Skip to main content

Consumption of Atmospheric Nitrogen

  • Chapter

Part of the book series: Bacteria in Nature ((BANA,volume 1))

Abstract

Almost a century ago, Hellriegel and Wilfarth demonstrated that legumes fixed N2 with the aid of microorganisms living in root nodules (Hellriegel, 1886a; Hellriegel and Wilfarth, 1888). They finally explained an observation, made by Boussingault a half-century earlier, that legumes gathered more nitrogen than other plants. Since then, microbiologists, ecologists, chemists, biochemists, agronomists, botanists, geneticists, and, more recently, molecular geneticists have investigated the problems of biological N2 fixation. Our perception of this important process has evolved from the empirical observations of ancient farmers on the beneficial effects that legumes have on the soil to the point today where many of the genes involved in N2 fixation have been isolated and their nucleotide sequences determined. The meaning of nitrogen fixation has changed from the early 19th century to the present. Originally the term implied the fixing of any nitrogen into organic matter, whether combined nitrogen or N2. Today, the term nitrogen fixation is most commonly used when referring to the conversion of N2 to the oxidation state of ammonia—a process carried out biologically only by prokaryotes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkermans, A. D. L., 1971, Nitrogen fixation and nodulation of Alnus and Hippophae under natural conditions, Ph.D. Thesis, Leiden.

    Google Scholar 

  • Akkermans, A. D. L., 1979, Symbiotic nitrogen fixers available for use in temperate forestry, in: Symbiotic Nitrogen Fixation in the Management of Temperate Forests (J. C. Gordon, C. T. Wheeler, and D. A. Perry, eds.), Forest Research Laboratory, Corvallis, Oregon, pp. 23–35.

    Google Scholar 

  • Akkermans, A. D. L., and van Dijk, C., 1981, Non-leguminous root-nodule symbioses with actinomycetes and Rhizobium, in: Nitrogen Fixation, Vol. 1, Ecology (W. J. Broughton, ed.), Clarendon Press, Oxford, pp. 57–103.

    Google Scholar 

  • Aldrich-Blake, R. N., 1932, On the fixation of atmospheric nitrogen by bacteria living symbiot-ically in root nodules of Casuarina equisetifolia, Oxford Forestry Mem. 14: 20 pp.

    Google Scholar 

  • Allen, E. K., and Allen, O. N., 1958, Biological aspects of symbiotic nitrogen fixation, in: Handbuch der Pflanzenphysiologie, Vol. 8, Nitrogen Metabolism (W. Ruhland, ed.), Springer-Verlag, Berlin, pp. 48–118.

    Google Scholar 

  • Allen, M., and Arnon, D., 1955, Studies on nitrogen-fixing blue-green algae. I. growth and nitrogen fixation by Anabaena cylindrica, Plant Physiol. 30: 366–372.

    PubMed  CAS  Google Scholar 

  • Allison, F. E., 1929, Can nodule bacteria of leguminous plants fix atmospheric nitrogen in the absence of the host? J Agr. Res. (U.S.) 39: 893–924.

    CAS  Google Scholar 

  • Allison, F. E., 1947, Azotobacter inoculation of crops. I. Historical, Soil Sci. 64: 413–429.

    CAS  Google Scholar 

  • Allison, F. E., and Morris, H. J., 1930, Nitrogen fixation by blue-green algae, Science 71: 221–223.

    PubMed  CAS  Google Scholar 

  • Allison, F. E., Caddy, V. L., Pinck, L. A., and Armiger, W. H., 1947, Azotobacter inoculation of crops. 2. Effect on crops under greenhouse conditions, Soil Sci. 64: 489–497.

    CAS  Google Scholar 

  • Allison, F. E., Hoover, S. R., and Morris, H. J., 1937, Physiological studies with the nitrogen-fixing algae Nostoc muscorum, Bot. Gaz. 82: 433–463.

    Google Scholar 

  • Alpe, V., and Menozzi, A., 1892, Studi e richerche sulla questione dell’ assimilazione dell’ azoto per parte delle piante, Bol. Not. Agrarie (Rome) 14: 747–779.

    Google Scholar 

  • Atwater, W. O., 1885, On the acquisition of atmospheric nitrogen by plants, Am. Chem. J. 6: 365–388.

    Google Scholar 

  • Atwater, W. O., 1886, On the liberation of nitrogen from its compounds and the acquisition of atmospheric nitrogen by plants, Am. Chem. J. 8: 398–420.

    Google Scholar 

  • Atwater, W. O., and Woods, C. D., 1890, The acquisition of atmospheric nitrogen by plants, Conn. Agr. Expt. Sta. Ann. Rpt. (Storrs), 2: 11–51.

    Google Scholar 

  • Aulie, R. P., 1970, Boussingault and the nitrogen cycle, Proc. American Phil. Soc. 114: 435–479.

    CAS  Google Scholar 

  • Becking, J. H., 1962, Species differences in molybdenum and vanadium requirements and combined nitrogen utilization by Azotobacteriaceae, Plant Soil. 16: 171–201.

    CAS  Google Scholar 

  • Becking, J. H., 1965, Nitrogen fixation and mycorrhiza in podocarpus root nodules, Plant Soil. 23: 213–226.

    Google Scholar 

  • Becking, J. H., 1974, Putative nitrogen fixation in other symbioses, in: The Biology of Nitrogen Fixation (A. Quispel, ed.), American Elsevier, New York, pp. 583–613.

    Google Scholar 

  • Becking, J. H., 1975, Nitrogen fixation in some natural ecosystems in Indonesia, in: Symbiotic Nitrogen Fixation in Plants (P. S. Nutman, ed.), Cambridge University Press, New York, pp. 539–550.

    Google Scholar 

  • Becking, J. H., 1977, Dinitrogen-fixing associations in higher plants other than legumes, in: A Treatise on Dinitrogen Fixation, Section III—Biology (R. W. F. Hardy and W. S. Silver, eds.), John Wiley and Sons, New York, pp. 185–275.

    Google Scholar 

  • Beijerinck, M. W., 1988, Die Bactérien der Papilionaceenknollchen, Bot. Ztg. 46: 726–735, 741-750, 757-771, 781-790, 797-804.

    Google Scholar 

  • Beijerinck, M. W., 1901, Über Oligonitrophile Mikroben, Zentralbl. Bakteriol. 7: 561–582.

    Google Scholar 

  • Benemann, J. R., 1973, Nitrogen fixation in termites, Science 181: 164–165.

    PubMed  CAS  Google Scholar 

  • Benson, D. R., 1978, Root nodules of Myrica pensylvanica (bayberry): structure, ultrastructure, and preparation of nitrogen-fixing homogenates, Ph.D. Thesis, Rutgers University.

    Google Scholar 

  • Benson, D. R., and Eveleigh, D. E., 1979, Nitrogen-fixing homogenates from Myrica pennsylvanica (bayberry) root nodules, Soil Biol. Biochem. 11: 331–334.

    CAS  Google Scholar 

  • Benson, D. R., Arp, D. J., and Burris, R. H., 1980, Cell-free nitrogenase and hydrogenase from actinorhizal root nodules, Science 205: 688–689.

    Google Scholar 

  • Benson, D. R., and Hanna, D., 1983, Frankia diversity in an alder stand as estimated by sodium dodecyl sulfate—Polyacrylamide gel electrophoresis of whole-cell proteins, Can. J. Bot. 61: 2919–2923.

    CAS  Google Scholar 

  • Bergersen, F. J., and Costin, A. B., 1964, Root nodules on Podocarpus lawrencii and their ecological significance, Aust. J. Biol. Sci. 17: 44–48.

    CAS  Google Scholar 

  • Bergersen, F. J., and Hipsley, E. H., 1970, The presence of N2-fixing bacteria in the intestines of man and animals, J. Gen. Microbiol. 60: 61–65.

    PubMed  CAS  Google Scholar 

  • Bergersen, F. J., and Wilson, P. J., 1959, Spectrophotometric studies of the effects of nitrogen on soybean nodule extracts, Proc. Natl. Acad. Sci. U.S.A. 45: 1641–1646.

    PubMed  CAS  Google Scholar 

  • Berkum, P. van, and Bohlool, B. B., 1980, Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses, Microbiol. Rev. 44: 491–517.

    PubMed  Google Scholar 

  • Berthelot, M., 1888, Fixation de l’azote atmosphérique sur la terre végétale, Ann. Chim. Phys. 13: 1–119.

    Google Scholar 

  • Berthelot, M., 1890, Recherches nouvelles sur la fixation de l’azote par la terre végétale et les plantes et sur l’influence de l’électricité sur ce phénomène, Ann. Chim. Phys. 29 (Ser. 6): 434–492.

    Google Scholar 

  • Berthollet, C. L., 1788, Analyse de l’alcali volatil, Histoire Mem. Acad. Roy. des Sciences (Paris), pp. 316–326.

    Google Scholar 

  • Bhat, J., and Palacios, G., 1949, Influence of Aerobacter aerogenes in the nitrogen status of the soil, J. Univ. Bombay 7lB: 84–87; Chem. Abst. 44:779d.

    Google Scholar 

  • Blom, J., 1931, Ein Versuch, die chemischen Vorgange bei der Assimilation des molekularen Stickstoffs durch Microorganism zu erklaren, Zentralbl. Bakt. 84: 60–86.

    CAS  Google Scholar 

  • Bohlool, B. B., and Schmidt, E. L., 1974, Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis, Science 185: 269–271.

    PubMed  CAS  Google Scholar 

  • Bond, G., 1955, An isotopic study of the fixation of nitrogen associated with nodulated plants of Alnus, Myrica and Hippophae, J. Exp. Bot. 6: 303–311.

    CAS  Google Scholar 

  • Bond, G., 1974, Root nodule symbioses with actinomycete-like organisms, in: The Biology of Nitrogen Fixation (A. Quispel, ed.), American Elsevier, New York, pp. 342–378.

    Google Scholar 

  • Bond, G., and Scott, G. D., 1955, An examination of some symbiotic systems for fixation of nitrogen, Ann. Bot. 19: 67–77.

    Google Scholar 

  • Borm, L., 1931, Die wurzelknollchen von Hippophae rhamnoides und Alnus glutinosa, Bot. Arch. 31: 441–488.

    Google Scholar 

  • Bortels, H., 1930, Molybdän als Katalysator bei der biologischen Stickstoffbindung, Arch. Mik-robiol. 1: 333–342.

    CAS  Google Scholar 

  • Bortels, H., 1940, Uber die Bedeutung des Molybdäns fur stickstoffbindende Nostocaceen, Arch. Microbiol. 11: 155–186.

    CAS  Google Scholar 

  • Bottomley, W. B., 1911, The structure and physiological significance of the root-nodules of Myrica gale, Proc. Roy. Soc. (London) 84B: 215–216.

    Google Scholar 

  • Boussingault, J. B., 1836, Recherches sur la quantité d’azote contenue dans les fourrages et leur équivalens, Ann. Chim. Phys. 63 (Ser. 2): 225–244.

    Google Scholar 

  • Boussingault, J. B., 1838a, Recherches chimiques sur la végétation, entreprises dans le but d’examiner si les plantes prennent de l’azote de l’atmosphère, Ann. Chim. Phys. 67 (Ser. 2): 5–54.

    Google Scholar 

  • Boussingault, J. B., 1838b, Recherches chimiques sur la végétation. Troisième Memoire. De la discussion de la valeur relative des assolements par l’analyse élémentaire, C. R. Acad. Sci. (Paris) 7: 1149–1155.

    Google Scholar 

  • Boussingault, J. B., 1838c, Recherches chimiques sur la végétation entreprises dans le but d’examiner si les plants prennent de l’azote de l’atmosphère, Ann. Chim. Phys. 69: 353–367.

    Google Scholar 

  • Boussingault, J. B., 1841, De la discussion de la valeur relative des assolements, par les résultats de l’anayse élémentaire, Ann. Chim. Phys. 1 (Ser. 3): 208–246.

    Google Scholar 

  • Boussingault, J. B., 1853a, Mémoire sur le dosage de l’ammoniaque contenue dans les eaux, Ann. Chim. Phys. 39 (Ser. 3): 257–291.

    Google Scholar 

  • Boussingault, J. B., 1853b, Sur la quantité d’ammoniaque contenue dans l’eau de pluie recueillie loin des villes, C. R. Acad. Sa. (Paris) 37: 207, 208, 798-806.

    Google Scholar 

  • Boussingault, J. B., 1854, Sur la quantité d’ammoniaque dans la pluie, la rosée et le brouillard recueillie loin des villes, Ann. Chim. Phys. 40 (Ser. 3): 257–291.

    Google Scholar 

  • Boussingault, J. B., 1860, Rural Economy, in its Relations with Chemistry, Physics, and Meteorology or, Chemistry Applied to Agriculture, C. M. Saxton, Barker and Co., New York.

    Google Scholar 

  • Boussingault, J. B., 1861, Observations relatives au développement des mycodermes, Ann. Chim. Phys. 61 (Ser. 3): 363–367.

    Google Scholar 

  • Boussingault, J. B., 1886-1891, Agronomie, Chimie Agricole et Physiologie, Gauthier, Paris.

    Google Scholar 

  • Bredemann, G., 1908, Untersuchungen über die Variation und das Stickstoffbindungsvermogen des Bacillus asterosporus A. M. Zentrabi. Bakt. (II) 22: 44–89.

    Google Scholar 

  • Breznak, J. A., 1975, Symbiotic relationships between termites and their intestinal microbiota, in: Symbiosis, (D. H. Jennings and D. L. Lee, eds.), Society of Experimental Biology Series No. 29, Cambridge University Press, New York, pp. 559–580.

    Google Scholar 

  • Breznak, J. A., Brill, W. J., Mertins, J. W., and Coppel, H. C., 1973, Nitrogen fixation in termites, Nature (London) 244: 577–580.

    CAS  Google Scholar 

  • Brightman, F. H., 1959, Neglected plants—lichens, New Biol. 29: 75–94.

    Google Scholar 

  • Brouzes, R., Lasik, J., and Knowles, R., 1969, The effect of organic amendment, water content, and oxygen on the incorporation of 15N2 by some agricultural and forest soils, Can. J. Microbiol. 15: 899–905.

    PubMed  CAS  Google Scholar 

  • Bulen, W. A., Burns, R. C., and LeComte, J. R., 1965, Nitrogen fixation: hydrosulfite as electron donor with cell-free preparation of Azotobacter vinelandii and Rhodospirillum rubrum, Proc. Natl. Acad. Sci. USA 53: 532–539.

    PubMed  CAS  Google Scholar 

  • Bulen, W. A., and LeComte, J. R., 1966, The nitrogenase system from Azotobacter: two enzyme requirements for N2 reduction, ATP-dependent H2 evolution and ATP hydrolysis, Proc. Nat. Acad. Sci. USA 56: 979–986.

    PubMed  CAS  Google Scholar 

  • Burk, D., 1934, Azotase and nitrogenase in Azotobacter, Ergeb. Enzymforsch. 3: 23–56.

    CAS  Google Scholar 

  • Burns, R. C., and Hardy, R. W. F., 1975, Nitrogen Fixation in Bacteria and Higher Plants, Springer Verlag, New York.

    Google Scholar 

  • Burris, R. H., 1966, Biological nitrogen fixation, Ann. Rev. Plant Physiol. 17: 155–184.

    CAS  Google Scholar 

  • Burris, R. H., 1974, Biological nitrogen fixation, 1924-1974, Plant Physiol. 54: 443–449.

    PubMed  CAS  Google Scholar 

  • Burris, R. H., 1975, The acetylene-reduction technique, in: Nitrogen fixation by Free-Living Microorganisms (W. D. P. Stewart, ed.), Cambridge University Press, New York, pp. 249–257.

    Google Scholar 

  • Burris, R. H., 1976, Nitrogen fixation by blue-green algae of Lizard Island area of the Great Barrier Reef, Aust.J. Plant Physiol. 3: 41–51.

    CAS  Google Scholar 

  • Burris, R. H., 1977, A synthesis paper on non-leguminous N2-fixing systems, in: Recent Developments in Nitrogen Fixation (W. E. Newton, J. R. Postgate, and C. Rodriguez-Barrueco, eds.), Academic Press, New York, pp. 487–511.

    Google Scholar 

  • Burris, R. H., 1979, The early biochemistry, in: A Treatise on Dinitrogen Fixation, Sections I and II: Inorganic and Physical Chemistry and Biochemistry (R. W. F. Hardy, F. Bottomely, and R. C. Burns, eds.), John Wiley and Sons, pp. 383–398.

    Google Scholar 

  • Burris, R. H., and Miller, C. E., 1941, Application of N15 to the study of biological nitrogen fixation, Science 93: 114–115.

    PubMed  CAS  Google Scholar 

  • Burris, R. H., and Wilson, P. W., 1946, Ammonia as an intermediate in nitrogen fixation by Azotobacter, J. Bacteriol. 52: 505–512.

    CAS  Google Scholar 

  • Burris, R. H., Eppling, F. J., Wahlin, H. B., and Wilson, P. W., 1942, Studies of biological nitrogen fixation with isotopic nitrogen, Proc. Soil Sci. Soc. Am. 7: 258–262.

    Google Scholar 

  • Burris, R. H., Eppling, T. S., Wahlin, H. B., and Wilson, P. W., 1943, Detection of nitrogen fixation with isotopic nitrogen, J. Biol. Chem. 148: 349–357.

    CAS  Google Scholar 

  • Callaham, D., DelTredici, P., and Torrey, J. G., 1978, Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia, Science 199: 899–902.

    PubMed  CAS  Google Scholar 

  • Callaham, D., Newcomb, W., Torrey, J. G., and Peterson, R. L., 1979, Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica, and Comptonia, Bot. Gaz. 140 (Suppl.): S1–S9.

    Google Scholar 

  • Capone, D. G., Taylor, D. L., and Taylor, B. F., 1977, Nitrogen fixation (acetylene reduction) associated with macroalgae in a coral-reef community in the Bahamas, Mar. Biol. 40: 29–32.

    CAS  Google Scholar 

  • Cappelletti, C., 1923a, Reazioni immunitarie nei tubercoli radicali delle Leguminose, Atti Soc. Medico-Chirurgka Padova, pp. 5–7.

    Google Scholar 

  • Capelletti, C., 1923b, Reazioni immunitarie nei tubercoli radicali delle Leguminose, Gior. Biol. e Med. Sper. l:Fasc. 2, 1–16.

    Google Scholar 

  • Capelletti, C., 1924, Reazioni immunitarie nei tubercoli radicali di Leguminose, Ann. Bot. (Rome) 16: 1–16.

    Google Scholar 

  • Carnahan, J. E., Mortenson, L. E., Hower, H. F., and Castle, J. E., 1960, Nitrogen fixation in cell-free extracts of Clostridium pasteurianum, Biochim. Biophys. Acta 44: 520–535.

    PubMed  CAS  Google Scholar 

  • Caron, A., 1895, Landwirtschaftlich—bakteriologische Probleme, Landw. Vers. Sta. 45: 401–418.

    Google Scholar 

  • Carpenter, E.J.,and McCarthy, J. J., 1975, Nitrogen fixation and uptake of combined nitrogenous nutrients by Oscillatoria (Trichodesmium) thiebautii in the Western Sargasso Sea, Limnol. Ocean-ogr. 20: 389–401.

    CAS  Google Scholar 

  • Carter, E. G., and Greaves, J. D., 1928, The nitrogen-fixing organisms of an arid soil, Soil Sci. 26: 179–192.

    CAS  Google Scholar 

  • Chaudari, H., 1931, Recherches sur la bactérie des nodosités radiculaires du Casuarina equisetifolia (Fort.), Bull. Soc. Bot. France 78: 447–452.

    Google Scholar 

  • Citernesi, U., Neglia, R., Seritti, A., Lepidi, A. A., Filippi, C., Bagnoli, G., Nuti, M. P., and Galluzzi, R., 1977, Nitrogen fixation in the gastro-enteric cavity of soil animals, Soil Biol. Biochem. 9: 71–72.

    Google Scholar 

  • Cleveland, L. R., 1925, The ability of termites to live perhaps indefinitely on a diet of pure cellulose, Biol. Bull. Manne Biol. Lab. (Woods Hole) 48: 289–293.

    CAS  Google Scholar 

  • Cohen, E., Okon, Y., Kigel, J., Nur, I., and Henis, Y., 1980, Increases in dry weight and total nitrogen content in Zea mays and Setaria italicn associated with nitrogen fixing Azospirillum spp., Plant Physiol. 66: 246–249.

    Google Scholar 

  • Dalton, D. A., and Zobel, D. B., 1977, Ecological aspects of nitrogen fixation by Purshia tridentata, Plant Soil 48: 57–80.

    CAS  Google Scholar 

  • Davy, H., 1836, Elements of Agricultural Chemistry, 5th Ed., Longmans, London.

    Google Scholar 

  • Day, J. M., Harris, D., Dart, P. J., and van Berkum, P., 1975, The Broadbalk experiment. An investigation of nitrogen gains from nonsymbiotic nitrogen fixation, in: Nitrogen Fixation by Free-living Micro-organisms (W. D. P. Stewart, ed.), Cambridge University Press, New York, pp. 71–84.

    Google Scholar 

  • De, P. K., 1936, The problem of the nitrogen supply of rice. I. Fixation of nitrogen in the rice soils under water-logged conditions, Indian J. Agr. Sci. 6: 1237–1245.

    CAS  Google Scholar 

  • De, P. K., 1939, The role of blue-green algae in nitrogen fixation in rice-fields, Proc. Roy. Soc. (London) Ser. B. 127: 121–139.

    CAS  Google Scholar 

  • Delwiche, C. C., and Wijler, J., 1956, Non-symbiotic nitrogen fixation in soil, Plant Soil 7: 113–129.

    CAS  Google Scholar 

  • Dénarié, J., Boistard, P., Casse-Delbart, F., Atherly, A. G., Berry, J. O., and Russell, P., 1981, Indigenous plasmids ofRhizobium, in: Biology of the Rhizobiaceae (K. L. Giles and A. B. Atherly, eds.), Academic Press, New York, pp. 225–246.

    Google Scholar 

  • Dilworth, M. J., 1966, Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum, Biochim. Biophys. Acta 127: 285–294.

    PubMed  CAS  Google Scholar 

  • Dobereiner, J., 1961, Nitrogen fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugar cane, Plant Soil 14: 211–217.

    Google Scholar 

  • Dobereiner, J., 1977, Physiological aspects of N2-fixation in grass-bacteria associations, in: Recent Developments in Nitrogen Fixation (W. Newton and J. R. Postgate, eds.), Academic Press, New York, pp. 513–522.

    Google Scholar 

  • Dobereiner, J., and Day, J. M., 1976, Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen-fixing sites, in: Proceedings of the 1st International Symposium on Nitrogen Fixation, Vol. 2 (W. E. Newton and C.J. Nyman, eds.), Washington State University Press, Pullman, pp. 518–538.

    Google Scholar 

  • Dobereiner, J., Day, J. M., and Dart, P. J., 1972, Nitrogenase activity and oxygen sensitivity of the Paspalum notatum—Azotobacter paspali association, J. Gen. Microbiol. 71: 103–116.

    CAS  Google Scholar 

  • Drewes, K., 1928, Über die Assimilation des Luftstickstoffs durch Blaualgen, Zentralbl. Bakteriol. (II) 76: 88–101.

    CAS  Google Scholar 

  • Dugdale, R. C., Dugdale, V., Neese, J. C., and Goering, J., 1959, Nitrogen fixation in lakes, Science 130: 859–860.

    PubMed  CAS  Google Scholar 

  • Dugdale, R. C., Menzel, D. W., and Ryther, J. G., 1961, Nitrogen fixation in the Sargasso Sea, Deep Sea Res. 7: 297–302.

    CAS  Google Scholar 

  • Dumas, J. B., 1834, De l’analyse élémentaire des substances organiques, J. Phar. Sci. Acc. 20: 129–156.

    Google Scholar 

  • Dumas, J. B., and Boussingault, J. B., 1844, The Chemical and Physiological Balance of Organic Nature, Saxton and Miles, New York.

    Google Scholar 

  • Eisbrenner, G., and Evans, H. J., 1983, Aspects of hydrogen metabolism in nitrogen-fixing legumes and other plant-microbe associations, Annu. Rev. Plant Physiol. 34: 105–136.

    CAS  Google Scholar 

  • Elleway, R. F., Sabine, J. R., and Nicholas, D.J. D., 1971, Acetylene reduction by rumen microflora, Arch. Mikrobiol. 76: 277–291.

    PubMed  CAS  Google Scholar 

  • Emerich, D. W., and Burris, R. H., 1978, Complementary functioning of the component proteins of nitrogenase from several bacteria, J. Bacteriol. 134: 936–943.

    PubMed  CAS  Google Scholar 

  • Emerich, D. W., Ruis-Argueso, T., Ching, T. M., and Evans, H. J., 1979, Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids, J. Bacteriol. 137: 153–160.

    PubMed  CAS  Google Scholar 

  • Emerson, R., 1917, Are all the soil bacteria and streptothrices that develop on dextrose agar azofiers? Soil Sci. 3: 417–422.

    CAS  Google Scholar 

  • Faber, F. C. von, 1912, Das erbliche Zusammenleben von Bakterien und tropischen Pflanzen, Jahrb. Wiss. Bot. 51: 283–375.

    Google Scholar 

  • Fay, P., 1981, Photosynthetic micro-organisms, in: Nitrogen Fixation Volume I, Ecology (W.J. Broughton, ed.), Clarendon Press, Oxford, pp. 1–29.

    Google Scholar 

  • Fay, P., Stewart, W. D. P., Walsby, A. E., and Fogg, G. E., 1968, Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature 220: 810–812.

    PubMed  CAS  Google Scholar 

  • Fogg, G. E., 1947, Nitrogen fixation by blue-green algae, Endeavor 6: 172–175.

    Google Scholar 

  • Fogg, G. E., and Wolfe, M., 1954, The nitrogen metabolism of blue-green algae (Myxophyceae), Symp. Soc. Gen. Microbiol. 4: 99–125.

    Google Scholar 

  • Frank, A. B., 1879, Ueber die Parasiten in den Wurzelanschwellungen der Papilionaceen, Bot. Ztg. 37: 377–388, 393-400.

    Google Scholar 

  • Frank, B., 1889, Über den gegenwartigen Stand unserer Kenntnis der Assimilation elementaren Stickstoffs durch die Pflanzen, Ber. Dtsch. bot. Ces. 7: 34–42.

    Google Scholar 

  • Frank, B., 1890, Ueber die Pilzsymbiose der Leguminosen, Landw. Jahrb. 19: 523–640.

    Google Scholar 

  • Fred, E. B., Baldwin, I. L., and McCoy, E., 1932, Root Nodule Bacteria and Leguminous Plants, University of Wisconsin Press, Madison.

    Google Scholar 

  • Gayon, U., and Dupetit, G., 1886, Recherches sur la réduction des nitrates par les infiniments petits, Soc. Sci. Phys. Nat. Bordeaux (Ser. 3) 2: 201–207.

    Google Scholar 

  • Godfrey, C. A., Coventry, D. R., and Dilworth, M. J., 1975, Some aspects of leghemoglobin biosynthesis, in: Nitrogen Fixation by Free-Living Microorganisms, (W. D. P. Stewart, ed.), Cambridge University Press, New York, pp. 311–332.

    Google Scholar 

  • Goering, J. J., Dugdale, R. C., and Menzel, D. W., 1966, Estimates of in situ rates of nitrogen uptake by Trichodesmium sp. in the tropical Atlantic Ocean, Limnol. Oceanogr. 11: 614.

    CAS  Google Scholar 

  • Goering, J. J., and Parker, P. L., 1972, Nitrogen fixation by epiphytes on sea grasses, Limnol. Oceanogr. 15: 320–323.

    Google Scholar 

  • Goldman, C. R., 1961, The contribution of alder trees (Alnus tenuifolia) to the primary productivity of Castle Lake, Calif., Ecology 42: 282–288.

    Google Scholar 

  • Graham, T. L., 1981, Recognition in Rhizobium-legume symbioses, in: Biology of the Rhizobiaceae (K. L. Giles and A. G. Atherly, eds.), Academic Press, New York, pp. 127–148.

    Google Scholar 

  • Granhall, U., and Ciszuk, P., 1971, Nitrogen fixation in rumen contents indicated by the acetylene reduction test, J. Gen. Microbiol. 65: 91–93.

    PubMed  CAS  Google Scholar 

  • Granhall, U., and Lundgren, A., 1971, Nitrogen fixation in Lake Erken, Limnol. Oceanogr. 16: 711–719.

    CAS  Google Scholar 

  • Grau, F. H., and Wilson, P. W., 1962, Physiology of nitrogen fixation by Bacillus polymyxa, J. Bacteriol. 85: 446–450.

    Google Scholar 

  • Greaves, J. D., 1929, The microflora of leached alkali soils. ii. Soil Sä. 29: 79–83.

    Google Scholar 

  • Greaves, J. E., and Greaves, J. D., 1932, Nitrogen fixation of leached alkali soils, Soil Sci. 34: 375–382.

    CAS  Google Scholar 

  • Guerinot, M. L., Fong, W., and Patriquin, D. G., 1977, Nitrogen fixation (acetylene reduction) associated with sea urchins (Strongyloeentrotus droebachiensis) feeding on seaweeds and eelgrass, J. Fish. Res. Board Canada 34: 416–420.

    CAS  Google Scholar 

  • Hamblin, J., and Kent, S. P., 1973, Possible role of phytohaemagglutinin in Phaseolus vulgaris L., Nature New Biol. 245: 28–30.

    PubMed  CAS  Google Scholar 

  • Hamilton, P. B., and Wilson, P. W., 1955, Nitrogen fixation by Aerobacter aerogenes, Ann. Acad. Sci. Fennicae, Ser. A. 2: 139–150.

    Google Scholar 

  • Hamilton, P. B., Magee, W. E., and Mortenson, L. E., 1953, Nitrogen fixation by Aerobacter aerogenes and cell-free extracts of the Azotobacter vinelandii, Bacteriol. Proc. p. 82.

    Google Scholar 

  • Hanus, F. J., Maier, R. J., and Evans, H. J., 1979, Autotrophic growth of H2-uptake positive strains of R. japonicum in an atmosphere supplied with hydrogen gas, Proc. Natl. Acad. Sci. USA 76: 1788–1792.

    PubMed  CAS  Google Scholar 

  • Hardy, R. W. F., Burns, R. C., Hebert, R. R., Holsten, R. D., and Jackson, E. K., 1971, Biological nitrogen fixation: a key to world protein, Plant Soil, Special Vol., pp. 561–590.

    Google Scholar 

  • Hardy, R. W. F., and D’Eustachio, A. J., 1964, The dual role of pyruvate and the energy requirement in nitrogen fixation, Biochem. Biophys. Res. Commun. 15: 314–318.

    CAS  Google Scholar 

  • Hardy, R. W. F., Holsten, R. D., Jackson, E. K., and Burns, R. C., 1968, The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation, Plant Physiol. 43: 1185–1207.

    PubMed  CAS  Google Scholar 

  • Hardy, R. W. F., and Knight Jr., E., 1967, ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum, Biochim. Biophys. Acta 139: 69–90.

    PubMed  CAS  Google Scholar 

  • Hellriegel, H., 1886a, Welche Stickstoffquellen stehen der Pflanze zu Gebote? Tageblatt der 50 Versammlung Deutscher Naturforscher und Aerzte in Berlin, 18-24 Sept., p. 290.

    Google Scholar 

  • Hellriegel, H., 1886b, Welche Stickstoffquellen stehen der Pflanze zu Gebote? Ztschr. Ver. Rübenzucker—Industrie Deutschen Reichs 36: 863–877.

    Google Scholar 

  • Hellriegel, H., and Wilfarth, H., 1888, Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen, Beilageheft zu der Ztschr. Ver. Rübenzucker-Industrie Deutschen Reich., 234 pp.

    Google Scholar 

  • Henriksson, E., 1971, Algal nitrogen fixation in temperate regions, Plant Soil, Special Vol. pp. 415–419.

    Google Scholar 

  • Higashi, S., 1967, Transfer of clover infectivity of R. trifolii to R. phaseoli as mediated by an episomic factor, J. Gen. Appl. Microbiol. 13: 391–403.

    Google Scholar 

  • Hiltner, 1896, Ueber die Bedeutung der Wurzelknollchen von Alnus glutinosa fur die Stickstof-fernahrung dieser Pflanze, Landw. Vers. Sta. 46: 153–161.

    Google Scholar 

  • Hiltner, 1898, Ueber Entstehung und physiologische Bedeutung der Wurzelknollchen, Forstl. Naturw. Ztschr. 7: 415–423.

    CAS  Google Scholar 

  • Hiltner, L., 1905, Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Boden bak-teriologie und unter besonderer Berücksichtigung der Gründüngung und Brache, Zentralbl. Bakteriol. 14: 46–48.

    Google Scholar 

  • Hiltner, L., 1920, Zentralbl. Bakteriol. (II) 58: 351.

    Google Scholar 

  • Hooykaas, P. J. J., van Brüssel, A. A. N., den Dulk-Ras, H., van Slogteren, G. M. S., and Schilperoort, R. A., 1981, Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens, Nature 291: 351–353.

    CAS  Google Scholar 

  • Horne, A. J., 1972, The ecology of nitrogen fixation on Signy Island, South Orkney Islands, Br. Antarct. Surv. Bull. 27: 1.

    Google Scholar 

  • Home, A. J., and Fogg, G. E., 1970, Proc. Roy. Soc. London, Ser. B 175: 351.

    Google Scholar 

  • Home, A. J., and C. R. Goldman, 1972, Nitrogen fixation in Clear Lake, California. I. Seasonal variations and the role of heterocysts, Limnol. Oceanogr. 17: 678.

    Google Scholar 

  • Home, A. J., and Viner, A. B., 1971, Nitrogen fixation and its significance in tropical Lake George, Uganda, Nature (London) 232: 417.

    Google Scholar 

  • Hutchinson, G. E., 1944, Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplankton periodicity and chemical changes in lake waters, Ecology 25: 2–26.

    Google Scholar 

  • Imsande, J., 1981, Exchange of metabolites and energy between legume and Rhizobium?, in Biology of the Rhizobiaceae (K. L. Giles and A. G. Atherly, eds.), Academic Press, New York, pp. 179–190.

    Google Scholar 

  • Jaiyebo, E. O., and Moore, A. W., 1963, Soil nitrogen accretion in a tropical rain forest, Nature (London) 197: 317–318.

    CAS  Google Scholar 

  • Jensen, H. L., 1940, Contributions to the nitrogen economy of Australian wheat soils, with particular reference to New South Wales, Proc. Linn. Soc. N. S. Wales. 65: 1–122.

    CAS  Google Scholar 

  • Jensen, H. L., 1965, Nonsymbiotic nitrogen fixation, in: Soil Nitrogen, (W. V. Bartholomew and F. E. Clark, eds.), Amer. Soc. of Agronomy, Inc., Madison, Wisconsin, pp. 436–480.

    Google Scholar 

  • Jensen, H. L., 1981, Heterotrophic micro-organisms, in: Nitrogen Fixation, Volume I, Ecology (W. J. Broughton, ed.), Clarendon Press, Oxford, pp. 30–56.

    Google Scholar 

  • Jensen, H. L., Peterson, E. J., De, P. K., and Bhattachrya, R., 1960, A new nitrogen-fixing bacterium: Derxia gummosa nov. gen. nov. spec, Arch. Mikrobiol. 36: 182–195.

    Google Scholar 

  • Jodin, M., 1862, Du role physiologique de l’azote (etc.), C. R. Acad. Sci. (Paris) 55: 612–615.

    Google Scholar 

  • Jones, W. N., and Smith, M. L., 1929, On the fixation of atmospheric nitrogen by Phoma radicis callunae, including a new method for investigating nitrogen-fixation in microorganisms, Br. J.Exp. Biol. 6: 167–189.

    Google Scholar 

  • Kamen, M. D., and Gest, H., 1949, Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum, Science 109: 560.

    PubMed  CAS  Google Scholar 

  • Keister, D. L., 1975, Acetylene reduction by pure cultures of rhizobia, J. Bacteriol. 123: 1265–1268.

    PubMed  CAS  Google Scholar 

  • Kjeldahl, J., 1883, Neue Methode zur Bestimmung des Stickstoffs in organischen Korpern, Z. anal. Chem. 22: 366–382.

    Google Scholar 

  • Knowles, R., 1977, The significance of asymbiotic dinitrogen fixation by bacteria, in: A Treatise on Dinitrogen Fixation, Section IV: Agronomy and Ecology (R. W. F. Hardy and A. H. Gibson, eds.), John Wiley and Sons, New York, pp. 33–84.

    Google Scholar 

  • Koch, B., and Evans, H. J., 1966, Reduction of acetylene to ethylene by soybean root nodules, Plant Physiol. 41: 1748–1750.

    PubMed  CAS  Google Scholar 

  • Koch, B. L., and Oya, J., 1974, Nonsymbiotic nitrogen fixation in some Hawaiian pasture soils, Soil Biol. Biochem. 6: 363.

    CAS  Google Scholar 

  • Kohnke, H., 1941, The black alder as a pioneer plant on sand dunes and eroded land, J. Forestry 39: 333–334.

    Google Scholar 

  • Kondorosi, A., and Johnston, A. W. B., 1981, The genetics of Rhizobium, in: Biology of the Rhizobiaceae (K. L. Giles and A. G. Atherly, eds.), Academic Press, New York, pp. 191–224.

    Google Scholar 

  • Kostytschew, S., and Ryskaltschuk, A., 1925, Les produits de la fixation de l’azote atmospherique par l’ Azotobacter agile, C. R. Acad. Sci. (Paris) 180: 2070–2072.

    Google Scholar 

  • Kossowitsch, P., 1894, Durch welche Organe nehman die Leguminosen den freien Stickstoff auf? Bot. Z. 53: 199–202.

    Google Scholar 

  • Krapovickas, A., 1969, The origin, variability and spread of the groundnut (Arachis hypogaea), in: The Domestication and Exploitation of Plants and Animals (P. J. Ucko and G. W. Dimbleby, eds.), Gerald Duckworth and Co., London, pp. 427–442.

    Google Scholar 

  • Krasil’nikov, N. A., 1958, Soil Microorganisms and Higher Plants, Office of Technical Services, U. S. Dept. Commerce, Washington.

    Google Scholar 

  • Kubo, H., 1939, Uber hamoprotein aus den Wurzelknollchen von Leguminosen, Acta Phytochim. (Japan) 11: 195–200.

    CAS  Google Scholar 

  • Kurz, W. G. W., and LaRue, T. A., 1975, Nitrogenase activity in rhizobia in absence of plant host, Nature (London) 256: 407–409.

    CAS  Google Scholar 

  • Kuykendall, L. D., 1981, Mutants of Rhizobium that are altered in legume interaction and nitrogen fixation, in: Biology of the Rhizobiaceae (K. L. Giles and A. G. Atherly, eds.), Academic Press, New York, pp. 299–310.

    Google Scholar 

  • Lachmann, J., 1858, Ueber Knollchen der Leguminosen, Landw. Mitt. Atschr. K. Lehranst. Vers. Sta. Poppelsdorf (Bonn), p. 37.

    Google Scholar 

  • Landsteiner, K., and Raubitschek, H., 1908, Beobachtungen über Hamolyse und Hamagglutin-ation, Zentralbl. Bakteriol. 45: 660.

    Google Scholar 

  • Laurent, E., 1890, Sur le microbe des nodosités des Légumineuses, C. R. Acad. Sci. (Paris) 111: 754–756.

    Google Scholar 

  • Lawes, B., and Gilbert, J., 1851, Agricultural chemistry, especially in relation to the mineral theory of Baron Liebig, in: Rothamsted Memoirs on Agricultural Chemistry and Physiology, Volume I, W. Clowes and Sons, Ltd., London (1893), pp. 1–4.

    Google Scholar 

  • Lawes, B., and Gilbert, J., 1863, On the amounts of, and methods of estimating ammonia and nitric acid in rain water, in: Rothamsted Memoirs on Agricultural Chemistry and Physiology, Volume I, W. Clowes and Sons, London (1893), 1–15.

    Google Scholar 

  • Lawes, J. B., and Gilbert, J. H., 1889, On the present position of the question of the sources of the nitrogen of vegetation, with some new results, and preliminary notice of new lines of investigation, Trans. Roy. Soc. (London) 180B: 1–107.

    Google Scholar 

  • Lawes, J. B., and Gilbert, J. H., 1891, The sources of the nitrogen of our leguminous crops, J. Roy. Agr. Soc. England 2(Ser. 3): 657–702.

    Google Scholar 

  • Lawes, B., Gilbert, J., and Pugh, E., 1861, On the sources of nitrogen of vegetation; with special reference to the question whether plants assimilate free or uncombined nitrogen. Trans. Roy. Soc. (London) 151B: 431–577.

    Google Scholar 

  • Lechevalier, M., and Lechevalier, H., 1979, The taxonomic position of the actinomycetic endophytes, in: Symbiotic Nitrogen Fixation in the Management of Temperate Forests, (J. D. Gordon, C. T. Wheeler, and D. A. Perry, eds.), Oregon State University, Corvallis, pp. 111–123.

    Google Scholar 

  • Lepo, J. E., Hanus, F.J.,and Evans, H.J., 1980, Further studies on the chemoautotrophic growth of hydrogen uptake positive strains of R. japonicum, J. Bacteriol. 141: 664–670.

    PubMed  CAS  Google Scholar 

  • Liebig, J., 1840, Organic Chemistry in its Applications to Agriculture and Physiology, Taylor, London.

    Google Scholar 

  • Liebig, J., 1855, Principles of Agricultural Chemistry with Special Reference to the Late Researches Made in England, Wiley, New York.

    Google Scholar 

  • Liebig, J., 1863, The Natural Laws of Husbandry, D. Appleton and Co., New York.

    Google Scholar 

  • Lindstrom, E. S., Burris, R. H., and Wilson, P. W., 1949, Nitrogen fixation by photosynthetic bacteria, J. Bacteriol. 58: 313–316.

    CAS  Google Scholar 

  • Lindstrom, E. S., Lewis, S. M., and Pinsky, M. I., 1951, Nitrogen fixation and hydrogenase in various bacterial species, J. Bacteriol. 61: 481–487.

    PubMed  CAS  Google Scholar 

  • Lindstrom, E. S., Tove, R. R., and P. W. Wilson, 1950, Nitrogen fixation by the green and purple sulfur bacteria, Science 112: 197–198.

    PubMed  CAS  Google Scholar 

  • Lochhead, A. G., 1952, Soil microbiology, Annu. Rev. Microbiol. 6: 185–206.

    PubMed  CAS  Google Scholar 

  • Lochhead, A. G., and Thexton, R. H., 1936, A four-year quantitative study of nitrogen-fixing bacteria in soils of different fertilizer treatments, Can. J. Res. 14C: 166–177.

    Google Scholar 

  • Lockshin, A., and Burris, R. H., 1965, Inhibitors of nitrogen fixation in extracts from Clostridium pasteurianum, Biochim. Biophys. Acta 111: 1–10.

    PubMed  CAS  Google Scholar 

  • Lohnis, M. P., 1930, Can Bacterium radicicola assimilate nitrogen in the absence of the host plant? Soil Sci. 29: 37–57.

    CAS  Google Scholar 

  • Madigan, M., Cox, S. S., and Stegeman, R. A., 1984, Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae, J. Bacteriol. 157: 73–78.

    PubMed  CAS  Google Scholar 

  • Mague, T. H., 1977, Ecological aspects of dinitrogen fixation by blue-green algae, in: A Treatise on Dinitrogen Fixation, Section IV: Agronomy and Ecology, John Wiley and Sons, New York, pp. 85–140.

    Google Scholar 

  • Mague, T. H., Weare, N. W., and Holm-Hansen, O., 1974, Nitrogen fixation in the North Pacific Ocean, Mar. Biol. 24: 109–119.

    CAS  Google Scholar 

  • Martinez, L., Silver, M. W., King, J. M., and Alldredge, A. L., 1983, Nitrogen fixation by floating diatom mats: a source of new nitrogen to oligotrophic ocean waters, Science 221: 152–154.

    PubMed  CAS  Google Scholar 

  • McComb, J. A., Elliot, J., and Dilworth, M. J., 1975, Acetylene reduction by Rhizobium in pure culture, Nature (London) 256: 409–410.

    CAS  Google Scholar 

  • McNary, J. E., and Burris, R. H., 1962, Energy requirements for nitrogen fixation by cell-free preparations from Clostridium pasteurianum, Biochim. Biophys. Acta 111: 1–10.

    Google Scholar 

  • Miehe, H., 1917, Weitere Untersuchungen uber die Bakteriensymbiose bei Ardisia crispa. II. Die Pflanzen ohne Bakterien, Jahrb. Wiss. Bot. 58: 29–65.

    Google Scholar 

  • Mishustin, E. N., and Shil’nikova, V. K., 1971, Biological Fixation of Atmospheric Nitrogen, Pennsylvania State University Press, University Park.

    Google Scholar 

  • Moore, A. V., 1963, Nitrogen fixation in a latosolic soil under grass, Plant Soil. 19: 127–138.

    Google Scholar 

  • Morrison, T. M., and English, D. A., 1967, The significance of mycorrhizal nodules of Agathis australis, New Phytol. 66: 245–250.

    Google Scholar 

  • Mortenson, L. E., 1964, Ferredoxin and ATP, requirements for nitrogen fixation in cell-free extracts of Clostridium pasteurianum, Proc. Natl. Acad. Sci. USA 52: 272–279.

    PubMed  CAS  Google Scholar 

  • Mortenson, L. E., 1966, Components of cell-free extracts of Clostridium pasteurianum required for ATP-dependent H2 evolution from dithionite and for N2 fixation, Biochim. Biophys. Acta 127: 18–25.

    PubMed  CAS  Google Scholar 

  • Mowry, H., 1933, Symbiotic nitrogen fixation in the genus Casuarina, Soil Sci. 36: 409–421.

    CAS  Google Scholar 

  • Mozen, M. M., and Burris, R. H., 1954, The incorporation of 15N-labelled nitrous oxide by nitrogen-fixing agents. Biochim. Biophys. Acta 14: 577–578.

    PubMed  CAS  Google Scholar 

  • Nash, L. K., 1959, Plants and the Atmosphere, Harvard University Press, Cambridge.

    Google Scholar 

  • Nelson, A. D., Barber, L. E., Tjepkema, J., Russell, S. A., Powelson, R., Evans, H. J., and Seidler, R. J., 1976, Nitrogen fixation associated with grasses in Oregon, Can. J. Microbiol. 22: 523–530.

    PubMed  CAS  Google Scholar 

  • Nobbe, F., and Hiltner, L., 1896, Bodenimpfung für Anbau von Leguminosen, Sachs. Landw. Ztschr. 44: 90–92.

    Google Scholar 

  • Nobbe, F., and Hiltner, L., 1899, Die endotrophe Mycorhiza von Podocarpus und ihre physiologische Bedeutung, Landw. Vers. Sta. 51: 241–245.

    Google Scholar 

  • Nobbe, F., Schmid, E., Hiltner, L., and Hotter, E., 1892, Ueber die physiologische Bedeutung der Wurzelknollchen von Elaeagnus angustifolius, Landw. Vers. Sta. 41: 138–140.

    Google Scholar 

  • Normand, P., and Lalonde, M., 1982, Evaluation of Frankia strains isolated from provenances of two Alnus species, Can. J. Microbiol. 28: 1133–1142.

    Google Scholar 

  • Nuti, M. P., Ledeboer, A. M., Lipidi, A. A., and Schilperoort, R. A., 1977, Large plasmids in different Rhizobium species, J. Gen. Microbiol. 100: 241–256.

    CAS  Google Scholar 

  • Oes, A., 1913, Uber die Assimilation des freien Stickstoffs durch Azolla, Z. Botan. 5: 145–163.

    CAS  Google Scholar 

  • Okon, Y., Heytier, P. G., and Hardy, R. W. F., 1983, N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica, Appl. Env. Microbiol. 46: 694–697.

    CAS  Google Scholar 

  • Ooman, H. A. P. C., 1972, Distribution of nitrogen and composition of nitrogen compounds in food, urine and faeces in habitual consumers of sweet potato and taro, Nutr. Metabol. 14: 65–82.

    Google Scholar 

  • Orr, M. Y., 1923, The leaf glands of Dioscorea macroura Harms., Notes from the Roy. Bot. Gard., Edinburgh 14: 57–72.

    Google Scholar 

  • Pagan, J. D., Child, J. J., Scowcroft, W. R., and Gibson, A. H., 1975, Nitrogen fixation by Rhizobium cultured on a defined medium, Nature (London) 256: 406–407.

    CAS  Google Scholar 

  • Parker, C. A., 1957, Non-symbiotic nitrogen fixing bacteria in soil. III. Total nitrogen changes in a field soil, J. Soil Sci. 8: 48–59.

    CAS  Google Scholar 

  • Pasteur, L., 1860, De l’origine des ferments. Nouvelles experiences relatives aux générations dites spontanées, C. R. Acad. Sci. (Paris) 50: 849–854.

    Google Scholar 

  • Pasteur, L., 1861, Mémoire sur les corpuscles organisés qui existent dans l’atmosphère. Examen de la doctrine des générations spontanées, Ann. Sci. Nat. 16 (Ser. 4): 5–98.

    Google Scholar 

  • Pasteur, L., 1862, Etudes sur les mycodermes. Roles de ces plantes dans la fermentation acétique, C. R. Acad. Sci. (Paris) 44: 265–270.

    Google Scholar 

  • Paul, E. A., Myers, R. J. K., and Rice, W. A., 1971, Nitrogen fixation in grassland and associated cultivated ecosystems, Plant Soil Special Vol., pp. 495–507.

    Google Scholar 

  • Pearsall, W. H., 1932, Phytoplankton in the English lakes. II. The composition of the phyto-plankton in relation to dissolved substances, J. Ecol. 20: 241–262.

    CAS  Google Scholar 

  • Peklo, J., 1946, Symbiosis of Azotobacter with insects, Nature (London) 158: 795–796.

    CAS  Google Scholar 

  • Peligot, E. M., 1847, Sur un procédé propre a déterminer d’une manière sensible rapide la quantité d’azote contenue dans les substances organique, J. Pharm. Chim. 11 (Ser. 3):334-337.

    Google Scholar 

  • Pengra, R. M., and Wilson, P. W., 1958, Physiology of nitrogen fixation by Aerobacter aerogenes, J. Bacteriol. 75: 21–25.

    PubMed  CAS  Google Scholar 

  • Pengra, R. M., and Wilson, P. W., 1959, Trace metal requirements of Aerobacter aerogenes for assimilation of molecular nitrogen, Proc. Soc. Exp. Biol. Med. 100: 436–439.

    PubMed  CAS  Google Scholar 

  • Phillips, D. H., and Johnson, M. J., 1961, Aeration in fermentations, J. Biochem. Microbiol. Technol. Eng. 3: 277–309.

    CAS  Google Scholar 

  • Plotho, O. von, 1941, Die Synthese der Knollchen an den Wurzeln der Erle, Arch. Microbiol. 12: 1–18.

    Google Scholar 

  • Pohlman, G. G., 1931, Nitrogen fixation by Rhizobium meliloti and Rhizobium japonicum, J. Am. Soc. Agron. 23: 70–77.

    CAS  Google Scholar 

  • Pommer, E., 1959, Über die Isolierung dew Endophyten aus den Wurzelknollchen Alnus glutinosa Gaertn. und Uber erfolgreiche Re-Infektionsversuche, Ber. Deutsch Bot. Gesell. 72: 138–150.

    Google Scholar 

  • Postgate, J. R., 1982, The Fundamentals of Nitrogen Fixation, Cambridge University Press, New York.

    Google Scholar 

  • Prakash, R. K., Schilperoort, R. A., and Nuti, M. P., 1981, Large plasmids of fast-growing rhizobia: Homology studies and location of structural nitrogen fixation (nif) genes, J. Bacteriol. 145: 1129–1136.

    PubMed  CAS  Google Scholar 

  • Prantl, K., 1889, Die Assimilation freien Stickstoffs und der Parasitismus von Nostoc, Hedwigia 28: 135–136.

    Google Scholar 

  • Prazmowski, A., 1890, Die Wurzelknollchen der Erbse, Landw. Vers. Sta. 37: 161–238.

    Google Scholar 

  • Pringsheim, E. G., 1913, Kulturversuche mit chlorophyllfuhrenden Mikroorganismen, III. Mitteilung. Zur Physiologie der Schizophyceen, Beit. Biol. Pflanzen 12: 49–108.

    Google Scholar 

  • Rayner, M. C., 1915, Obligate symbiosis in Calluna vulgaris, Ann. Botany 29: 97–123.

    Google Scholar 

  • Rayner, M. C., 1922, Nitrogen fixation in the Ericaceae, Bot. Gaz. 73: 226–235.

    CAS  Google Scholar 

  • Remy, E., 1909, Untersuchungen über die Stickstoffsammlungsvorgange in ihrer Beiziehung zum Bodenklima, Zentralbl. Bakteriol (II) 22: 561–651.

    Google Scholar 

  • Richards, B. N., and Voigt, G. K., 1964, Role of mycorrhiza in nitrogen fixation, Nature 201: 310–311.

    CAS  Google Scholar 

  • Rinaudo, G., Balandreau, J., and Dommergues, Y., 1971, Algal and bacterial non-symbiotic nitrogen fixation in paddy soils, Plant Soil, Special Vol., pp. 471–479.

    Google Scholar 

  • Ruehle, J. L., and Marx, D. H., 1979, Fiber, fuel, and fungal symbionts, Science 206: 419–422.

    PubMed  CAS  Google Scholar 

  • Ruinen, J., 1975, Nitrogen fixation in the phyllosphere, in: Nitrogen Fixation by Free-Living Microorganisms (W. D. P. Stewart, ed.), Cambridge University Press, New York, pp. 85–100.

    Google Scholar 

  • Ruvkun, G. B., and Ausubel, F. M., 1980, Interspecies homology of nitrogenase genes, Proc. Natl. Acad. Sci. USA 77: 191–195.

    PubMed  CAS  Google Scholar 

  • Rychert, R. C., and Skujins, J., 1974, Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin desert, Soil Sci. Soc. Am. Proc. 38: 768–771.

    CAS  Google Scholar 

  • Schloesing, J. T., 1888, Sur les relations de l’azote gazeux de l’atmosphérique avec la terre végétale. C. R. Acad. Sci. (Paris) 106: 898–902; 982-987; 107:290-296.

    Google Scholar 

  • Schloesing, A., and Laurent, E., 1890, Sur la fixation de l’azote libre par les Légumineuses, C. R. Acad. Sci. (Paris) 111: 750–753.

    Google Scholar 

  • Schloesing, T., and Laurent, E., 1892, Recherches sur la fixation de l’azote libre par les plantes, Ann. Inst. Pasteur 6: 65–115.

    Google Scholar 

  • Schloesing, J. T., and Muntz, A., 1877, Sur la nitrification par les ferments organiques, C. R. Acad. Sci. (Paris) 84: 301–303.

    Google Scholar 

  • Schollhorn, R., and Burris, R. H., 1966, Study of intermediates in nitrogen fixation, Fed. Proc. 25: 710.

    Google Scholar 

  • Schultz, J. E., and Breznak, J. A., 1978, Heterotrophic bacteria present in hindguts of wood-eating termites (Reticulitermes flavipes Kollar), Appl. Environ. Microbiol. 35: 930–936.

    PubMed  CAS  Google Scholar 

  • Schultz-Lupitz, A., 1881, Reinertrage auf leichtem Boden, ein Wort der Erfahrung, zur Abwehr der wirtschaftlichen Noth, Landw. Jahrb. 10: 777–848.

    Google Scholar 

  • Shields, C. M., Mitchell, C., and Drouet, F., 1957, Alga-and liehen stabilized surface crusts as soil nitrogen sources, Am. J. Bot. 44: 489–498.

    CAS  Google Scholar 

  • Silver, W. S., 1977, Foliar associations with higher plants, in: A Treatise on Dinitrogen Fixation (R. W. F. Hardy and W. S. Silver, eds.), John Wiley and Sons, New York, pp. 153–184.

    Google Scholar 

  • Silvester, W. B., 1977, Dinitrogen fixation by plant associations excluding legumes, in: A Treatise on Dinitrogen Fixation, Section IV: Agronomy and Ecology (R. W. F. Hardy and A. H. Gibson, ed.), John Wiley and Sons, New York, pp. 141–190.

    Google Scholar 

  • Silvester, W. B., and Bennett, K. J., 1973, Acetylene reduction by roots and associated soil of New Zealand conifers, Soil Biol. Biochem. 5: 171–179.

    CAS  Google Scholar 

  • Singh, R. N., 1942, The fixation of elemental nitrogen by some of the commonest blue-green algae from paddy field soils of the United Provinces and Bihar, Indian J. Agr. Sci. 12: 743–756.

    CAS  Google Scholar 

  • Singh, R. N., 1961, Role of Blue-Green Algae in Nitrogen Economy of Indian Agriculture, Indian Council of Agricultural Research, New Delhi, 175 pp.

    Google Scholar 

  • Skinner, C. E., 1928, The fixation of nitrogen by Bacterium aerogenes and related species, Soil Sci. 25: 195–205.

    CAS  Google Scholar 

  • Sloger, C., and Silver, W. S., 1967, Biological reductions catalyzed by symbiotic nitrogen-fixing tissues, Bacteriol. Proc. p. 12.

    Google Scholar 

  • Smartt, J., 1969, Evolution of American Phaseolus beans under domestication, in: The Domestication and Exploitation of Plants and Animals (P.J. Ucko and G. W. Dimbleby, eds.), Gerald Duckworth and Co., London, pp. 451–462.

    Google Scholar 

  • Smith, V. H., 1983, Low nitrogen to phosphorous ratios favor dominance by blue-green algae in lake phytoplankton, Science 221: 669–671.

    PubMed  CAS  Google Scholar 

  • Spratt, E. R., 1912, The formation and physiological significance of root nodules in the Podo-carpineae, Ann. Bot. (London) 26: 801–814.

    Google Scholar 

  • Starkey, R. L., 1938, Some influences of the development of higher plants upon the microorganisms in the soil. V. Soil Science 45: 207–249.

    CAS  Google Scholar 

  • Stewart, W. D. P., 1965, Nitrogen turnover in marine and brackish habitats, Ann. Bot. 29: 229.

    CAS  Google Scholar 

  • Stewart, W. D. P., 1966, Nitrogen Fixation in Plants, Athlone Press, London.

    Google Scholar 

  • Stewart, W. D. P., 1967, Nitrogen-fixing plants, Science 158: 1426–1432.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., and Lex, M., 1970, Nitrogenase activity in the blue-green algae Plectonema boryanum strain 594, Arch. Mikrobiol. 73: 250–260.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H., 1967, In situ studies on N2 fixation, using the acetylene reduction technique, Proc. Natl. Acad. Sci. USA 58: 2071–2078.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., Haystead, A., and Pearson, H. W., 1969, Nitrogenase activity in heterocysts of blue-green algae. Nature (London) 224: 226–228.

    CAS  Google Scholar 

  • Stewart, W. D. P., Mague, T., Fitzgerald, G. P., and Burris, R. H., 1971, Nitrogenase activity in Wisconsin lakes of differing degrees of eutrophication, New Phytol. 70: 497–502.

    CAS  Google Scholar 

  • Stewart, W. D. P., Sampaio, M. J., Isichei, A. O., and Sylvester-Bradley, R., 1978, Nitrogen fixation by soil algae of temperate and tropical soils, in: Limitations and Potentials for Biological Nitrogen Fixation in the Tropics (J. Dobereiner, R. H. Burris, and A. Hollaender, eds.), Plenum Press, New York, pp. 41–63.

    Google Scholar 

  • Stutz, R. C., and Bliss, L. C., 1975, Nitrogen fixation in soils of Truelove Lowland, Devon Island, Northwest Territories, Can. J. Bot. 53: 1387–1399.

    CAS  Google Scholar 

  • Sutton, W. D., Pankhurst, C. E., and Craig, A. S., 1981, The Rhizobium bacteroid state, in: Biology of the Rhizobiaceae (K. L. Giles and A. G. Atherly, eds.), Academic Press, New York, 149–171.

    Google Scholar 

  • Tchan, Y. T., and Beadle, N. C. W., 1955, Nitrogen economy in semiarid plant communities. Part II. The non-symbiotic nitrogen-fixing organisms, Proc. Linnean Soc. New South Wales 80: 97–104.

    CAS  Google Scholar 

  • Ternetz, C., 1907, Über die assimilation des atmosphärischen Stickstoffs durch Pilze, Jahrb. Wiss. Botany 44: 353–408.

    Google Scholar 

  • Theophrastus, 1916, Enquiry into Plants, trans. by Sir Arthur Hort, Vol. II, W. Heinemann, London.

    Google Scholar 

  • Tjepkema, J. D., and Evans, H. J., 1975, Nitrogen fixation by free-living rhizobia in a defined liquid medium, Biochem. Biophys. Res. Commun. 65: 625–628.

    PubMed  CAS  Google Scholar 

  • Tjepkema, J. D., and van Berkum, P., 1977, Acetylene reduction by soil cores of maize and Sorghum in Brazil, Appl. Env. Microbiol. 33: 626–629.

    CAS  Google Scholar 

  • Torrey, J. G., and Tjepkema, J. D., 1979, Symbiotic nitrogen fixation in actinomycete-nodulated plants, Preface, Bot. Gaz. (Chicago) 140 (Suppl.): i–ii.

    Google Scholar 

  • Trinick, M. J., 1973, Symbiosis between Rhizobium and the non-legume Trema aspera, Nature (London) 244: 459–460.

    Google Scholar 

  • Truchet, G., Rosenberg, C., Vasse, J., Juillot, J.-S., Camut, S., and Denarie, J., 1984, Transfer of Rhizobium meliloti pSym genes into Agrobacterium tumefaciens: Host-specific nodulation by a typical infection, J. Bacteriol. 157: 134–142.

    PubMed  CAS  Google Scholar 

  • Vénkatamaran, G. S., 1981, Blue-green algae: a possible remedy to nitrogen scarcity, Curr. Sci. 50: 253–256.

    Google Scholar 

  • Verma, D. P., and Long, S., 1983, The molecular biology of Rhizobium—legume symbiosis, Int. Rev. Cytology (Suppl.) 14: 211–245.

    CAS  Google Scholar 

  • Ville, G., 1855, Rapport sur un travail de M. Georges Ville, dont l’objet est de prouver que le gaz azote de l’air s’assimilé aux végétaux. Commission composée de M. M. Dumas, Regnault, Payen, Decaisne, Peligot, Chevreul (rapporteur), C. R. Acad. Sci. (Paris) 41: 757–778.

    Google Scholar 

  • Virtanen, A. I., 1945, Symbiotic nitrogen fixation, Nature 155: 747–748.

    Google Scholar 

  • Virtanen, A. I., and Laine, T., 1938, Biological synthesis of amino acids from atmospheric nitrogen, Nature 141: 748.

    CAS  Google Scholar 

  • Virtanen, A. I., and Laine, T., 1946, Red, brown and green pigments in leguminous root nodules, Nature 157: 25–29.

    PubMed  CAS  Google Scholar 

  • Virtanen, A. I., Moisio, T., Allison, R. M., and Burris, R. H., 1954, Fixation of nitrogen by excised nodules of the alder, Acta Chem. Scand. 8: 1730–1731.

    CAS  Google Scholar 

  • Waksman, S. A., 1932, Principles of Soil Microbiology, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Ward, H. M., 1887, On the tubercular swellings on the roots of Vicia faba, Phil. Trans. Roy. Soc. London Ser. 178: 539–562.

    Google Scholar 

  • Ward, H. M., 1895, Sci. Prag. 3: 251–271.

    Google Scholar 

  • Warington, R., 1878-1891, On nitrification, I-IV J. Chem. Soc, 33: 44–51; 35:429-456; 45:637-672; 59:484-529.

    CAS  Google Scholar 

  • Warren, J. A., 1910, Additional notes on the number and distribution of native legumes in Nebraska and Kansas, Circ. U.S.D.A. Bureau Plant Ind. 70: 1–8.

    Google Scholar 

  • Watanabe, I., and Brotonegoro, S., 1981, Paddy fields, in: Nitrogen Fixation, Volume I, Ecology (W. J. Broughton, ed.), Clarendon Press, Oxford, pp. 242–263.

    Google Scholar 

  • Waterbury, J. B., Calloway, C. B., and Turner, R. D., 1983, A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvai:Teredinidae), Science 221: 1401–1402.

    PubMed  CAS  Google Scholar 

  • Waughman, G. J., and Bellamy, D. J., 1972, Acetylene reduction in surface peat, Oikos 23: 353–358.

    CAS  Google Scholar 

  • Waughman, G. J., French, J. R. J., and Jones, K., 1981, Nitrogen fixation in some terrestrial environments, in: Nitrogen Fixation Volume I, Ecology (W.J. Broughton, ed.), Clarendon Press, Oxford, pp. 135–192.

    Google Scholar 

  • Way, J. T., 1856, On the composition of the waters of land drainage and of rain, J. Roy. Agr. Soc. England (London) 17: 123–162.

    Google Scholar 

  • Wilkinson, C. R., and Fay, P., 1979, Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria, Nature (London) 279: 527–529.

    CAS  Google Scholar 

  • Wilson, E. H., 1920, A phytogeographical sketch of the ligneous flora of Formosa, J. Arnold Arboretum 2: 25–41.

    Google Scholar 

  • Wilson, P. W., 1940, The Biochemistry of Symbiotic Nitrogen Fixation, University of Wisconsin Press, Madison.

    Google Scholar 

  • Wilson, P. W., 1957, On the sources of nitrogen of vegetation etc., Bacteriol. Rev. 21: 215–226.

    PubMed  CAS  Google Scholar 

  • Wilson, P. W., 1958, Asymbiotic nitrogen fixation, in: Handbuch der Pflanzenphysiologie, Vol. 8, Nitrogen Metabolism (W. Ruhland, ed.), Springer-Verlag, Berlin, pp. 9–47.

    Google Scholar 

  • Wilson, P. W., 1969, First steps in biological nitrogen fixation, Proc. R. Soc. B 172: 319–325.

    CAS  Google Scholar 

  • Wilson, P. W., and Umbreit, W. W., 1937, Mechanism of symbiotic nitrogen fixation. III. Hydrogen as a specific inhibitor, Arch. Mikrobiol. 8: 440–457.

    CAS  Google Scholar 

  • Winogradsky, S. N., 1893, Sur l’assimilation de l’azote gazeux de l’atmosphère par les microbes, C. R. Acad. Sci. (Paris) 116: 1385–1388.

    Google Scholar 

  • Winogradsky, S., 1930, Sur la synthèse de l’ammoniac par les Azotobacter du sol, C. R. Acad. Sci. (Paris) 190: 661–665.

    CAS  Google Scholar 

  • Winogradsky, S., 1932, Sur la synthèse de l’ammoniac par les Azotobacter du sol, Ann. Inst. Pasteur 48: 269.

    CAS  Google Scholar 

  • Winter, G., 1935, Über die Assimilation des Luftstickstoff durch endophytische Blaualgen, Beitr. Biol. Pflaumen 83: 295–335.

    Google Scholar 

  • Witty, J. F., Day, J. M., and Dart, P. J., 1977, The nitrogen economy of the Broadbalk experiments: II. Biological nitrogen fixation, in: Rothamstead Experimental Station, Report for 1976, Part 2, Harpenden: Lawes Agricultural Trust, pp. 111–118.

    Google Scholar 

  • Wolff, H., 1927, Jahrb. Wiss. Botan. 66: 1–34.

    Google Scholar 

  • Woronin, M., 1866, Ueber die bei der Schwarzerle (Alnus glutinosa) und der gewohnlichen Gartenlupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen, Mem. Acad. Imp. Sci., St. Petersbourgh 10 (Ser. 7): 1–13.

    Google Scholar 

  • Woronine, M., 1867, Observations sur certaines excroissances que présentent les racines de l’aune et du lupin des jardins, Ann. Sci. Nat. Bot. 7 (Ser. 5): 73–86.

    Google Scholar 

  • Wyatt, J. T., and Silvey, J. K. G., 1969, Nitrogen fixation by Gloeocapsa, Science 165: 908–909.

    PubMed  CAS  Google Scholar 

  • Yates, M. G., and Jones, C. W., 1974, Respiration and nitrogen fixation in Azotobacter, Adv. Microb. Physiol. 11: 97–135.

    Google Scholar 

  • Youngken, H. W., 1919, The comparative morphology, taxonomy and distribution of the Myr-icaceae of the Eastern United States, Contrib. Bot. Lab. Univ. Pa. 4: 339–400.

    Google Scholar 

  • Zavitkovski, J., and Newton, M., 1968, Effect of organic matter and combined nitrogen on nodulation and nitrogen fixation in red alder, in: Biology of Alder, (J. M. Trappe, J. F. Franklin, R. F. Tarrant, and G. M. Hansen, eds.), Pacific Northwest Forest and Range Experiment Station, Forest Service USDA, Portland, pp. 209–223.

    Google Scholar 

  • Zelitch, I., Rosenblum, E. D., Burris, R. H., and Wilson, P. W., 1951, Isolation of the key intermediate in biological nitrogen fixation by Clostridium pasteurianum, J. Biol. Chem. 191: 295–298.

    PubMed  CAS  Google Scholar 

  • Ziegenspeck, H., 1929, Die cytologischen Vorgange in den Knollchen von Hippophae rhamnoides (sanddorn) und Alnus glutinosa (Erle), Ber. Dtsch. Bot. Gea. 47: 50–58.

    Google Scholar 

  • Zohary, D., and Hopf, M., 1973, Domestication of pulses in the Old World, Science 182: 887–894.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Benson, D.R. (1985). Consumption of Atmospheric Nitrogen. In: Leadbetter, E.R., Poindexter, J.S. (eds) Bacteria in Nature. Bacteria in Nature, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6511-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6511-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6513-0

  • Online ISBN: 978-1-4615-6511-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics