Skip to main content

Transcriptional and Post-Transcriptional Strategies in Neuroendocrine Gene Expression

  • Chapter
The Molecular Biology of Cell Determination and Cell Differentiation

Abstract

The developmental and homeostatic control of expression of certain genes in higher eukaryotes is directed by a diverse group of regulatory molecules comprising the neuroendocrine system, which act through specific receptor-mediated events. The precise temporal and spatial expression of genes of this system during development is requisite for the progressively more complex patterns of regulated gene expression that characterize higher eukaryotes. Based on an analysis of the rat and human calcitonin genes, alternative RNA processing represents one developmental strategy used in the neuroendocrine system to direct a tissue-specific pattern of polypeptide production. A second developmental strategy utilized by the neuroendocrine system restricts the expression of genes encoding neuroendocrine peptides to precise groups of cells as a consequence of modulating their transcription. Understanding the molecular mechanisms responsible for generating such patterns of restricted gene expression is likely to provide general insights into the molecular strategies that are critical for development and function of the neuroendocrine system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amara, S. G., Jonas, V., O’Neil, J. A., Vale, W., Rivier, J., Roos, B. A., Evans, R. M., and Rosenfeld, M. G., 1982a, Calcitonin COOH-terminal cleavage peptide as a model for identification of novel neuropeptides predicted by recombinant DNA analysis, J. Biol. Chem. 257:2129–2132.

    PubMed  CAS  Google Scholar 

  • Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S., and Evans, R. M., 1982b, Synthesis of secreted and membrane-bound immunoglobin Mu heavy chains is directed by mRNAs that differ at the 3′ ends. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products, Nature (Lond.) 298:240–244.

    Article  CAS  Google Scholar 

  • Amara, S. G., Evans, R. M., and Rosenfeld, M. G., 1984, Calcitonin/calcitonin gene related peptide transcription unit: Tissue-specific expression involves selective use of alternative polyadenylation sites, Mol. Cell. Biol. 4:2151–2160.

    PubMed  CAS  Google Scholar 

  • Amara, S. G., Arrize, J. L., Leff, S. E., Swanson, L. W., Evans, R. M., and Rosenfeld, M. G., 1985, Expression in brainof an mRN A encoding a novel neuropeptide homologous to calcitonin generelated peptide (CGRP), Science 229:1094–1097.

    Article  PubMed  CAS  Google Scholar 

  • Banerji, R., Rusconi, S., and Schaffner, W., 1981, Expression of a β-globin gene is enhanced by remote SV40 DNA sequences, Cell 27:299–308.

    Article  PubMed  CAS  Google Scholar 

  • Banerji, J., Olson, L., and Schaffner, W., 1983, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobin heavy chain genes, Cell 33:729–740.

    Article  PubMed  CAS  Google Scholar 

  • Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV40 early promoter region, Nature (Lond.) 290:304–310.

    Article  CAS  Google Scholar 

  • Blattner, F. R., and Tucker, P. W., 1984, The molecular biology of immunoglobulin D, Nature (Lond.) 307:417–422.

    Article  CAS  Google Scholar 

  • Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes coding for proteins, Annu. Rev. Biochem.,50:349–383.

    Article  PubMed  CAS  Google Scholar 

  • Brinster, R. L., Ritchie, K. A., Hammer, R. E., O’Brien, R. L., Arp, B., and Storb, U., 1983, Expression of a microinjected immunoglobin gene in the spleen of transgenic mice, Nature (Lond.) 306:332–336.

    Article  CAS  Google Scholar 

  • Chada, K., Magram, J., Raphael, K., Radice, G., Lacy, E., and Costantini, F., 1985, Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice, Nature (Lond.) 314:377–380.

    Article  CAS  Google Scholar 

  • Chao, M. V., Mellon, P., Charnay, P., Maniatis, T., and Axel, R., 1983, The regulated expression of beta-globulin genes introduced into mouse erythroleukemia cells. Cell 32:483–493.

    Article  PubMed  CAS  Google Scholar 

  • Chatleain, A., Dupuoy, J. P., and Dubois, M. P., 1979, Ontogenesis of cells producing polypeptide hormones (ACTH, MSH, LPH, GH, Prolactin) in the fetal hypophysis of the rat: Influence of the hypothalamus, Cell Tissue Res 196:409–427.

    Google Scholar 

  • Cooke, N. G., and Baxter, J. D., 1982, Structural analysis of the prolactin gene suggests a separate origin for its 5′ end, Nature (Lond.) 297:603–606.

    Article  CAS  Google Scholar 

  • Darnell, J. E., Jr., 1982, Variety in the level of gene control in eukaryotic cells, Nature (Lond.) 297:365–371.

    Article  CAS  Google Scholar 

  • DeVilliers, J. L., Olson, L., Tyndall, C., and Schaffner, W., 1982, Transcriptional ‘enhancers’ from SV40 and polyoma virus show a cell type preference, Nucl. Acids Res. 10:7965–7976.

    Article  CAS  Google Scholar 

  • Dynan, W. S., and Tjian, R., 1985, Control of eukaryotic messenger RNA synthesis by sequencespecific DNA-binding protein, Nature (Lond.) 316:774–778.

    Article  CAS  Google Scholar 

  • Ephrussi, A., Church, G. M., Tonegawa, S., and Gilbert, W., 1985, β-lineage-specific interactions of an immunoglobin enhancer with cellular factors in vivo, Science 227:134–140.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M., and Berg, P., 1982, Transcription in vivo from SV40 early promoter deletion mutants without repression by larg T antigen, J. Mol. Appl. Genet. 1:457–463.

    PubMed  CAS  Google Scholar 

  • Gibson, S. T., Polak, J. M., Bloom, S. R., Sabate, I. M., Mulderry, P. M., Ghatei, M. A., McGregory, G. P., Morrison, J. F. B., Kelly, J. S., Evans, R. M., and Rosenfeld, M. G., 1984, Calcitonin generelated peptide immunoreactivity in the spinal cord of man and of eight other species, J. Neurosci. 4:3101–3111.

    PubMed  CAS  Google Scholar 

  • Gillies, S. D., Morrison, S. L., Oi, V. T., and Tonegawa, S., A tissue-specific transcription enhancer element is located in the ma’or intron of a rearranged immunoglobin heavy chain gene, Cell 33:717–728.

    Google Scholar 

  • Gluzman, Y., and Shenk, T. (eds.), 1983, Enhancers and Eukaryotic Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Goldberg, P. A., Posakony, J. W., and Maniatis, T., 1983, Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line, Cell 34:59–73.

    Article  PubMed  CAS  Google Scholar 

  • Grosscehedl, R., Weaver, D., Baltimore, D., and Costantini, F., 1984, Introduction of a u immunoglobin gene into the mouse germ line: Specific expression in lymphoid cells & synthesis of functional antibodv, Cell 38:647–658.

    Article  Google Scholar 

  • Gruss, P., Dhar, R., and Khoury, G., 1981, Simian virus 40 tandem repeated sequences as an element of the early promoter, Proc. Natl. Acad. Sci. USA 78:943–947.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D., 1985, Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes, Nature (Lond.) 315:115–122.

    Article  CAS  Google Scholar 

  • Hen, R., Borrelli, E., Sassone-Corsi, P., and Chambon, P., 1983, Far upstream sequences are required for efficient transcription from the adenovirus-2 ElA transcription unit, Nucl. Acids Res. 11:8735–8745.

    Article  PubMed  Google Scholar 

  • Hoeffler, J. P., Boockfor, F. R., and Frawley, L. S., 1985, Ontogeny of prolactin cells in neonatal rats: Initial prolactin secretors also release growth hormone, Endocrinology 117:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Khorram, O., Depalatis, L. R., and McCann, S. M., 1984, Hypothalamic control of prolactin secretion during the perinatal period in the rat, Endocrinology 115:1698–1704.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, N., Takagaki, Y., Furuto, S., Tanaka, T., Nawa, H., 1983, A single gene for bovine high molecular weight and low molecular weight kinonogens, Nature (Lond.) 305:545–549.

    Article  CAS  Google Scholar 

  • Kriegler, M., and Botchan, M., 1983, Enhanced transformation by a simian virus containing a Harvey Murine sarcoma virus long terminal repeat, Mol. Cell Biol. 3:325–339.

    PubMed  CAS  Google Scholar 

  • Krumlauf, R., Hammer, R. E., Tilghman, S. M., and Brinster, R. L., 1985, Developmental regulation of ?-fetoprotein genes in transgenic mice, Mol. Cell Biol. 5:1639–1648.

    PubMed  CAS  Google Scholar 

  • Laimins, L. A., Khoury, G., Gorman, C., Howard, B., and Gruss, P., 1982, Host-specific activation of transcription by tandem repeats from simian virus 40 and Moloney murine sarcoma virus, Proc. Natl. Acad. Sci. USA 79:6453–6457.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, H. J., Mortrud, M. T., Rivier, J. E., and Brown, M. R., 1984, Calcitonin gene related peptide inhibits basal, pentagastrin, histamine, and bethanecol stimulated gastric acid secretion, Gut 26:550–556.

    Article  Google Scholar 

  • Luciw, P. A., Bishop, J. M., Varmus, H. E., and Capecchi, M. R., 1983, Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA, Cell 33:705–716.

    Article  PubMed  CAS  Google Scholar 

  • Lusky, M., Borg, L., Weiber, H., and Botchan, M., 1983, Bovine papilloma virus contains an activator of gene expression at the distal end of the early transcription unit, Mol. Cell Biol. 3:1108–1122.

    PubMed  CAS  Google Scholar 

  • McKnight, G. S., Hammer, R. E., Kuenzel, E. A., and Brinster, R. L., 1983, Expression of the chicken transferrin gene in transgenic mice, Cell 34:335–341.

    Article  PubMed  CAS  Google Scholar 

  • Mason, R. T., Peterfreund, R. A., Sawchenko, P. E., Corrigan, A. Z., Rivier, E., and Vale, W. W., 1984, Release of the predicted calcitonin gene-related peptide from cultured rat trigeminal ganglion cells, Nature (Lond.) 304:129–135.

    Google Scholar 

  • Mercola, M., Goverman, J., Mirell, C., and Calame, K., 1985, Immunoglobin heavy-chain enhancer requires one or more tissue-specific factors, Science 227:266–270.

    Article  PubMed  CAS  Google Scholar 

  • Nawa, H., Hirose, T., Takashima, H., Inayama, S., Nakanishi, S., 1983, Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor, Nature (Lond.) 306:32–36.

    Article  CAS  Google Scholar 

  • Nawa, H., Kotani, H., Nakanishi, S., 1984, Tissue-specific generation of two prepretachykinin mRNAs from one gene by alternative RNA splicing, Nature 313:729–734.

    Article  Google Scholar 

  • Nelson, C., Crenshaw, E. B. III, Franco, R., Lira, S. A., Albert, V. R., Evans, R. M., and Rosenfeld, M. G., 1986, Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes, Nature (Lond.) 322:557–562.

    Article  CAS  Google Scholar 

  • Neuberger, M. S., 1983, Expression and regulation of immunoglobin heavy chain gene transfected into lymphoid cells, EMBO J. 2:1373–1378.

    PubMed  CAS  Google Scholar 

  • Nevins, J. R., 1983, The pathway of eukaryotic mRNA formation, Annu. Rev. Biochem. 52:441–466.

    Article  PubMed  CAS  Google Scholar 

  • Nordheim, A., and Rich, A., 1983, Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences, Nature (Lond.) 303:674–679.

    Article  CAS  Google Scholar 

  • Ornitz, D. M., Palmiter, R. D., Hammer, R. E., Brinster, R. L., Swift, G. H., and MacDonald, R. J., 1985, Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice, Nature (Lond.) 313:600–602.

    Article  CAS  Google Scholar 

  • Ott, M. O., Sperling, L., Herbomel, P., Yaniv, M., and Weiss, M. C., 1984, Tissue-specific expression is conferred by a sequence from the 5′ end of the rat albumin gene, EMBO J. 3:2505–2510.

    PubMed  CAS  Google Scholar 

  • Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S., and Sharp, P. A., 1986, Splicing of messenger RNA precursors, Annu. Rev. Biochem. 55:1119–1150.

    Article  PubMed  CAS  Google Scholar 

  • Queen, C., and Baltimore, D., 1983, Immunoglobin gene transcription is activated by downstream sequence elements, Cell 33:741–748.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, M. G., Amara, S. G., Roos, B. A., Ong, E. S., and Evans, R. M., 1981, Altered expression of the calcitonin gene associated with RNA polymorphism, Nature (Lond.) 290:63–65.

    Article  CAS  Google Scholar 

  • Rosenfeld, M. G., Lin, C. R., Amara, S. G., Stolarsky, L. S., Ong, E. S., and Evans, R. M., 1982, Calcitonin mRNA polymorphism: Peptide switching associated with alternate RNA splicing events, Proc. Natl. Acad. Sci. USA 79:1717–1721.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, M. G., Mermod, J-J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W., and Evans, R. M., 1983, Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing, Nature (Lond.) 304:129–135.

    Article  CAS  Google Scholar 

  • Sebate, M. I., Stolarsky, L. S., Polak, J. M., Bloom, S. R., Verndell, I. M., Ghatei, M. A., Evans, R. M., and Rosenfeld, M. G., 1985, Regulation of neuroendocrine gene expression by alternative RNA processing: Colocalization of calcitonin and calcitonin gene-related peptide (CGRP) in thyroid C-cells, J. Biol. Chem. 260:2589–2592.

    Google Scholar 

  • Sassone-Corsi, P., Wildeman, A., and Chambon, P., 1983, A trans-acting factor is responsible for the simian virus 40 enhancer activity in vitro, Nature (Lond.) 313:458–463.

    Article  Google Scholar 

  • Sassone-Corsi, P., Dougherty, J. P., Wasylyk, B., and Chambon, P., 1984, Stimulation of in vitro transcription from heterologous promoters by the simian virus 40 enhancer, Proc. Natl. Acad. Sci USA 81:308–312.

    Article  PubMed  CAS  Google Scholar 

  • Scholnick, S. B., Morgan, B. A., and Hirsh, J., 1983, The cloned dopa decarboxylase gene is developmentally regulated when reintegrated into the Drosophila genome, Cell 34:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Shani, M., 1985, Tissue-specific expression of rat myosin light-chain 2 gene in transgenic mice, Nature (Lond.) 314:283–286.

    Article  CAS  Google Scholar 

  • Spandidos, D. A., and Paul, J., 1982, Transfer of human globin genes to erythroleukemic mouse cells, EMBO J. 1:15–20.

    PubMed  CAS  Google Scholar 

  • Spradling, A. C., and Rubin, G. M., 1983, The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene, Cell 34:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Storb, U., O’Brien, R. L., McMullen, M. D., Gollahon, K. A., and Brinster, R. L., 1984, High expression of cloned immunoglobin K gene in transgenic mice is restricted to β-lymphocytes, Nature (Lond.) 310:238–241.

    Article  CAS  Google Scholar 

  • Swift, G. H., Hammer, R. E., MacDonald, R. J., and Brinster, R. L., 1984, Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice, Cell 38:639–646.

    Article  PubMed  CAS  Google Scholar 

  • Tschopp, F. A., Tobler, P. H., Fischer, J. A., 1984, Calcitonin gene-related peptide in the human thyroid, pituitary and brain, Mol. Cell. Endocrinol. 36:53–57.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M. D., Edlund, T., Boulet, A. M., and Rutter, W. J., 1983, Cell-specific expression controlled by the 5′-flanking region of insulin & chymotrypsin genes, Nature (Lond.) 306:557–561.

    Article  CAS  Google Scholar 

  • Watanabe, Y. G., and Daikoku, S., 1979, An immunohistochemical study on the cytogenesis of adenohypophysial cells in fetal rats, Dev. Biol. 68:557–567.

    Article  PubMed  CAS  Google Scholar 

  • Weiber, H., König, M., and Gruss, P., 1983, Multiple point mutations affecting the simian virus 40 enhancer, Science 219:626–631.

    Article  Google Scholar 

  • Yaniv, M., 1982, Enhancing elements for activation of eukaryotic promoters, Nature (Lond.) 297:17–18.

    Article  CAS  Google Scholar 

  • Ziff, E. B., 1980, Transcription and RNA processing, Nature (Lond.) 287:491–499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Rosenfeld, M. et al. (1988). Transcriptional and Post-Transcriptional Strategies in Neuroendocrine Gene Expression. In: Browder, L.W. (eds) The Molecular Biology of Cell Determination and Cell Differentiation. Developmental Biology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6817-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6817-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6819-3

  • Online ISBN: 978-1-4615-6817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics