1974, The Lansing effect revisited. I. Life span, Exp. Gerontol. 9: 51–69.

    Article  PubMed  CAS  Google Scholar 

  • Lints, F. A., Stoll, J., Gruwez, G., and Lints, C. V., 1979, An attempt to select for increased longevity in Drosophila melanogaster, Gerontology 25: 192–204.

    Article  PubMed  CAS  Google Scholar 

  • Little, J. W., and Mount, D. W., 1982, The SOS regulatory system of Escherichia coli, Cell 29: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone, F. B., 1971, Malaria and human polymorphisms, Annu. Rev. Genet. 5:33–64. Luckinbill, L. S., and Clare, M. J., 1985, Selection for life span in Drosophila melanogaster, Heredity 55: 9–18.

    Google Scholar 

  • MacBean, I T., McKenzie, J. A., and Parsons, P. A., 1971, A pair of closely linked genes controlling high scutellar chaeta number in Drosophila, Theor. Appl. Genet. 41:227235.

    Google Scholar 

  • Mackay, T. F. C., 1985, Transposable element-induced response to artificial selection in Drosophila melanogaster, Genetics 111: 351–374.

    PubMed  CAS  Google Scholar 

  • MacPhee, D. G., 1985, Indications that mutagenesis in Salmonella may be subject to catabolite repression, Mutat. Res. 151: 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Malpica, J. M., and Vassallo, J. M., 1980, A test for the selective origin of environmentally correlated allozyme patterns, Nature 286: 407–408.

    Article  CAS  Google Scholar 

  • Martin, N. G., Oakeshott, J. G., Gibson, J. B., Starmer, G. A., Perl, J., and Wilks, A. V., 1985, A twin study of psychomotor and physiological responses to an acute dose of alcohol, Behay. Genet. 15: 305–347.

    Article  CAS  Google Scholar 

  • Marx, J. L., 1983, Surviving heat shock and other stresses, Science 221:251–253. Mather, K., 1939, Crossing-over and heterochromatin in the X-chromosome of Drosophila melanogaster, Genetics 24: 413–435.

    Google Scholar 

  • Matheson, A. C., and Parsons, P. A., 1973, The genetics of resistance to long-term exposure to CO2 in Drosophila melanogaster: An environmental stress leading to anoxia, Theor. Appl. Genet. 42: 261–268.

    Google Scholar 

  • Maynard Smith, J., 1957, Acclimatization to high temperatures in inbred and outbred Drosophila subobscura, J. Exp. Biol. 34: 85–96.

    Google Scholar 

  • Mayr, E., 1963, Animal Species and Evolution, Belknap Press, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Mayr, E., 1982, Speciation and macroevolution, Evolution 36: 1119–1132.

    Article  Google Scholar 

  • McClintock, B., 1951, Chromosome organization and genic expression, Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1978, Mechanisms that rapidly reorganize the genome, Stadler Symp. 10: 25–48.

    Google Scholar 

  • McClintock, B., 1984, The significance of responses of the genome to challenge, Science 226: 792–801.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, J. A., 1978, The effect of developmental temperature on population flexibility in Drosophila melanogaster and D. simulans, Aust. J. Zool. 26: 105–112.

    Article  Google Scholar 

  • Mearns, L. O., Katz, R. W., and Schneider, S. H., 1984, Extreme high-temperature events: Changes in their probabilities with changes in mean temperature, J. Clim. Appl. Meteorol. 23: 1601–1613.

    Article  Google Scholar 

  • Milkman, R., 1979, The posterior crossvein in Drosophila as a model phenotype, in: Quantitative Genetic Variation ( J. N. Thompson, Jr., and J. M. Thoday, eds.), pp. 157–176, Academic Press, New York.

    Google Scholar 

  • Montgomery, C. A., and Langley, C. H., 1983, Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster, Genetics 104: 473–483.

    PubMed  CAS  Google Scholar 

  • Mueller, L. D., Barr, L. G., and Ayala, F. J., 1985, Natural selection vs. random drift: Evidence from temporal variation in allele frequencies in nature, Genetics 111: 517–554.

    PubMed  CAS  Google Scholar 

  • Muller, H. J., 1954, The nature of genetic effects produced by radiation, Radiat. Biol. 1: 351–473.

    CAS  Google Scholar 

  • Nevo, E., Lavie, B., and Ben-Shlomo, R., 1983, Selection of allelic isozyme polymorphisms in marine organisms: Pattern, theory and application, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 10: Genetics and Evolution ( M. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), pp. 69–92, Alan R. Liss, New York.

    Google Scholar 

  • Nevo, E., Beiles, A., and Ben-Shlomo, R., 1984, The evolutionary significance of genetic diversity: Ecological, demographic and life history correlates, in: Evolutionary Dynamics of Genetic Diversity ( G. S. Mani, ed.), pp. 13–213, Springer-Verlag, Berlin.

    Google Scholar 

  • Newman, C. M., Cohen, J. E., and Kipnis, C., 1985, Neo-Darwinian evolution implies punctuated equilibria, Nature 315: 400–401.

    Article  Google Scholar 

  • Nix, H. A., 1981, The environment of Terra Australis, in: Ecological Biogeography of Australia ( A. Keast, ed.), pp. 103–133, Junk, The Hague.

    Chapter  Google Scholar 

  • Oakeshott, J. G., Wilson, S. R., and Parnell, P., 1985, Selective effects of temperature on some enzyme polymorphisms in laboratory populations of Drosophila melanogaster, Heredity 55: 69–82.

    Article  Google Scholar 

  • Paquin, C. E., and Williamson, V. M., 1984, Temperature effects on the rate of Ty transposition, Science 226: 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Parry, M. L., 1978, Climatic Change, Agriculture and Settlement, Dawson, Folkestone, England.

    Google Scholar 

  • Parry, M. L., and Carter, T. R., 1985, The effect of climatic variations on agricultural risk, Climatic Change 7: 95–110.

    Article  Google Scholar 

  • Parsons, P. A., 1961, Fly size, emergence time and sternopleural chaeta number in Drosophila, Heredity 16: 455–473.

    Google Scholar 

  • Parsons, P. A., 1970, Genetic heterogeneity in natural populations of Drosophila melanogaster for ability to withstand desiccation, Theor. Appl. Genet. 40: 261–66.

    Google Scholar 

  • Parsons, P. A., 1973, Genetics of resistance to environmental stresses in Drosophila populations, Annu. Rev. Genet. 7: 239–265.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1980a, Parallel climatic races for tolerances to high temperature-desiccation stress in two Drosophila species, J. Biogeog. 7: 97–101.

    Article  Google Scholar 

  • Parsons, P. A., 1980b, Adaptive strategies in natural populations of Drosophila: Ethanol tolerance, desiccation resistance, and development times in climatically optimal and extreme environments, Theor. Appl. Genet. 57: 257–266.

    Article  Google Scholar 

  • Parsons, P. A., 1980c, Isofemale strains and evolutionary strategies in natural populations, Evol. Biol. 13: 175–217.

    Article  Google Scholar 

  • Parsons, P. A., 1981, Evolutionary ecology of Australian Drosophila: A species analysis, Evol. Biol. 14: 297–350.

    Google Scholar 

  • Parsons, P. A., 1982, Acetic acid vapour as a resource and stress in Drosophila, Aust. J. Zool. 30: 427–433.

    CAS  Google Scholar 

  • Parsons, P. A., 1983a, The genetic basis of quantitative traits: Evidence for punctuational evolutionary transitions at the intraspecific level, Evol. Theory 6: 175–184.

    Google Scholar 

  • Parsons, P. A., 1983b, The Evolutionary Biology of Colonizing Species, Cambridge University Press, New York.

    Book  Google Scholar 

  • Parsons, P. A., 1986, Features of colonizing animals: Phenotypes and genotypes, in: Colonization, Succession and Stability, 27th Symposium British Ecological Society, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Parsons, P. A., MacBean, I. T., and Lee, B. T. 0., 1969, Polymorphism in natural populations for genes controlling radioresistance in Drosophila, Genetics 61: 211–218.

    CAS  Google Scholar 

  • Pearcy, R. W., 1976, Temperature responses of growth and photosynthetic CO2 exchange rates in coastal and desert races of Atriplex lentiformis, Oecologia 26: 245–255.

    Article  Google Scholar 

  • Plough, H. H., 1917, The effect of temperature on crossing-over in Drosophila, J. Exp. Zool.

    Google Scholar 

  • 24:147–209.

    Google Scholar 

  • Precht, H., Christophersen, J., Hensal, H., and Larcher, W., 1973, Temperature and Life, Springer-Verlag, Berlin.

    Google Scholar 

  • Prevosti, A., 1955, Geographical variability in quantitative traits in populations of Drosophila subobscura, Cold Spring Harbor Symp. Quant. Biol. 20: 294–302.

    Article  PubMed  CAS  Google Scholar 

  • Price, T. D., 1984, Sexual selection on body size. Territory and plumage variables in a population of Darwin’s finches, Evolution 38: 327–341.

    Article  Google Scholar 

  • Price, T. D., and Grant, P. R., 1984, Life history traits and natural selection for small body size in a population of Darwin’s finches, Evolution 38: 483–494.

    Article  Google Scholar 

  • Raup, D. M., 1981, Introduction: What is a crisis?, in: Biotic Crises in Ecological and Evolutionary Time ( M. H. Nitecki, ed.), pp. 1–12, Academic Press, New York.

    Google Scholar 

  • Robertson, F. W., 1960, The ecological genetics of growth in Drosophila. I. Body size and development time on different diets, Genet. Res. Camb. 1: 288–304.

    Article  Google Scholar 

  • Rose, M. R., 1984, Laboratory evolution of postponed senescence in Drosophila melanogaster, Evolution 38: 1004–1009.

    Article  Google Scholar 

  • Rose, M. R., and Charlesworth, B., 1981, Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments, Genetics 97: 187–196.

    PubMed  CAS  Google Scholar 

  • Schlesinger, M. J., Ashburner, M., and Tissieres, A. (eds.), 1982, Heat-shock: From Bac-teria to Man, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Schnee, F. B., and Thompson, J. N., Jr., 1984, Conditional polygenic effects in the ster-nopleural bristle system of Drosophila melanogaster, Genetics 108: 409–424.

    PubMed  CAS  Google Scholar 

  • Siebenaller, J., and Somero, G. N., 1978, Pressure-adaptive differences in lactase hydro-genases of congeneric fishes living at different depths, Science 201: 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, G. G., 1967, The Meaning of Evolution, Yale University Press, New Haven,Connecticut.

    Google Scholar 

  • Spencer, W. P., 1947, Mutations in wild populations in Drosophila, Adv. Genet. 1:359–402. Stanley, S. M., 1979, Macroevolution: Patterns and Process, Freeman, San Francisco. Stanley, S. M., 1984, Marine mass extinctions: A dominant role for temperature, in: Extinctions ( M. H. Nitecki, ed.), pp. 69–117, University of Chicago Press, Chicago, Il-linois.

    Google Scholar 

  • Stanley, S. M., and Parsons, P. A., 1981, The response of the cosmopolitan species, Dro- sophila melanogaster to ecological gradients, Proc. Ecol. Soc. Aust. 11:121–130.

    Google Scholar 

  • Stanley, S. M., Parsons, P. A., Spence, G. E., and Weber, L., 1980, Resistance of species of the Drosophila melanogaster subgroup to environmental extremes, Aust. J. Zool. 28: 413–421.

    Article  Google Scholar 

  • Stephanou, G., and Alahiotis, S. N., 1983, Non-Mendelian inheritance of “heat-sensitivity” in Drosophila melanogaster, Genetics 103: 93–107.

    PubMed  CAS  Google Scholar 

  • Stern, C., 1926, An effect of temperature and age on crossing-over in the first chromosome of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 12: 530–532.

    Article  PubMed  CAS  Google Scholar 

  • Strand, D. J., and McDonald, J. F., 1985, Copia is transcriptionally responsive to environmental stress, Nucleic Acids Res. 13: 4401–4410.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. A., and Tulloch, D., 1985, Rainfall in the wet—dry tropics: Extreme events at Darwin and similarities between years during the period 1870–1983 inclusive, Aust. J. Ecol. 10: 281–295.

    Article  Google Scholar 

  • Thompson, J. N., Jr., and Thoday, J. M. (eds.), 1979, Quantitative Genetic Variation, Academic Press, New York.

    Google Scholar 

  • Thompson, J. N., Jr., and Woodruff, R. C., 1980, Increased mutation in crosses between

    Google Scholar 

  • geographically separated strains of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 77:1059–1062

    Google Scholar 

  • Turelli, M., and Ginzburg, L. R., 1983, Should individual fitness increase with.heterozygosity?, Genetics 104:191–209.

    Google Scholar 

  • Turner, J. R. G., 1982, Darwin’s coffin and Doctor Pangloss—Do adaptationist models explain mimicry?, in Evolutionary Ecology ( B. Shorrocks, ed.), pp. 313–361, Blackwell, Oxford.

    Google Scholar 

  • Turner, J. R. G., 1983, Mimetic butterflies and punctuated equilibria: Some old light on a new paradigm, Biol. J. Linn. Soc. 20: 277–300.

    Article  Google Scholar 

  • Van Valen, L., Levine, L., and Beardmore, J. A., 1962, Temperature sensitivity of chro-mosomal polymorphism in Drosophila pseudoobscura, Genetica 33:113–127. Waddington, C. H., 1953, Genetic assimilation of an acquired character, Evolution 7:118-126.

    Google Scholar 

  • Waddington, C. H., 1956, Genetic assimilation of the bithorax phenotype, Evolution 10:113.

    Google Scholar 

  • Waddington, C. H., 1965, Introduction to the Symposium, in: The Genetics of Colonizing Species (H. G. Baker and G. L. Stebbins, eds.), pp. 1–6, Academic Press, New York. Wake, D. B., Roth, G., and Wake, M. H., 1983, On the problem of stasis in organismal evolution, J. Theor. Biol. 101: 211–224.

    Google Scholar 

  • Wallace, A. R., 1878, Tropical Nature, Macmillan, London.

    Google Scholar 

  • Wallace, B., 1956, Studies on irradiated populations of Drosophila melanogaster, J. Genet. 54:280–293.

    Google Scholar 

  • Wallace, B., 1963, Further data on the overdominance of induced mutations, Genetics 48: 633–651.

    PubMed  CAS  Google Scholar 

  • Wallace, B., 1981, Basic Population Genetics, Columbia University Press, New York. Wallace, B., and Vetukhiv, M., 1955, Adaptive organization of the gene pools of Drosophila populations, Cold Spring Harbor Symp. Quant. Biol. 20: 303–310.

    Google Scholar 

  • Watt, W. B., 1983, Adaptation at specific loci. II. Demographic and biochemical elements in the maintenance of Colias PGI polymorphism, Genetics 103: 691–724.

    Google Scholar 

  • Webb, L. J., Tracey, J. G., and Williams, W. T., 1984, A floristic framework of Australian rainforests, Aust. J. Ecol. 9:169–198.

    Google Scholar 

  • Westerman, J. M., and Parsons, P. A., 1973, Variation in genetic architecture at different doses of ‘y-radiation as measured by longevity in Drosophila melanogaster, Can. J. Genet. Cytol. 15: 289–298.

    PubMed  CAS  Google Scholar 

  • Wiens, J. A., 1977, On competition and variable environments, Am. Sci. 65:590–597. Wigley, T. M. L., and Atkinson, T. C., 1977, Dry years in south-east England since 1698, Nature 265: 431–434.

    Article  Google Scholar 

  • Williamson, P. G., 1981, Palaeontological documentation of speciation in Cenozoic mulluscs from Turkana basin, Nature 293: 437–443.

    Article  Google Scholar 

  • Wills, C., 1984, The possibility of stress-triggered evolution, in: Evolutionary Dynamics of Genetic Diversity ( G. S. Mani, ed.), pp. 299–312, Springer-Verlag, Berlin.

    Google Scholar 

  • Woodruff, R. C., Slatko, B. E., and Thompson, J. N., Jr., 1983, Factors affecting mutation rates in natural populations, in: The Genetics and Biology of Drosophila, Vol. 3c (M. Ashburner, H. L. Carson, and J. N. Thompson, Jr., eds.), pp. 37–124, Academic Press, New York.

    Google Scholar 

  • Wright, S., 1977–78, Evolution and the Genetics of Populations,Vols. 3 and 4, University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Wright, S., and Dobzhansky, Th., 1946, Genetics of natural populations. XII. Experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura, Genetics 31:125–156.

    Google Scholar 

  • Wyles, J. S., Kunkel, J. G., and Wilson, A. C., 1983, Birds, behavior, and anatomical evolution, Proc. Natl. Acad. Sci. USA 80: 4394–4397.

    Article  PubMed  CAS  Google Scholar 

  • Zhuchenko, A. A., Korol, A. B., and Kovtyukh, L. P., 1985, Change of the crossing-over frequency in Drosophila during selection for resistance to temperature fluctuations, Genetica 67: 73–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Parsons, P.A. (1987). Evolutionary Rates under Environmental Stress. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6986-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6986-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6988-6

  • Online ISBN: 978-1-4615-6986-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics