Skip to main content

Metabolic Activation Systems in Vitro for Carcinogen/Mutagen Screening Tests

  • Chapter
Book cover Chemical Mutagens

Abstract

Correlations between the mutagenic and carcinogenic properties of chemicals were weak prior to 1960, but they have strengthened as a result of the discovery that many chemicals undergo various metabolic changes before they become biologically active.(1) Despite the great diversity of chemical structures, most carcinogens/mutagens appear to give rise to electrophilic derivatives (compounds with electron-deficient atoms), which then react with nucleophilic centers (sites with atoms rich in electrons) that are present in cellular constituents. The growing experimental evidence that links the carcinogenic activity of numerous chemicals to their capacity to be converted into electrophilic derivatives, which can react with DNA and other cellular macromolecules and therefore exert a mutagenic effect, has led to the suggestion that there may be a formal relationship between carcinogenesis and mutagenesis.(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. C. Miller, Some current perspectives on chemical carcinogenesis in human and experimental animals: presidential address, Cancer Res. 38, 1479–1496 (1978).

    Google Scholar 

  2. E. C. Miller and J. A. Miller, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 1 (A. Hollaender, ed.), pp. 83–94, Plenum Press, New York, London (1971).

    Google Scholar 

  3. W. K. Lutz, In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis, Mutat. Res. 65, 289–356 (1979).

    Google Scholar 

  4. J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. U.S.A. 72, 5135–5139 (1975).

    ADS  Google Scholar 

  5. T. Sugimura, S. Sato, M. Nagao, T. Yahagi, T. Matsushima, Y. Seino, M. Takeuchi, and T. Kawachi, in: Fundamentals in Cancer Prevention (P. N. Magee, S. Takayama, T. Sugimura, and T. Matsushima, eds.), pp. 191–215, University of Tokyo Press/University Park Press, Tokyo/Baltimore (1976).

    Google Scholar 

  6. I. F. H. Purchase, E. Longstaff, J. Ashby, J. A. Styles, D. Anderson, P. A. Lefevre, and F. R. Westwood, An evaluation of six short-term tests for detecting organic chemical carcinogens, Br. J. Cancer 37, 873–959 (1978).

    Google Scholar 

  7. M. Hollstein, J. McCann, F. A. Angelsanto, and W. W. Nichols, Short-term tests for carcinogens and mutagens, Mutat. Res. 65, 133–226 (1979).

    Google Scholar 

  8. H. Bartsch, C. Malaveille, A.-M. Camus, G. Martel-Planche, G. Brun, A. Hautefeuille, N. Sabadie, A. Barbin, T. Kuroki, C. Drevon, C. Piccoli, and R. Montesano, Validation and comparative studies on 180 chemicals using 5. typhimurium strains and V79 Chinese hamster cells in the presence of various metabolizing systems, Mutat. Res. 76, 1–50 (1980).

    Google Scholar 

  9. IARC, Long-term and Short-term Screening Assays for Carcinogens: A Critical Appraisal, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Supplement No. 2, International Agency for Research on Cancer, Lyon, France (1980).

    Google Scholar 

  10. R. Montesano, H. Bartsch, and L. Tomatis (eds.), Molecular and Cellular Aspects of Carcinogen Screening Tests, IARC Sci. Publ. No. 27, International Agency for Research on Cancer, Lyon, France (1980).

    Google Scholar 

  11. P. Jenner and B. Testa, Novel pathways in drug metabolism, Xenobiotica 8, 1–25 (1978).

    Google Scholar 

  12. B. H. Hutson, in: Foreign Compound Metabolism in Mammals (D. E. Hathway, ed.), Vol. 3, pp. 449–549 (1975);

    Google Scholar 

  13. B. H. Hutson, in: Foreign Compound Metabolism in Mammals (D. E. Hathway, ed.), Vol. 4, pp. 259–346 (1977), The Chemical Society, London.

    Google Scholar 

  14. A. Y. H. Lu, Liver microsomal drug metabolizing system: Functional components and their properties. Fed. Proc. Fed. Am. Soc. Exp. Biol. 35, 2460–2463 (1976).

    Google Scholar 

  15. W. Levin, D. Ryan, M. T. Huang, J. Kawalek, P. E. Thomas, S. B. West, and A. Y. H. Lu, in: Microsomes and Drug Oxidations (V. Ulrich, A. Hildebrandt, I. Roots, R. Estabrook, and A. H. Conney, eds.), pp. 185–191, Pergamon Press, Oxford (1977).

    Google Scholar 

  16. E. Bresnick, J. B. Vaught, A. H. L. Chuang, T. A. Stoming, D. Bockman, and H. Mukhtar, Nuclear aryl hydrocarbon hydroxylase and interaction of polycyclic hydrocarbons with nuclear components, Arch. Biochem. Biophys. 181, 257–269 (1977).

    Google Scholar 

  17. E. B. Nelson, P. P. Raj, K.J. Belfi, and B. S. S. Masters, Oxidative drug metabolism in human liver microsomes,J. Pharmacol. Exp. Ther. 178, 580–588 (1971).

    Google Scholar 

  18. R. Kato, Sex-related differences in drug metabolism, Drug Metab. Rev. 3, 1–32 (1974).

    Google Scholar 

  19. R. S. Chabra and J. R. Fouts, Sex differences in the metabolism of xenobiotics by extrahepatic tissue in rats, Drug Metab. Dispos. 2, 375–379 (1974).

    Google Scholar 

  20. R. W. Estabrook and E. Lindenlaub (eds.), The Induction of Drug Metabolism, Schattauer, Stuttgart, New York (1979).

    Google Scholar 

  21. A. H. Conney, E. J. Pantuck, R. Kuntzman, A. Kappas, and A. P. Alvares, Nutrition and chemical biotransformations in man, Clin. Pharmacol. Ther. 22, 707–719 (1977).

    Google Scholar 

  22. C. Campbell and J. R. Hayes, Role of nutrition in the drug metabolizing enzyme system, Pharmacol. Rev. 26, 171–197 (1974).

    Google Scholar 

  23. A. H. Conney, Pharmacological implications of microsomal enzyme induction, Pharmacol. Rev. 19, 317–366 (1967).

    Google Scholar 

  24. D. W. Nebert and J. S. Felton, Importance of genetic factors influencing the metabolism of foreign compounds, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35, 1133–1141 (1976).

    Google Scholar 

  25. J. DiGiovanni, D. L. Berry, T. J. Slaga, A. H. Jones, and M. R. Juchau, Effects of pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin on the capacity of hepatic and extrahepatic mouse tissues to convert procarcinogens to mutagens for Salmonella typhimurium auxotrophs, Toxicol. Appl. Pharmacol. 50, 229–239 (1979).

    Google Scholar 

  26. T. Matsushima, M. Sawamura, K. Hara, and T. Sugimura, in: In Vitro Metabolic Activation in Mutagenesis Testing (F. J. de Serres, J. R. Fouts, J. R. Bend, and R. M. Philpot, eds.), pp. 85–88, Elsevier/North-Holland, Amsterdam (1976).

    Google Scholar 

  27. C. Razzouk, E. Agazzi-Léonard, M. Batardy-Grégoire, M. Mercier, F. Poncelet, and M. Roberfroid, Competitive inhibitory effect of microsomal N-hydroxylase, a possible explanation for the in vivo inhibition of 2-acetylaminofluorene carcinogenicity by 3-methylcholanthrene, Toxicol. Lett. 5, 61–67 (1980).

    Google Scholar 

  28. J. W. Gorrod (ed.), Biological Oxidation of Nitrogen, Elsevier/North-Holland, Amsterdam, New York (1978).

    Google Scholar 

  29. D. M. Ziegler and C. H. Mitchell, Microsomal oxidase. IV. Properties of a mixed function amine oxidase isolated from pig liver microsomes, Arch. Biochem. Biophys. 150, 116–125(1972).

    Google Scholar 

  30. F. Oesch, Mammalian epoxide hydratases: Inducible enzymes catalyzing the inacti-vation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds, Xenobiotica 3, 305–340 (1973).

    Google Scholar 

  31. F. Oesch, Differential control of rat microsomal aryl hydrocarbon monooxygenase and epoxide hydratase,J. Biol. Chem. 251, 79–87 (1976).

    Google Scholar 

  32. F. Oesch, P. Bentley, and H. R. Glatt, in: Biological Reactive Intermediates (D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds.), pp. 181–206, Plenum Press, New York (1977).

    Google Scholar 

  33. F. Oesch and H. R. Glatt, in: Screening Tests in Chemical Carcinogenesis, IARC Sci. Publ. No. 12 (R. Montesano, H. Bartsch, and L. Tomatis, eds.), pp. 225–274, International Agency for Research on Cancer, Lyon, France (1976).

    Google Scholar 

  34. A. Y. H. Lu, D. M. Jerina, and W. Levin, Liver microsomal epoxide hydratase, J. Biol. Chem. 252, 3715–3723 (1977).

    Google Scholar 

  35. D. M. Jerina, R. E. Lehr, H. Yagi, O. Hernandez, P. M. Dansette, P. G. Wislocki, A. W. Wood, R. L. Chang, W. Levin, and A. H. Conney, in: In Vitro Metabolic Activation in Mutagenesis Testing (F. J. de Serres, J. R. Fouts, J. R. Bend, and R. M. Philpot, eds.), pp. 159–178, Elsevier/North-Holland, Amsterdam, New York (1976).

    Google Scholar 

  36. H. A. J. Schut, P. J. Wirth, and S. S. Thorgeirsson, Mutagenic activation of N-hydroxy-2-acetylaminofluorene in the Salmonella test system: The role of deacety-lation by liver and kidney fractions from mouse and rat, Mol. Pharmacol. 14, 682–692 (1978).

    Google Scholar 

  37. J. A. Miller, Comments on chemistry of the cycads, Fed. Proc. Fed. Am. Soc. Exp. Biol. 23, 1361–1362 (1964).

    Google Scholar 

  38. J. P. Brown and P. S. Dietrich, Mutagenicity of plant flavonols in the Salmonella/mammalian microsome test: Activation of flavonol glycosides by mixed glycosidases from rat cecal bacteria and other sources, Mutat. Res. 66, 223–240 (1979).

    Google Scholar 

  39. J. Ashby, Structural analysis as a means of predicting carcinogenic potential, Br. J. Cancer 37, 904–923(1978).

    Google Scholar 

  40. M. Tada and M. Tada, in: Fundamentals in Cancer Prevention (P. N. Magee, S. Takayama, T. Sugimura, and T. Matsushima, eds.), pp. 217–218, University of Tokyo Press/University Park Press, Tokyo/Baltimore (1976).

    Google Scholar 

  41. T. Okabayashi and A. Yoshimoto, Reduction of 4-nitroquinoline 1-oxide by microorganisms, Chem. Pharm. Bull. 10, 1221–1226 (1962).

    Google Scholar 

  42. H. S. Rosenkranz and W. T. Speck, Mutagenicity of metronidazole: Activation by mammalian liver microsomes, Biochem. Biophys. Res. Commun. 66, 520–525 (1975).

    Google Scholar 

  43. D. R. Feller, M. Morita, and J. R. Gillette, Reduction of heterocyclic nitrocompounds in rat liver, Proc. Soc. Exp. Biol. Med. 137, 433–437 (1971).

    Google Scholar 

  44. A. Aitio (ed.), Conjugation Reactions in Drug Biotransformation, Elsevier/North-Holland, Amsterdam, New York (1978).

    Google Scholar 

  45. J. Caldwell, The significance of phase II (conjugation) reactions in drug disposition and toxicity, Life Sci. 24, 571–578 (1979).

    Google Scholar 

  46. E. C. Miller and J. A. Miller, in: Chemical Carcinogens, ACS Monogr. No. 173 (C. S. Searle, ed.), pp. 737–762, The American Chemical Society, Washington, D.C. (1976).

    Google Scholar 

  47. M. F. Argus, S. C. Myers, and J. C. Arcos, Apparent absence of requirement of hydrocarbon metabolism for induction and repression of mixed-function oxidases, Chem.-Biol. Interact. 29, 247–253 (1980).

    Google Scholar 

  48. G. J. Mulder, J. A. Hinson, W. L. Nelson, and S. S. Thorgeirsson, Role of sulfotransferase from rat liver in the mutagenicity of N-hydroxy-2-acetylaminoflu-orene in Salmonella typhimurium, Biochem. Pharmacol. 26, 1356–1358 (1977).

    Google Scholar 

  49. P. G. Wislocki, P. Borchert, J. A. Miller, and E. C. Miller, The metabolic activation of the carcinogen 1′-hydroxysafrole in vivo and in vitro and the electrophilic reactivities of possible ultimate carcinogens, Gander Res. 36, 1686–1695 (1976).

    Google Scholar 

  50. G. M. Lower and G. T. Bryan, Enzymatic N-acetylation of carcinogenic aromatic amines by liver cytosol of species displaying different organ susceptibilities, Biochem. Pharmacol. 22, 1581–1588 (1973).

    Google Scholar 

  51. M. J. Crawford and D. H. Hutson, in: Xenobiotic Metabolism: In vitro Methods, ACS Symp. Ser. No. 97 (G. D. Paulson, D. S. Frear, and E. P. Marks, eds.), pp. 181–229, The American Chemical Society, Washington, D.C. (1979).

    Google Scholar 

  52. H. Bartsch, M. Dworkin, J. A. Miller, and E. C. Miller, Electrophilic N-acetoxyami-noarenes derived from carcinogenic N-hydroxy-N-acetylaminoarenes by enzymatic deacetylation and transacetylation in liver, Biochim. Biophys. Acta 286, 272–290 (1972).

    Google Scholar 

  53. C. E. Weeks, W. T. Allaben, S. C. Louie, E. J. Lazear, and C. M. King, Role of aryl hydroxamic acid acyltransferase in the mutagenicity of iV-hydroxy-N-2-fluorenyla-cetamide in Salmonella typhimurium, Cancer Res. 38, 613–618 (1978).

    Google Scholar 

  54. W. B. Jakoby, The glutathione-S-transferases, a group of multifunctional detoxification proteins, Adv. Enzymol. 46, 384–414 (1978).

    Google Scholar 

  55. U. Rannug, A. Sundvall, and C. Ramel, The mutagenic effect of 1,2-dichloroethane on Salmonella typhimurium. 1. Activation through conjugation with glutathione in vitro, Chem.-Biol. Interact. 20, 1–16 (1978).

    Google Scholar 

  56. P. D. Lotlikar, E. C. Miller, J. A. Miller, and A. Margreth, The enzymatic reduction of the N-hydroxyderivatives of 2-acetylaminofluorene and related carcinogens by tissue preparation, Cancer Res. 25, 1743–1751 (1965).

    Google Scholar 

  57. F. F. Kadlubar and D. M. Ziegler, Properties of a NADH-dependent N-hydroxy amine reductase isolated from pig liver microsomes, Arch. Biochem. Biophys. 162, 83–90 (1974).

    Google Scholar 

  58. H. R. Gutman and R. R. Erickson, The conversion of the carcinogen N-hydroxy-2-fluorenylacetamide to O-amidophenols by rat liver in vitro, J. Biol. Chem. 247, 660–666 (1972).

    Google Scholar 

  59. G. Lhoest, C. Razzouk, and M. Mercier, Biological implication of the reaction possibilities of the proximate carcinogenic compound, N-hydroxy-2-fluorenylacetam-ide, Biomed. Mass Spectrosc. 3, 21–27 (1976).

    Google Scholar 

  60. E. C. Miller and J. A. Miller, in: Biology of Cancer (H. Bush, ed.), pp. 377–402, Academic Press, New York (1974).

    Google Scholar 

  61. F. Zajdela, A. Croisy, A. Barbin, C. Malaveille, L. Tomatis, and H. Bartsch, Carcinogenicity studies on chloroethylene oxide, an ultimate reactive metabolite of vinyl chloride, and on bis(chloromethyl)ether in mice after subcutaneous administration and in an initiation-promotion experiment, Cancer Res. 40, 352–356 (1980).

    Google Scholar 

  62. B. N. Ames, J. McCann, and E. Yamasaki, Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test, Mutat. Res. 31, 347–364 (1975).

    Google Scholar 

  63. T. Omura and R. Sato, The carbon monoxide-binding pigment of liver microsomes, J. Biol. Chem. 239, 2370–2380 (1964).

    Google Scholar 

  64. D. W. Nebert and H. V. Gelboin, Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture,J. Biol. Chem. 243, 6242–6249 (1968).

    Google Scholar 

  65. P. Mazel, in: Fundamentals of Drug Metabolism and Drug Disposition (B. N. LaDu, H. G. Mandel, and E. L. Way, eds.), pp. 546–551, Williams & Wilkins, Baltimore (1971).

    Google Scholar 

  66. N. Sabadie, C. Malaveille, A.-M. Camus, and H. Bartsch, Comparison of the hydroxylation of benzo[a]pyrene with the metabolism of vinyl chloride, N-nitroso-morpholine and N-nitroso-N′-methylpiperazine to mutagens by human and rat liver microsomal fractions, Cancer Res. 40, 119–126 (1980).

    Google Scholar 

  67. D. F. Callen, A review of the metabolism of xenobiotics by microorganisms with relation to short-term systems for environmental carcinogens, Mutat. Res. 55, 153–163 (1978).

    Google Scholar 

  68. D. E. Ryan, P. E. Thomas, and W. Levin, Properties of purified liver microsomal cytochrome P-450 from rats treated with the polychlorinated biphenyl mixture Aroclor 1254, Mol. Pharmacol. 13, 521–532 (1977).

    Google Scholar 

  69. H. Bartsch, in: Carcinogen Interaction with DNA, Coll. Int. CNRS 256, 255–281 (1976).

    Google Scholar 

  70. C. Malaveille, T. Kuroki, G. Brun, A. Hautefeuille, A.-M. Camus, and H. Bartsch, Some factors determining the concentration of liver proteins for optimal mutagenicity of chemicals in the Salmonella/microsome assay, Mutat. Res. 63, 245–258 (1979).

    Google Scholar 

  71. C. Malaveille, G. Brun, A. Hautefeuille, and H. Bartsch, Effect of glutathione and uridine 5′-diphosphoglucuronic acid on benzo[a]pyrene and aflatoxin B1 mutagenesis in the Salmonella/microsome assay, Mutat. Res. 83, 15–24 (1981).

    Google Scholar 

  72. H. Bartsch, C. Malaveille, and R. Montesano, Human, rat and mouse liver-mediated mutagenicity of vinyl chloride in S. typhimurium strains, Int. J. Cancer 15, 429–437 (1975).

    Google Scholar 

  73. H. Bartsch, C. Malaveille, A. Barbin, and G. Planche, Mutagenic and alkylating metabolites of halo-ethylenes, chlorobutadienes and dichlorobutenes produced by rodent or human liver tissues: Evidence for oxirane formation by P-450-linked microsomal monooxygenases, Arch. Toxicol. 41, 249–277 (1979).

    Google Scholar 

  74. V. F. Simmon, K. Kauhanen, and R. G. Tardiff, in: Progress in Genetic Toxicology (D. Scott, B. A. Bridges, and F. H. Sobels, eds.), pp. 249–258, Elsevier/North-Holland, Amsterdam, New York, Oxford (1977).

    Google Scholar 

  75. C. de Meester, M. Duverger-van Bogaert, M. Lambotte-Vandepaer, M. Roberfroid, F. Poncelet, and M. Mercier, Mutagenicity of vinyl chloride in the Ames test: Possible artifacts related to experimental conditions, Mutat. Res. 77, 175–179 (1980).

    Google Scholar 

  76. C. N. Frantz and H. V. Mailing, Factors affecting metabolism and mutagenicity of dimethylnitrosamine and diethylnitrosamine, Cancer Res. 35, 2307–2314 (1975).

    Google Scholar 

  77. C. Malaveille, G. Planche, and H. Bartsch, Factors for efficiency of the Salmonella/microsome mutagenicity assay, Chem.-Biol. Interact. 17, 129–136 (1977).

    Google Scholar 

  78. M. Nagao, T. Yahagi, Y. Seino, T. Sugimura, and N. Ito, Mutagenicities of quinoline and its derivatives, Mutat. Res. 42, 335–342 (1977).

    Google Scholar 

  79. M. H. L. Green, B. A. Bridges, A. M. Rogers, G. Horspool, W. J. Muriel, J. W. Bridges, and J. R. Fry, Mutagen screening by a simplified bacterial fluctuation test: Use of microsomal preparations and whole liver cells for metabolic activation, Mutat. Res. 48, 287–294 (1977).

    Google Scholar 

  80. D. G. Gatehouse and G. F. Delow, The development of a “microtitre®” fluctuation test for the detection of indirect mutagens, and its use in the evaluation of mixed enzyme induction of the liver, Mutat. Res. 60, 239–252 (1979).

    Google Scholar 

  81. H. Bartsch, A. Camus, and C. Malaveille, Comparative mutagenicity of N-nitrosamines in a semi-solid and in a liquid incubation system in the presence of rat or human tissue fractions, Mutat. Res. 37, 149–162 (1976).

    Google Scholar 

  82. N. Nemoto, T. Hirakawa, and S. Takayama, Glucuronidation of benzo[a]pyrene in hamster embryo cells, Chem.-Biol. Interact. 22, 1–14 (1978).

    Google Scholar 

  83. H. Glatt and F. Oesch, Inactivation of electrophilic metabolites by glutathione-S-transferases and limitation of the system due to sub-cellular localization, Arch. Toxicol. 39, 87–96 (1977).

    Google Scholar 

  84. S. Sakai, C. E. Reinhold, P. J. Wirth, and S. S. Thorgeirsson, Mechanisms of invitro mutagenic activation and covalent binding of N-hydroxy-2-acetylaminofluorene in isolated liver cell nuclei from rat and mouse, Cancer Res. 38, 2058–2067 (1978).

    Google Scholar 

  85. T. Sugimura, M. Nagao, T. Kawachi, M. Honda, T. Yahagi, Y. Seino, S. Sato, N. Matsukura, T. Matsushima, A. Shirai, M. Sawamura, and H. Matsumoto, in: Origins of Human Cancer (H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 1561–1577, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).

    Google Scholar 

  86. M. K. Buening, J. G. Fortner, A. Kappas, and A. H. Conney, 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin B1 to mutagens by human liver, Biochem. Biophys. Res. Commun. 82, 348–355 (1978).

    Google Scholar 

  87. V. Khudoley, C. Malaveille, and H. Bartsch, Mutagenicity studies in S. typhimurium on some carcinogenic N-nitramines in vitro and in the host-mediated assay in rats, Cancer Res. 41, 3205–3210 (1981).

    Google Scholar 

  88. C. Malaveille, B. Tierney, P. L. Grover, P. Sims, and H. Bartsch, High microsome-mediated mutagenicity of the 3,4-dihydrodiol of 7-methylbenz[a]anthracene in 5. typhimurium TA 98, Biochem. Biophys. Res. Commun. 75, 427–433 (1977).

    Google Scholar 

  89. K. Umezawa, A. Shirai, T. Matsushima, and T. Sugimura, Co-mutagenic effect of norharman and harman with 2-acetylaminofluorene derivatives, Proc. Natl. Acad. Sci. U.S.A. 75, 928–930 (1978).

    ADS  Google Scholar 

  90. M. Nagao, T. Yahagi, and T. Sugimura, Differences in effects of norharman with various classes of chemical mutagens and amounts of S-9, Biochem. Biophys. Res. Commun. 83, 373–378 (1978).

    Google Scholar 

  91. T. Fujino, H. Fujiki, M. Nagao, T. Yahagi, Y. Seino, and T. Sugimura, The effect of norharman on the metabolism of benzo[a]pyrene by rat liver microsomes in vitro in relation to its enhancement of the mutagenicity of benzo[a]pyrene, Mutat. Res. 58, 151–158 (1978).

    Google Scholar 

  92. R. C. Levitt, D. W. Nebert, and O. Pelkonen, Effects of harman and norharman on the mutagenicity and binding to DNA of benzo[a]pyrene metabolites in vitro and on aryl hydrocarbon hydroxylase induction in cell culture, Biochem. Biophys. Res. Commun. 79, 1167–1175(1977).

    Google Scholar 

  93. M. Nagao, T. Yahagi, M. Honda, Y. Seino, T. Matsushima, and T. Sugimura, Demonstration of mutagenicity of aniline and o-toluidine by norharman, Proc. Jpn. Acad. 53B, 34–47 (1977).

    Google Scholar 

  94. M. B. Baird and L. S. Birnbaum, Inhibition of 2-fluorenamine-induced mutagenesis in Salmonella typhimurium by vitamin A, J. Natl. Cancer Inst. 63, 1093–1096 (1979).

    Google Scholar 

  95. M. Hollstein, R. Talcott, and E. Wei, Quinoline: Conversion to a mutagen by human and rodent liver,J. Natl. Cancer Inst. 60, 405–410 (1978).

    Google Scholar 

  96. H. E. May and P. B. McCay, Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. I. Nature of the lipid alterations, J. Biol. Chem. 243, 2288–2295 (1968).

    Google Scholar 

  97. W. Levin, A. Y. H. Lu, M. Jacobson, R. Kuntzman, J. L. Poyer, and P. B. McCay, Lipid peroxidation and the degradation of cytochrome P-450 heme, Arch. Biochem. Biophys. 158, 842–852 (1973).

    Google Scholar 

  98. M. Jacobson, W. Levin, A. Y. H. Lu, A. H. Conney, and R. Kuntzman, The rate of pentobarbital and acetanilide metabolism by liver microsomes: A function of lipid peroxidation and degradation of cytochrome P-450 heme, Drug Metab. Dispos. 1, 766–774 (1973).

    Google Scholar 

  99. A. H. Conney, E.J. Pantuck, C. B. Pantuck, M. Buening, D. M. Jerina, J. G. Fortner, A. P. Alvares, K. E. Anderson, and A. Kappas, in: The Induction of Drug Metabolism (R. W. Estabrook and E. Lindenlaub, eds.), pp. 583–605, Schattauer, Stuttgart, New York (1978).

    Google Scholar 

  100. T. Matsushima, T. Sugimura, M. Nagao, T. Yahagi, A. Shirai, and M. Sawamura, in: Short-term Mutagenicity Tests for Detecting Carcinogens (K. Norpoth and R. C. Garner, eds.), pp. 273–285, Springer-Verlag, Berlin, Heidelberg (1979).

    Google Scholar 

  101. T. Kuroki, C. Malaveille, C. Drevon, C. Piccoli, M. Macleod, and J. K. Selkirk, Critical importance of microsome concentration in mutagenesis assay with V79 Chinese hamster cells, Mutat. Res. 63, 259–272 (1979).

    Google Scholar 

  102. G. Parry, D. N. Palmer, and D.J. Williams, Ligand partitioning into membranes: Its significance in determining K m and K s values for cytochrome P-450 and other membrane bound receptors and enzymes, FEBS Lett. 67, 123–129 (1976).

    Google Scholar 

  103. T. Wolff, in: Industrial and Environmental Xenobiotics, Excerpta Medica Int. Congr. Ser. No. 440, pp. 196–199, Elsevier/North-Holland, Amsterdam, Oxford (1977).

    Google Scholar 

  104. F.J. Wiebel, J. C. Leutz, L. Diamond, and H. V. Gelboin, Aryl hydrocarbon (benzo[a] pyrene) hydroxylase in microsomes from rat tissues: Differential inhibition and stimulation by benzo flavones and organic solvents, Arch. Biochem. Biophys. 144, 78–86 (1971).

    Google Scholar 

  105. T. Yahagi, M. Nagao, Y. Seino, T. Matsushima, T. Sugimura, and M. Okada, Mutagenicities of N-nitrosamines on Salmonella, Mutat. Res. 48, 121–130 (1977).

    Google Scholar 

  106. M. J. Ashwood-Smith, Stability of frozen microsome preparations for use in the Ames Salmonella mutagenicity assay, Mutat. Res. 69, 199–200 (1980).

    Google Scholar 

  107. J. M. Tredger and R. S. Chabra, Preservation of various microsomal drug metabolizing components in tissue preparations from the livers, lungs and small intestines of rodents, Drug Metab. Dispos. 4(5), 451–459 (1976).

    Google Scholar 

  108. D. L. Stout and F. F. Becker, Metabolism of 2-aminofluorene and 2-acetylaminofluorene to mutagens by rat hepatocyte nuclei, Cancer Res. 39, 1168–1173 (1979).

    Google Scholar 

  109. A.-M. Camus, Activité mutagène et métabolisation des N-nitrosamines in vitro, Thèse 3e cycle, Université Claude Bernard, Lyon (1977).

    Google Scholar 

  110. P. J. van Bladeren, A. van der Gen, D. D. Breimer, and G. R. Mohn, Stereoselective activation of vicinal dihalogen compounds to mutagens by glutathione conjugation, Biochem. Pharmacol. 28, 2521–2524 (1979).

    Google Scholar 

  111. A. W. Wood, W. Levin, A. Y. H. Lu, H. Yagi, O. Hernandez, D. M. Jerina, and A. H. Conney, Metabolism of benzo[a]pyrene and benzo[a]pyrene derivatives to mutagenic products by highly purified hepatic microsomal enzymes,J. Biol. Chem. 251, 4882–4890 (1976).

    Google Scholar 

  112. M. Nagao, Y. Takahashi, H. Yamanaka, and T. Sugimura, Mutagens in tea and coffee, Mutat. Res. 68, 101–106 (1979).

    Google Scholar 

  113. T. Matsushima, H. Matsumoto, A. Shirai, M. Sawamura, and T. Sugimura, Mutagenicity of the naturally occurring carcinogen cycasin and synthetic methylazoxy-methanol conjugates in Salmonella typhimurium, Cancer Res. 39, 3780–3782 (1979).

    Google Scholar 

  114. C. Malaveille, G. Brun, G. Kolar, and H. Bartsch, Studies on ring-substituted 3-methyl-1-phenyltriazenes: Mutagenic and alkylating activities of the proximate carcinogenic metabolites of the parent dimethyl compounds (submitted 1981).

    Google Scholar 

  115. J. M. Plewa, Activation of chemicals into mutagens by green plants: A preliminary discussion, Environ. Health Perspect. 27, 45–50 (1978).

    Google Scholar 

  116. R. T. Williams, in: Fundamentals of Drug Metabolism and Drug Disposition (B. N. LaDu, H. G. Mandel, and E. L. Way, eds.), pp. 187–205, Williams & Wilkins, Baltimore (1971).

    Google Scholar 

  117. M. J. Privai, A. T. Sheldon Jr., and V. King, The effect of species used as the source for S-9 on the mutagenicity of dialkylnitrosamines in the Salmonella plate assay, Abstracts of the 10th Annual Meeting of Environmental Mutagen Society, New Orleans, Louisiana (March 1979), p. 68.

    Google Scholar 

  118. T. Matsushima, T. Yahagi, Y. Takamoto, M. Nagao, and T. Sugimura, Species differences in microsomal activation of mutagens and carcinogens with special reference to new potent mutagens from pyrolysates of amino acids and proteins in: Microsomes, Drug Oxidations and Chemical Carcinogenesis, Vol. II (M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gilette, and J. O’Brien, eds.) (4th International Symposium on Microsome and Drug Oxidations), pp. 1093–1102, Academic Press, New York (1980).

    Google Scholar 

  119. H. Bartsch, C. Malaveille, and R. Montesano, In vitro metabolism and microsome-mediated mutagenicity of dialkylnitrosamines in rat, hamster, and mouse tissues, Cancer Res. 35, 644–651 (1975).

    Google Scholar 

  120. A. Camus, B. Bertram, F. W. Krüger, C. Malaveille, and H. Bartsch, Mutagenicity of β-oxidized N,N-di-n-propylnitrosamine derivatives in S. typhimurium mediated by rat and hamster tissues, Z. Krebsforsch. 86, 293–302 (1976).

    Google Scholar 

  121. J. Ashby and J. A. Styles, Does carcinogenic potency correlate with mutagenic potency in the Ames assay?, Nature (London) 271, 425–454 (1978).

    Google Scholar 

  122. D. J. Brusick, in: Toxicology Annual, Vol. 2 (C. L. Winek and S. P. Shanor, eds.), pp. 79–109, Marcel Dekker, New York, Basel (1977).

    Google Scholar 

  123. D. P. H. Hsieh, J. J. Wong, Z. A. Wong, C. Michas, and B. H. Ruebner, in: Origins of Human Cancer (H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 697–707, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).

    Google Scholar 

  124. H. Bartsch, C. Malaveille, R. Montesano, and L. Tomatis, Tissue-mediated mutagenicity of vinylidene chloride and 2-chlorobutadiene in Salmonella typhimurium, Nature (London) 255, 641–643 (1975).

    ADS  Google Scholar 

  125. IARC, Some Monomers, Plastics and Synthetic Elastomers and Acrolein, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 19, International Agency for Research on Cancer, Lyon, France (1979).

    Google Scholar 

  126. M. R. Juchau, J. DiGiovanni, M.J. Namkung, and A. H. Jones, A comparison of the capacity of fetal and adult liver, lung and brain to convert polycyclic aromatic hydrocarbons to mutagenic and cytotoxic metabolites in mice and rats, Toxicol. Appl. Pharmacol. 49, 171–178 (1979).

    Google Scholar 

  127. D. Brusick, D. Jagannath, and U. Weekes, The utilization of in vitro mutagenesis techniques to explain strain, age and sex related differences in dimethylnitrosamine tumor susceptibilities in mice, Mutat. Res. 41, 51–60 (1976).

    Google Scholar 

  128. J. J. Hutton, J. Meier, and C. Hackney, Comparison of the in vitro mutagenicity and metabolism of dimethylnitrosamine and benzo[a]pyrene in tissues from inbred mice treated with phenobarbital, 3-methylcholanthrene or polychlorinated biphenyls, Mutat. Res. 66, 75–94 (1979).

    Google Scholar 

  129. U. Y. Weekes, Metabolism of dimethylnitrosamine to mutagenic intermediates by kidney microsomal enzymes and correlation with reported host susceptibility to kidney tumors, J. Natl. Cancer Inst. 55, 1199–1201 (1975).

    Google Scholar 

  130. C. Pueyo, D. Frezza, and B. Smith, Evaluation of three metabolic activation systems by a forward mutation assay in Salmonella, Mutat. Res. 64, 183–194 (1979).

    Google Scholar 

  131. H. Bartsch, G. P. Margison, C. Malaveille, A.-M. Camus, G. Brun, and J. M. Margison, Some aspects of metabolic activation of chemical carcinogens in relation to their organ specificity, Arch. Toxicol. 39, 51–63 (1977).

    Google Scholar 

  132. W.-F. Fang and H. W. Strobel, Activation of carcinogens and mutagens by rat colon mucosa, Cancer Res. 38, 2939–2944 (1978).

    Google Scholar 

  133. E. C. McCoy, L. A. Petrullo, and H. S. Rosenkranz, The demonstration of a cooperative action of bacterial and intestinal mucosa enzymes in the activation of mutagens, Biochem. Biophys. Res. Commun. 89, 859–862 (1979).

    Google Scholar 

  134. D. G. Scarpelli, M. S. Rao, V. Subbarao, M. Beversluis, D. P. Gurka, and P. F. Hollenberg, Activation of nitrosamines to mutagens by postmitochondrial fraction of hamster pancreas, Cancer Res. 40, 67–74 (1980).

    Google Scholar 

  135. A.-M. Camus, W. G. Pyerin, P. L. Grover, P. Sims, C. Malaveille, and H. Bartsch, Mutagenicity of benzo[a]pyrene 7,8-dihydrodiol and 7,12-dimethylbenz[a]anthracene 3,4-dihydrodiol in S. typhimurium mediated by microsomes from rat liver or mouse skin, Chem.-Biol. Interact. 32, 257–265 (1980).

    Google Scholar 

  136. P. Czygan, H. Greim, A. J. Garro, F. Hutterer, J. Rudick, F. Schaffner, and H. Popper, Cytochrome P-450 content and the ability of liver microsomes from patients undergoing abdominal surgery to alter the mutagenicity of a primary and a secondary carcinogen,J. Natl. Cancer Inst. 51, 1761–1764 (1973).

    Google Scholar 

  137. E. Dybing, C. von Bahr, T. Aune, H. Glaumann, D. S. Levitt, and S. S. Thorgeirsson, In vitro metabolism and activation of carcinogenic aromatic amines by subcellular fractions of human liver, Cancer Res. 39, 4206–4211 (1979).

    Google Scholar 

  138. T. Tang and M. A. Friedman, Carcinogen activation by human liver enzymes in the Ames mutagenicity test, Mutat. Res. 46, 387–394 (1977).

    Google Scholar 

  139. C. Y. Wang, R. C. Benzon Jr., and G. T. Bryan, Mutagenicity for Salmonella typhimurium of urine obtained from humans receiving nitrofurantoin,J. Natl. Cancer Inst. 58, 871–873 (1977).

    Google Scholar 

  140. M. S. Legator, T. H. Connor, and M. Stoeckel, Detection of mutagenic activity of metronidazole and niridazole in body fluids of humans and mice, Science 188, 1118–1119(1975).

    ADS  Google Scholar 

  141. W. T. Speck, A. B. Stein, and H. S. Rosenkranz, Mutagenicity of metronidazole: Presence of several active metabolites in human urine,J. Natl. Cancer Inst. 56, 283–284 (1976).

    Google Scholar 

  142. C. C. Harris, I. C. Hsu, G. D. Stoner, B. F. Trump, and J. K. Selkirk, Human pulminary alveolar macrophages metabolize benzo[a]pyrene to proximate and ultimate mutagens, Nature (London) 272, 633–634 (1978).

    ADS  Google Scholar 

  143. I. C. Hsu, G. D. Stoner, H. Antrup, B. F. Trump, J. K. Selkirk, and C. C. Harris, Human bronchus-mediated mutagenesis of mammalian cells by carcinogenic polynuclear aromatic hydrocarbons, Proc. Natl. Acad. Sci. U.S.A. 75, 2003–2007 (1978).

    ADS  Google Scholar 

  144. R. C. Garner, E. C. Miller, and J. A. Miller, Liver microsome metabolism of aflatoxin B1 to a reactive derivative toxic to 5. typhimurium TA1530, Cancer Res. 32, 2058–2066 (1972).

    Google Scholar 

  145. J.J. Hutton and C. Hackney, Metabolism of cigarette smoke condensates by human and rat homogenates to form mutagens detectable by Salmonella typhimurium TA 1538, Cancer Res. 35, 2461–2468 (1975).

    Google Scholar 

  146. E. Yamasaki and B.N. Ames, The concentration of mutagens from urine by XAD-2 adsorption: Cigarette smokers have mutagenic urine, Proc. Natl. Acad. Sci. U.S.A. 74, 3555–3559 (1977).

    ADS  Google Scholar 

  147. R. R. Guerrero, D. E. Rounds, and T. C. Hall, Bioassay procedure for the detection of mutagenic metabolites in human urine with the use of sister chromatid exchange analysis J. Natl. Cancer Inst. 62, 805–810 (1979).

    Google Scholar 

  148. V. Minnich, M. E. Smith, D. Thompson, and S. Kornfeld, Detection of mutagenic activity in human urine using mutant strains of Salmonella typhimurium, Cancer 38, 1253–1258 (1976).

    Google Scholar 

  149. A. H. Conney and W. Levin, in: Chemical Carcinogenesis Essays, IARC Sci. Publ. No. 10 (R. Montesano and L. Tomatis, eds.), pp. 3–24, International Agency for Research on Cancer, Lyon, France (1974).

    Google Scholar 

  150. R. J. Bonney, J. E. Becker, P. R. Walker, and V. R. Potter, Primary monolayer cultures of adult liver parenchymal cells suitable for study of the regulation of enzyme synthesis, In Vitro 9, 399–413 (1974).

    Google Scholar 

  151. B. A. Laishes and G. M. Williams, Conditions affecting primary cell culture of functional adult rat hepatocytes. I. The effect of insulin, In Vitro 12, 521–532 (1976).

    Google Scholar 

  152. B. A. Laishes and G. M. Williams, Conditions affecting primary cell cultures of functional adult rat hepatocytes. II. Dexamethasone enhanced longevity and maintenance of morphology, In Vitro 12, 821–832 (1976).

    Google Scholar 

  153. G. Michalopoulos and H. C. Pitot, Primary culture of parenchymal hepatocytes on collagen membranes: Morphological and biochemical observations, Exp. Cell Res. 94, 70–78 (1975).

    Google Scholar 

  154. G. Michalopoulos, G. L. Sattler, and H. C. Pitot, Maintenance of microsomal cytochrome b5 and P-450 in primary cultures of parenchymal liver cells on collagen membranes, Life Sci. 18, 1139–1144 (1976).

    Google Scholar 

  155. P. S. Guzelian, D. M. Bissell, and U. A. Meyer, Drug metabolism in adult rat hepatocytes in primary monolayer culture, Gastroenterology 72, 1232–1239 (1977).

    Google Scholar 

  156. G. Michalopoulos, C. A. Sattler, G. L. Sattler, and H. C. Pitot, Cytochrome P-450 induction by phenobarbital and 3-methyl-cholanthrene in primary cultures of hepatocytes, Science 193, 907–909 (1976).

    ADS  Google Scholar 

  157. G. M. Decad, D. P. H. Hsieh, and J. L. Byard, Maintenance of cytochrome P-450 and metabolism of aflatoxin B1 in primary hepatocyte cultures, Biochem. Biophys. Res. Commun. 78, 279–287 (1977).

    Google Scholar 

  158. G. Michalopoulos, G. Sattler, C. Sattler, and H. C. Pitot, Interaction of chemical carcinogens and drug-metabolizing enzymes in primary cultures of hepatic cells from the rat, Am. J. Pathol. 85, 755–112 (1976).

    Google Scholar 

  159. G. Michalopoulos, G. Sattler, L. O’Connor, and H. C. Pitot, Unscheduled DNA-synthesis induced by procarcinogens in suspensions and primary cultures of hepatocytes on collagen membranes, Cancer Res. 38, 1866–1871 (1978).

    Google Scholar 

  160. R. Langenbach, L. Malick, A. Tompa, C. Kuszynski, H. Freed, and E. Huberman, Maintenance of adult rat hepatocytes on C3H 10T1/2 cells, Cancer Res. 39, 3509–3514 (1979).

    Google Scholar 

  161. S. Mondai, J. R. Lillehaug, and C. Heidelberger, Cell mediated activation of aflatoxin B1 to transform C3H 10T1/2 cells, Proc. Am. Assoc. Cancer Res. 20, 62 (1979).

    Google Scholar 

  162. W. F. Benedict, J. E. Gielen, I. S. Owens, A. Niwa, and D. W. Nebert, Aryl hydrocarbon hydroxylase induction in mammalian liver cell culture. IV. Stimulation of the enzyme activity in established cell lines derived from rat or mouse hepatoma and from normal rat liver, Biochem. Pharmacol. 22, 2766–2769 (1973).

    Google Scholar 

  163. T. Kuroki, C. Drevon, L. Saint Vincent, L. Tomatis, and R. Montesano, Studies on the use of liver parenchymal cells in in vitro carcinogenesis, Coll. Int. CNRS 256, 307–314 (1977).

    Google Scholar 

  164. E. Huberman and L. Sachs, Cell mediated mutagenesis of mammalian cells with chemical carcinogens, Int. J. Cancer 13, 326–333 (1974).

    Google Scholar 

  165. J. K. Selkirk, Divergence of metabolic activation systems for short-term mutagenesis assays, Nature (London) 270, 604–607 (1977).

    ADS  Google Scholar 

  166. R. Langenbach, H. J. Freed, D. Raveh, and E. Huberman, Cell specificity in metabolic activation of aflatoxin B1 and benzo[a]pyrene to mutagens for mammalian cells, Nature (London) 276, 277–280 (1978).

    ADS  Google Scholar 

  167. R. F. Newbold, C. B. Wigley, M. H. Thompson, and P. Brookes, Cell-mediated mutagenesis in cultured Chinese hamster cells by carcinogenic polycyclic hydrocarbons: Nature and extent of the associated hydrocarbon-DNA reaction, Mutat. Res. 43, 101–116(1977).

    Google Scholar 

  168. C. A. Reznikoff, D. W. Brankow, and C. Heidelberger, Establishment and characterization of a clone line of C3H mouse embryo cells sensitive to post-confluence inhibition of division, Cancer Res. 33, 3231–3238 (1973).

    Google Scholar 

  169. C. A. Reznikoff, J. S. Bertram, D. W. Brankow, and C. Heidelberger, Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post confluence inhibition of cell division, Cancer Res. 33, 3239–3249 (1973).

    Google Scholar 

  170. G. Gehly, W. Fahl, C. R. Jefcoate, and C. Heidelberger, The metabolism of benzo[a] pyrene by cytochrome P-450 in transformable and non-transformable C3H mouse fibroblasts,J. Biol. Chem. 254, 5041–5048 (1979).

    Google Scholar 

  171. H. S. Brown, A. M. Jeffrey, and I. B. Weinstein, Formation of DNA adducts in 10T1/2 mouse embryo fibroblasts incubated with benzo[a]pyrene dihydrodiol oxide derivatives, Cancer Res. 38, 1673–1677 (1979).

    Google Scholar 

  172. G. M. Williams, Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell culture, Cancer Res. 37, 1845–1851 (1977).

    Google Scholar 

  173. J. D. Yager and J. A. Miller Jr., DNA repair in primary cultures of rat hepatocytes, Cancer Res. 38, 4385–4394 (1978).

    Google Scholar 

  174. D. A. Casciano, J. A. Farr, J. W. Oldham, and M. D. Cave, 2-Acetylaminofluorene-induced unscheduled DNA synthesis in hepatocytes isolated from 3-methylcholan-threne treated rats, Cancer Lett. 5, 173–178 (1978).

    Google Scholar 

  175. G. M. Williams, Carcinogen-induced DNA repair in primary rat liver cell cultures: A possible screen for chemical carcinogens, Cancer Lett. 1, 231–236 (1976).

    Google Scholar 

  176. M. Namba, H. Masuji, and J. Sato, Carcinogenesis in tissue culture. IX. Malignant transformation of cultured rat cells treated with 4-nitroquinoline 1-oxide, Jpn. J. Exp. Med. 39, 253–265 (1969).

    Google Scholar 

  177. H. Katsuta and T. Takaoka, Carcinogenesis in tissue culture. XIV. Malignant transformation of rat liver parenchymal cells treated with 4-nitroquinoline 1-oxide in tissue culture,J. Natl. Cancer Inst. 49, 1563–1576 (1972).

    Google Scholar 

  178. G. M. Williams, J. Elliott, and J. H. Weisburger, Carcinoma after malignant conversion in vitro of epithelial-like cells from rat liver following exposure to chemical carcinogens, Cancer Res. 33, 606–612 (1973).

    Google Scholar 

  179. R. Montesano, L. Saint Vincent, and L. Tomatis, Malignant transformation in vitro of rat liver cells by dimethylnitrosamine and N-methyl-N′-nitrosoguanidine, Br. J. Cancer 28, 215–220 (1973).

    Google Scholar 

  180. Y. Berwald and L. Sachs, In vitro transformation of normal cells to tumor cells by carcinogenic hydrocarbons,J. Natl. Cancer Inst. 35, 641–661 (1965).

    Google Scholar 

  181. J. A. DiPaolo, R. L. Nelson, and P. J. Donovan, In vitro transformation of Syrian hamster embryo cell by diverse chemical carcinogens, Nature (London) New Biol. 235, 278–280 (1972).

    ADS  Google Scholar 

  182. R. J. Pienta, J. A. Poiley, and W. B. Lebherz III, Morphological transformation of early passage golden Syrian hamster embryo cells derived from cryopreserved primary cultures as a reliable in vitro bioassay for identifying diverse carcinogens, Int. J. Cancer 19, 642–655 (1977).

    Google Scholar 

  183. T. Kuroki and H. Sato, Transformation and neoplastic development in vitro of hamster embryonic cells by 4-nitroquinoline 1-oxide and its derivatives,J. Natl. Cancer Inst. 41, 53–71 (1968).

    Google Scholar 

  184. J. Kamahora and T. Kakunaga, Malignant transformation of hamster embryonic cells in vitro by 4-nitroquinoline 1-oxide, Biken J. 10, 219–242 (1967).

    Google Scholar 

  185. W. F. Benedict, A. Banerjee, A. Gardner, and P. A. Jones, Induction of morphological transformation in mouse C3H/10T1/2 clone 8 cells and chromosomal damage in hamster A(T1)Cl-3 cells by cancer chemotherapeutic agents, Cancer Res. 37, 2202–2208 (1977).

    Google Scholar 

  186. P. A. Jones, W. F. Benedict, M. S. Baker, S. Mondai, U. Rapp, and C. Heidelberger, Oncogenic transformation of C3H/10T1/2 clone 8 mouse embryo cells by halogenated pyrimidine nucleosides, Cancer Res. 36, 101–107 (1976).

    Google Scholar 

  187. P. A. Jones, M. S. Baker, J. S. Bertram, and W. F. Benedict, Cell cycle-specific oncogenic transformation of C3H/10T1/2 clone 8 mouse embryo cells by 1-β-D-arabinofuranosylcytosine, Cancer Res. 37, 2214–2217 (1977).

    Google Scholar 

  188. J. R. Landolph and C. Heidelberger, Chemical carcinogens produce mutations to ouabain resistance in transformable C3H/10Ti C18 mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 76, 930–934 (1979).

    ADS  Google Scholar 

  189. T. Kuroki and C. Drevon, Direct or proximate contact between cells and metabolic activation systems is required for mutagenesis, Nature (London) 271, 368–370 (1978).

    ADS  Google Scholar 

  190. R. H. San and G. M. Williams, Rat hepatocyte primary culture-mediated mutagenesis of adult rat liver epithelial cells by procarcinogens, Proc. Soc. Exp. Biol. Med. 156, 534–538 (1977).

    Google Scholar 

  191. J. A. Polley, R. Raineri, and R. J. Pienta, Use of hamster hepatocytes to metabolize carcinogens in an in vitro bioassay,J. Natl. Cancer Inst. 63, 519–524 (1979).

    Google Scholar 

  192. E. Huberman and L. Sachs, Mutability of different genetic loci in mammalian cells by metabolically activated carcinogenic polycyclic hydrocarbons, Proc. Natl. Acad. Sci. U.S.A. 73, 188–192 (1976).

    ADS  Google Scholar 

  193. Y. Nishi, M. Mori, and N. Inui, Chromosome aberrations induced by benzo[a]pyrene in a feeder cell-mediated assay, Toxicol. Lett. 4, 275–280 (1979).

    Google Scholar 

  194. C. A. Jones and E. Huberman, A sensitive hepatocyte-mediated assay for the metabolism of nitrosamines to mutagens for mammalian cells, Cancer Res. 40, 406–411 (1980).

    Google Scholar 

  195. R. Langenbach, H. J. Free, and E. Huberman, Liver cell-mediated mutagenesis of mammalian cells by liver carcinogens, Proc. Natl. Acad. Sci. U.S.A. 75, 2864–2867 (1978).

    ADS  Google Scholar 

  196. C. A. H. Bigger, J. E. Tomaszewski, and A. Dipple, Differences between products of binding of 7,12-dimethylbenz[a]anthracene to DNA in mouse skin and in rat liver microsomal system, Biochem. Biophys. Res. Commun. 80, 229–235 (1978).

    Google Scholar 

  197. T. Kuroki, C. Drevon, and R. Montesano, Microsome-mediated mutagenesis in V79 Chinese hamster cells by various nitrosamines, Cancer Res. 37, 1044–1050 (1977).

    Google Scholar 

  198. E. Dybing, E. Soderlund, L. T. Haug, and S. Thorgeirsson, Metabolism and activation of 2-acetylaminofluorene in isolated rat hepatocytes, Cancer Res. 39, 3268–3275 (1979).

    Google Scholar 

  199. R.-E. Brouns, R. P. Bos, P. J. L. van Gemert, E. W. M. Yih-van de Hurk, and P. T. Henderson, Mutagenic effects of benzo[a]pyrene after metabolic activation by hepatic 9000 × g supernatants or intact hepatocytes, Mutat. Res. 62, 19–26 (1979).

    Google Scholar 

  200. R. L. Capizzi, B. Papirmeister, J. M. Mullins, and E. Cheng, The detection of chemical mutagens using the L5178Y/Asn- murine leukemia in vitro and in a hostmediated assay, Cancer Res. 34, 3073–3082 (1974).

    Google Scholar 

  201. M. G. Gabridge and M. S. Legator, A host mediated assay for the detection of mutagenic compounds, Proc. Soc. Exp. Biol. Med. 130, 831–834 (1969).

    Google Scholar 

  202. G. R. Mohn, Actual status of mutagenicity testing with the host-mediated assay, Arch. Toxicol. 38, 109–133 (1977).

    Google Scholar 

  203. V. F. Simmon, H. S. Rosenkranz, E. Zeiger, and L. A. Poirier, Mutagenic activity of chemical carcinogens and related compounds in the intraperitoneal host-mediated assay,J. Natl. Cancer Inst. 62, 911–918 (1979).

    Google Scholar 

  204. B. J. Dean and K. R. Senner, Detection of chemically induced somatic mutation in Chinese hamsters, Mutat. Res. 46, 403–407 (1977).

    Google Scholar 

  205. H. F. Stich and D. Kieser, Use of DNA repair synthesis in detecting organotropic actions of chemical carcinogens, Proc. Soc. Exp. Biol. Med. 145, 1339–1342 (1974).

    Google Scholar 

  206. G. L. Petzold and J. A. Swenberg, Detection of DNA damage induced in vivo following exposure of rats to carcinogens, Cancer Res. 38, 1589–1594 (1978).

    Google Scholar 

  207. N. Inui and Y. Nishi, A short-term test to detect organotropic specificity of carcinogens, Toxicol. Lett. 2, 277–283 (1978).

    Google Scholar 

  208. W. E. Durston and B.N. Ames, A simple method for the detection of mutagens in urine: Studies with the carcinogen 2-acetylaminofluorene, Proc. Natl. Acad. Sci. U.S.A. 71, 737–741 (1974).

    ADS  Google Scholar 

  209. M. S. Legator, L. Truong, and T. H. Connor, in: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 5 (A. Hollaender, ed.), pp. 1–22, Plenum Press, New York (1978).

    Google Scholar 

  210. B. Beije, D. Jenssen, E. Arrhenius, and M.-A. Zetterqvist, Isolated liver perfusion— a tool in mutagenicity testing for the evaluation of carcinogens, Chem.-Biol. Interact. 27, 41–57 (1979).

    Google Scholar 

  211. D. Jenssen, B. Beije, and C. Ramel, Mutagenicity testing on Chinese hamster V-79 cells treated in the in vitro liver perfusion system: Comparative investigation of different in vitro metabolizing systems with dimethylnitrosamine and benzo[a]pyrene, Chem.-Biol. Interact. 27, 27–39 (1979).

    Google Scholar 

  212. J. R. Gillette, in: In vitro Metabolic Activation in Mutagenesis Testing (F. J. de Serres, J. R. Fouts, J. R. Bend, and R. M. Philpot, eds.), pp. 13–54, Elsevier/North-Holland, Amsterdam (1976).

    Google Scholar 

  213. H. W. S. King, M. H. Thompson, and P. Brookes, The benzo[a]pyrene deoxyribon-ucleoside products isolated from DNA after metabolism of benzo[a]pyrene by rat liver microsomes in the presence of DNA, Cancer Res. 34, 1263–1269 (1975).

    Google Scholar 

  214. M. H. Thompson, M. R. Osborne, H. W. S. King, and P. Brookes, The 7-methylbenz[a]anthracene deoxyribonucleoside products isolated from DNA after metabolism of the carcinogen by rat liver microsomes in the presence of DNA. Chem.-Biol. Interact. 14, 13–19 (1976).

    Google Scholar 

  215. R. M. Santella, D. Grunberger, and I. B. Weinstein, DNA-benz[a]pyrene adducts formed in a Salmonella typhimurium mutagenesis assay system, Mutat. Res. 61, 181–189 (1979).

    Google Scholar 

  216. H. Bartsch, C. Malaveille, B. Tierney, P. L. Grover, and P. Sims, The association of bacterial mutagenicity of hydrocarbon-derived “bay-region” dihydrodiols with the Iball indices for carcinogenicity and with the extents of DN A-binding on mouse skin of the parent hydrocarbons, Chem.-Biol. Interact. 26, 185–196 (1979).

    Google Scholar 

  217. W. Levin and A. H. Conney, Stimulatory effect of polycyclic hydrocarbons and aromatic azo derivatives on the metabolism of 7,12-dimethylbenz[a]anthracene, Cancer Res. 27, 1931–1938 (1967).

    Google Scholar 

  218. G. M. Holder, H. Yagi, D. N. Jerina, W. Levin, A. Y. H. Lu, and A. H. Conney, Metabolism of benzo[a]pyrene: Effect of substrate concentration and 3-methylchol-anthrene pretreatment on hepatic metabolism by microsomes from rats and mice, Arch. Biochem. Biophys. 170, 557–566 (1975).

    Google Scholar 

  219. A. H. Neims, M. Warner, P. M. Loughnan, and J. V. Aranda, Developmental aspects of the hepatic cytochrome P-450 monooxygenase system, Annu. Rev. Pharmacol. Toxicol. 1976, 427–445 (1976).

    Google Scholar 

  220. W. Levin and D. Ryan, in: Basic and Therapeutic Aspects of Perinatal Pharmacology (P. L. Morselli, S. Garattini, and F. Sereni, eds.), pp. 265–275, Raven Press, New York (1975).

    Google Scholar 

  221. R. Kato, Drug metabolism under pathological and abnormal physiological states in animals and man, Xenobiotica 7, 25–92 (1977).

    Google Scholar 

  222. G. E. Poley, C. A. Shirely, and E. S. Vesell, Diurnal rhythms of aminopyrine metabolism: Failure of sleep deprivation to affect them, Clin. Pharmacol. Ther. 24, 726–732 (1978).

    Google Scholar 

  223. E. S. Vesell, C. M. Lang, W. J. White, G. T. Passananti, R. N. Hill, T. L. Clemens, D. K. Liu, and W. D. Johnson, Environmental and genetic factors affecting the response of laboratory animals to drugs, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35, 1125–1132(1976).

    Google Scholar 

  224. D. L. Cinti, Agents activating the liver microsomal mixed function oxidase system, Pharmacol. Ther. A 2, 727–749 (1978).

    Google Scholar 

  225. E. S. Vesell, in: Advances in Pharmacology and Therapeutics, Vol. 6 (P. Duchene-Marullaz, ed.), pp. 3–12, Pergamon Press, New York (1978).

    Google Scholar 

  226. J. McCann and B. N. Ames, in: Origins of Human Cancer (H. Hiatt, J. B. Watson, and J. A. Winsten, eds.), pp. 1431–1450, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).

    Google Scholar 

  227. L. Tomatis, N. E. Breslow, and H. Bartsch, Experimental studies in the assessment of human risk, in: Cancer Epidemiology and Prevention (D. Schottenfeld and J. F. Fraumeni, eds.), W. B. Saunders, Philadelphia, London, Toronto (in press) (1981).

    Google Scholar 

  228. S. K. Yang, D. W. McCourt, P. P. Roller, and H. V. Gelboin, Enzymatic conversion of benzo[a]pyrene leading predominantly to the diol-epoxide r-7, t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene through a single enantiomer of r-7, t-8-dihydroxy-7,8-dihydrobenzo[a]pyrene, Proc. Natl. Acad. Sci. U.S.A. 73, 2594–2598 (1976).

    ADS  Google Scholar 

  229. D. R. Thakker, H. Yagi, H. Akagi, M. Koreeda, A. Y. H. Lu, W. Levin, A. W. Wood, A. H. Conney, and D. M. Jerina, Metabolism of benzo[a]pyrene. VI. Stereoselective metabolism of benzo[a]pyrene and benzo[a]pyrene 7,8-dihydrodiol to diol epoxides, Chem.-Biol. Interact. 16, 281–300 (1977).

    Google Scholar 

  230. T. Kuroki, N. Nemoto, and Y. Kitano, Metabolism of benzo[a]pyrene in human epidermal keratinocytes in culture, Carcinogenesis 1, 559–567 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Bartsch, H., Kuroki, T., Roberfroid, M., Malaveille, C. (1982). Metabolic Activation Systems in Vitro for Carcinogen/Mutagen Screening Tests. In: de Serres, F.J., Hollaender, A. (eds) Chemical Mutagens. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6625-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6625-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6627-4

  • Online ISBN: 978-1-4615-6625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics