Skip to main content

Avirulence Genes

  • Chapter

Abstract

Plants of today have survived the ebb and flow of countless disease epidemics. The survival of plants depends on their ability to resist marauding pathogens, while at the same time, a pathogen’s success hinges on its ability to either avoid recognition or to overcome the resistance mechanisms of the plant. This adaption process between plants and pathogens undoubtedly was accelerated in crop species by farmers who selected, either by choice or fate, those individual plants that best withstood the ravages of disease. In spite of the selection imposed by co-evolution, populations or individuals of the host exist that do not resist the pathogen and populations of the pathogen exist that do not elicit resistance in the host. Genetic analyses of the variation within host and pathogen populations led to the formulation of the gene-for-gene hypothesis.1,2 This hypothesis predicts that resistance (or incompatibility) is governed by the interaction of single, and for the most part, dominant host resistance (R) genes with corresponding pathogen genes called avirulence (avr) genes. Any R gene and avr gene combination that leads to resistance results in an incompatible interaction. Correspondingly, combinations that do not lead to resistance represent compatible host/pathogen interactions and provide the opportunity for disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flor, H. H. 1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 28:365–391.

    Google Scholar 

  2. Ellingboe, A. H. 1976. Genetics of host-parasite interactions. In Encyclopedia of Plant Pathology, (NS), Physiological Plant Pathology, Vol. 4, ed. R. Heitefuss and P. H. Williams, pp. 761–778. Springer-Verlag, Heidelberg.

    Google Scholar 

  3. Dixon, R. A. and M. J. Harrison. 1990. Activation, structure, and organization of genes involved in microbial defense in plants. Advances in Genetics 28:165–234.

    PubMed  CAS  Google Scholar 

  4. Dixon, R. A., M. J. Harrison, and C. J. Lamb. 1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32:479–501.

    CAS  Google Scholar 

  5. Kiraly, Z. 1980. Defenses triggered by the invader: Hypersensitivity. In Plant Disease, Vol. 4, eds. J. G. Horsfall and E. B. Cowling, pp. 201–224. Academic Press, New York.

    Google Scholar 

  6. Atkinson, M. M. 1993. Molecular mechanisms of pathogen recognition by plants. Adv. Plant Pathol. 10:35–64.

    Google Scholar 

  7. Greenberg, J. T., A. Guo, D. F. Klessig, and E M. Ausubel. 1994. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563.

    PubMed  CAS  Google Scholar 

  8. Dietrich, R. A., T. P. Delaney, S. J. Uknes, E. R. Ward, J. A. Ryals, and J. L. Dangi. 1994. Arabidopsis mutants simulating disease resistance. Cell 77:565–577.

    PubMed  CAS  Google Scholar 

  9. Hammond-Kosack, K. E., K. Harrison, and J. D. G. Jones. 1994. Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf9. Proc. Nat. Acad. Sci. USA 91:10445–10449.

    PubMed  CAS  Google Scholar 

  10. Dangl, J. L. 1994. The enigmatic avirulence genes of phytopathogenic bacteria. In Current Topics in Microbiology and Immunology, Vol. 192; Bacterial Pathogenesis of Plants and Animals, ed. J. L. Dangl, pp. 99–114. Springer-Verlag, Berlin.

    Google Scholar 

  11. De Wit, P. J. M. 1995. Fungal avirulence genes and plant resistance genes: unravelling the molecular basis of gene-for-gene interactions. Adv. Bot. Res.. 21:147–185.

    Google Scholar 

  12. Stakman, E. C. and F. J. Piemeisel. 1917. Biologic forms of Puccinia gramminis on cereals and grasses. J. Agric. Res. 10:429–495.

    Google Scholar 

  13. Staskawicz, B., D. Dahlbeck, and N. T. Keen. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatiblity on Glycines max (L.) Merr. Proc. Nat. Acad. Science USA 81:6024–6028.

    CAS  Google Scholar 

  14. Whalen, M. C., R. E. Stall, and B. J. Staskawicz. 1988. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc. Nat. Acad. Science USA 85:6743–6747.

    CAS  Google Scholar 

  15. Whalen, M. C., J. E Wang, E M. Carland, M. E. Heiskell, D. Dahlbeck, G. V. Min-savage, J. B. Jones, J. W. Scott, R. E. Stall, and B. J. Staskawicz. 1993. Avirulence gene avrRxv from Xanthomonas campestris pv. vesicatoria specifies resistance on tomato line Hawaii 7998. Mol. Plant-Microbe Interact. 6:616–627.

    PubMed  CAS  Google Scholar 

  16. Valent, B. and E G. Chumley. 1994. Avirulence genes and mechanisms of genetic instability in the rice blast fungus. In Rice Blast Diseases, eds. R. S. Zeigler, S. A. Leong and P. S. Teng, pp. 111–134. CAB International, Oxon, U.K.

    Google Scholar 

  17. Kobayashi, D. Y., S. J. Tamaki, and N. T. Keen. 1989. Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc. Nat. Acad. Science USA 86:157–161.

    CAS  Google Scholar 

  18. Keen, N. T., S. Tamaki, D. Kobayashi, D. Gerhold, M. Stayton, H. Shen, S. Gold, J. Lorang, H. Thordal-Christensen, D. Dahlbeck, and B. J. Staskawicz. 1990. Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol. Plant-Microbe Interact. 3:112–121.

    CAS  Google Scholar 

  19. Ronald, P. C., J. M. Salmeron, E M. Carland, and B. J. Staskawicz. 1992. The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J. Bacteriol. 174:1604–1611.

    PubMed  CAS  Google Scholar 

  20. Lorang, J. M., H. Shen, D. Kobayashi, D. Cooksey, and N. T. Keen. 1994. avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol. Plant-Microbe Interact. 7:508–515.

    CAS  Google Scholar 

  21. Vivian, A., G. Atherton, J. Bevan, I. Crute, L. Mur, and J. Taylor. 1989. Isolation and characterization of cloned DNA conferring specific avirulence in Pseudomonas syringae pv. pisi to pea (Pisum sativum) cultivars, which possess the resistance allele, R2. Physiol. Mol. Plant Pathol. 34:335–344.

    CAS  Google Scholar 

  22. Dangl, J. L., C. Ritter, M. J. Gibbon, L. A. J. Mur, J. R. Wood, S. Goss, J. Mansfield, J. D. Taylor, and A. Vivian. 1992. Functional homologues of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell 4:1359–1369.

    PubMed  CAS  Google Scholar 

  23. Fillingham, A. J., J. Wood, J. R. Beven, I. R. Crute, J. W. Mansfield, J. D. Taylor, and A. Vivian. 1992. Avirulence genes from Pseudomonas syringae pathovars phaseolicola and pisi confer specificity towards both host and non-host species. Physiol. Mol. Plant Pathol. 40:1–15.

    Google Scholar 

  24. Wood, J. R., A. Vivian, C. Jenner, J. W. Mansfield, and J. D. Taylor. 1994. Detection of a gene in pea controlling nonhost resistance to Pseudomonas syringae pv. phaseolicola. Mol. Plant-Microbe Interact. 7: 534–537.

    CAS  Google Scholar 

  25. Swamp, S., Y. Yang, M. T. Kingsley, and D. W. Gabriel. 1992. A Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on non-hosts. Mol. Plant-Microbe Interact. 5:204–213.

    Google Scholar 

  26. Carney, B. F. and T. P. Denny. 1990. A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tobacum at the host species level. J. Bacteriol. 172:4836–4843.

    PubMed  CAS  Google Scholar 

  27. Ma, Q. S., M. -F. Chang, J. -L. Tang, J. -X. Feng, M. -J. Fan, B. Han, and T. Liu. 1988. Identification of DNA sequences involved in host specificity in the pathogenesis of Pseudomonas solanacearum strain T2005. Mol. Plant-Microbe Interact. 1:169–174.

    Google Scholar 

  28. Mellano, V. J. and D. A. Cooksey. 1988. Development of host range mutants of Xanthomonas campestris pv. translucens. Appl. Environ. Microbiol. 54:884–889.

    PubMed  CAS  Google Scholar 

  29. Waney, V. R., M. T. Kingsley, and D. W. Gabriel. 1991. Xanthomonas campestris pv. translucens genes determining host-specific virulence and general virulence on cereals identified by Tn5-gusA insertion mutagenesis. Mol. Plant-Microbe Interact. 4:623–627.

    CAS  Google Scholar 

  30. Niepold, E, D. Anderson and D. Mills. 1985 Cloning determinants of pathogenesis from Pseudomonas syringae pv. syringae. Proc. Nat. Acad. Science USA 82:406–410.

    CAS  Google Scholar 

  31. Lindgren, P. B., R. C. Peet, and N. J. Panopoulos. 1986. Gene cluster of Pseudomonas syringae pv. `phaseolicola“ controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J. Bacteriol. 168:512–522.

    PubMed  CAS  Google Scholar 

  32. Willis, D. K., J. J. Rich, and E. M. Hrabak. 1991. hrp genes of phytopathogenic bacteria. Mol. Plant-Microbe Interact. 4:132–138.

    CAS  Google Scholar 

  33. Salmond, G. P. C. and P. J. Reeves. 1994. Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol. 32:181–200.

    CAS  Google Scholar 

  34. Wei, Z. -H. and S. V. Beer. 1992. HrpN of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J. Bacteriol. 175:7958–7967.

    Google Scholar 

  35. He, S. Y., H. -C Huang, and A. Collmer. 1993. Pseudomonas syringae pv. syringae harpinpss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266.

    PubMed  CAS  Google Scholar 

  36. Arlat, M., V. Van Gijsegem, J. C. Huet, J. C. Pernollet, and C. A. Boucher. 1994. PopAl, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. European Mol. Biol. Org. J. 13:543–553.

    CAS  Google Scholar 

  37. Yucel, I., D. Slaymaker, C. Boyd, J. Murillo, R. I. Buzzell, and N. T. Keen. 1994. Avirulence gene avrPphC from Pseudomonas syringae pv. phaseolicola 3121: A plasmid-borne homologue of avrC closely linked to an avrD allele. Mol. Plant-Microbe Interact. 7:677–679.

    PubMed  CAS  Google Scholar 

  38. Yucel, I., C. Boyd, Q. Debnam, and N. T. Keen. 1994. Two different classes of avrD alleles occur in pathovars of Pseudomonas syringae. Mol. Plant-Microbe Interact. 7:131–139.

    PubMed  CAS  Google Scholar 

  39. Tamaki, S., D. Dahlbeck, B. Staskawicz, and N. T. Keen. 1988. Characterization and expression of two cloned avirulence genes cloned from Pseudomonas syringae pv. glycinea. J. Bacteriol. 170: 4846–4854.

    PubMed  CAS  Google Scholar 

  40. Ronald, P. C. and B. J. Staskawicz. 1988. The avirulence gene avrBsl from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Mol. Plant-Microbe Interact. 1:191–198.

    PubMed  CAS  Google Scholar 

  41. Galyov, E. E., S. Hakansson, and H. Wolf-Watz. 1994. Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. J. Bacteriol. 176:4543–4548.

    PubMed  CAS  Google Scholar 

  42. Bonas, U., R. E. Stall, and B. J. Staskawicz. 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol. Gen. Genet. 218:127–136.

    PubMed  CAS  Google Scholar 

  43. Bonas, U., S. Fenselau, T. Horns, C. Marie, B. Moussian, M. Pierre, K. Wengelnik, and G. van den Ackerveken. 1994. HRP and avirulence genes of Xanthomonas campestris pv. vesicatoria controlling the interaction with pepper and tomato. In Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 3, eds. M. J. Daniels, J. A. Downie and A. E. Osbourn, pp. 7–64. Kluwer Academic, Boston.

    Google Scholar 

  44. Canteros, B., G. Minsavage, U. Bonas, D. Pring, and R. Stall. 1991. A gene from Xanthomonas campestris pv. vesicatoria that determines avirulence in tomato is related to avrBs3. Mol. Plant-Microbe Interact. 4:459–465.

    Google Scholar 

  45. De Feyter, R., Y. Yang, and D. W. Gabriel. 1993. Gene-for-gene interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol. Plant-Microbe Interact. 6:225–237.

    PubMed  Google Scholar 

  46. Hopkins, C. M., F. F. White, S. H. Choi, A. Guo, and J. E. Leach. 1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 5:451–459.

    PubMed  CAS  Google Scholar 

  47. Bonas, U., J. Conrads-Strauch, and I. Balbo. 1993. Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol. Gen. Genet. 238:261–269.

    PubMed  CAS  Google Scholar 

  48. Yang, Y., R. De Feyeter, and D. W. Gabriel. 1994. Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Mol. Plant-Microbe Interact. 7:345–355.

    CAS  Google Scholar 

  49. Hopkins, C. M. 1993. Characterization of an avirulence gene from Xanthomonas oryzae pv. oryzae. Ph.D. dissertation, Kansas State University, Manhattan, KS.

    Google Scholar 

  50. Herbers, K., J. Conrads-Strauch, and U. Bonas. 1992. Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356:172–174.

    CAS  Google Scholar 

  51. Kobayashi, D., S. J. Tamaki, and N. T. Keen. 1990. Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol. Plant-Microbe Interact. 3:94–102.

    PubMed  CAS  Google Scholar 

  52. Lorang, J. M. and N. T. Keen. 1995. Characterization of avrE from Pseudomonas syringae pv. tomato: A hrp-linked avirulence locus consisting of at least two transcriptional units. Mol. Plant-Microbe Interact. 8:49–57.

    PubMed  CAS  Google Scholar 

  53. . Keen, N., S. L. Midland, C. Boyd, I. Yucel, T. Tsurushima, J. Lorang, and J. J. Sims. 1994. Syringolide elicitors specified by avirulence gene D alleles in Pseudomonas syringae. In Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 3, eds. M. J. Daniels, J. A. Downie, and A. E. Osbourn, pp. 41–48. Kluwer Academic, Boston.

    Google Scholar 

  54. Staskawicz, B., D. Dahlbeck, N. Keen, and C. Napoli. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169: 5789–5794.

    PubMed  CAS  Google Scholar 

  55. Innes, R. W., A. F. Bent, B. N. Kunkel, S. R. Bisgrove, and B. J. Staskawicz. 1993. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175:4859–4869.

    PubMed  CAS  Google Scholar 

  56. Huynh, T., D. Dahlbeck, and B. J. Staskawicz. 1989. Bacterial blight of soybeans; regulation of a pathogen gene determining host cultivar specificity. Science 245:1374–1377.

    PubMed  CAS  Google Scholar 

  57. Salmeron, J. M. and B. J. Staskawicz. 1993. Molecular characterization and hrp dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol. Gen. Genet. 239:6–16.

    PubMed  CAS  Google Scholar 

  58. Shen, H. and N. T. Keen. 1993. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol. 175:5916–5924.

    PubMed  CAS  Google Scholar 

  59. Mansfield, J., C. Jenner, R. Hockenhull, M. A. Bennett, and R. Stewart. 1994. Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv. phaseolicola which is physically linked to hrpY a new hrp gene identified in the halo-blight bacterium. Mol. Plant-Microbe Interact. 7:726–739.

    PubMed  CAS  Google Scholar 

  60. Rahme, L. G., M. N. Mindrinos, and N. J. Panopoulos. 1992. The genetic and transcriptional organization of the hrp cluster of Pseudomonas syringae pathovar phaseolicola. J. Bacteriol. 173:575–586.

    Google Scholar 

  61. Xiao, Y., Y. Lu, S. Heu, and S. W. Hutcheson. 1992. Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J. Bacteriol. 174:1734–1741.

    PubMed  CAS  Google Scholar 

  62. Grignon, C. and H. Sentenac. 1991. pH and ionic conditions in the apoplast. Annu. Rev. Plant Physiol. 42:103–128.

    CAS  Google Scholar 

  63. Hancock, J. G. and O. C. Huisman. 1981. Nutrient movement in host-pathogen systems. Annu. Rev. Phytopathol. 19:309–331.

    CAS  Google Scholar 

  64. Joosten, M. H., T. J. Cozijnsen, and P. J. De Wit. 1994. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367:384–386.

    PubMed  CAS  Google Scholar 

  65. van den Ackerveken, G. F., R. M. Dunn, A. J. Cozijnsen, J. P. Vossen, H. W. Van den Broek, and P. J. De Wit. 1994. Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Mol. Gen. Genet. 243:277–285.

    PubMed  Google Scholar 

  66. Knoop, V., B. Staskawicz, and U. Bonas. 1991. Expression of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria is not under the control of hrp genes and is independent of plant factors. J. Bacteriol. 173:7142–7150.

    PubMed  CAS  Google Scholar 

  67. Young, S. A., F. F. White, C. M. Hopkins, and J. E. Leach. 1994. AVRXa10 protein is in the cytoplasm of Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 7:799–804.

    PubMed  CAS  Google Scholar 

  68. Grimm, C., W. Aufsatz, and N. J. Panopoulos. 1995. The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol. Microbiol. 15:155–165.

    PubMed  CAS  Google Scholar 

  69. Grimm, C. G. and N. J. Panopoulos. 1989. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologueous to a highly conserved domain of several procaryotic regulatory proteins. J. Bacteriol. 171:5031–5038.

    PubMed  CAS  Google Scholar 

  70. Felley, R., L. G. Rahme, M. N. Mindrinos, R. D. Frederick, A. Pisi, and N J Panapoulos. 1991. Genes and signals controlling the Pseudomonas syringae pv. phaseolicolaplant interaction. In Advances in Molecular Genetics of Plant-Microbe Interactions, eds. H. Hennecke and D. P. S. Verma, pp. 45–52. Kluwer Academic, Dordrecht.

    Google Scholar 

  71. Jenner, C., E. Hitchin, J. Mansfield, K. Walters, P. Betteridge, D. Teverson, and J. Taylor. 1991. Gene-for-gene interactions between Pseudomonas syringae pv. phaseolicola and Phaseolus. Mol. Plant-Microbe Interact. 4:553–562.

    PubMed  CAS  Google Scholar 

  72. Xiao, Y., S. Heu, J. Yi, Y. Lu, and S. Hutcheson. 1994. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol. 176:1025–1036.

    PubMed  CAS  Google Scholar 

  73. De Wit, P. J. G. M. and G. Spikman 1982. Evidence for the occurrence of race-and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions between Cladosporium vulvum and tomato. Physiol. Plant Pathol. 21:1–11.

    Google Scholar 

  74. De Wit, P. J. G. M., J. E. Hofman, G. C. M. Velthuis, and J. A. Kuc. 1985. Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Plant Physiology 77:642–647.

    PubMed  Google Scholar 

  75. Scholtens-Toma, I. M. J. and P. J. M. De Wit. 1988. Purification and primary structure of a necrosis-inducing peptide from the apoplastic fluids of tomato infected with Cladosporium fulvum (syn. Fulvia fulva). Physiol. Mol. Plant Pathol. 33:59–67.

    Google Scholar 

  76. van den Ackerveken, G. F., J. A. Van Kan, and P. J. De Wit. 1992. Molecular analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J. 2:359–366.

    PubMed  Google Scholar 

  77. Hahn, M., S. Jungling, and W. Knogge. 1993. Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Mol. Plant-Microbe Interact. 6:745–754.

    PubMed  CAS  Google Scholar 

  78. Knogge, W., A. Gierlich, H. Hermann, P. Wernert, and M. Rohe. 1994. Molecular identification and characterization of the nip 1 gene, an avirulence gene from the barley pathogen Rhynchosporium secalis. In Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 3, eds. M. J. Daniels, J. A. Downie, and A. Osbourn, pp. 207–214. Kluwer Academic, Boston.

    Google Scholar 

  79. Ricci, P., P. Bonnet, J. C. Huet, M. Sallantin, F. Beauvais-Cante, M. Bruneteau, V. Billard, G. Michel, and J. C. Pernollet. 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. European J. Biochem. 183:555–563.

    CAS  Google Scholar 

  80. Ricci, P., F. Trentin, P. Bonnet, P. Venard, F. Mouton-Perronnet, and M. Bruneteau. 1992. Differential production of parasiticein, an elicitor of necrosis and resistance in tobacco, by isolates of Phytophthora parasitica. Plant Pathol. 41:298–307.

    CAS  Google Scholar 

  81. Pernollet J. C., M. Sallantin, M. Salle-Tourne, and J. C. Huet. 1993. Elicitin isoforms from seven Phytophthora species: comparison of their physico-chemical and toxic properties to tobacco and other plant species. Physiol. Mol. Plant Pathol. 41:427–435.

    Google Scholar 

  82. Kamoun, S., M. Young, C. Glascock, and B. M. Tyler. 1993a. Extracellular protein elicitors from Phytophthora: host specificity and induction of resistance to fungal and bacterial phytopathogens. Mol. Plant-Microbe Interact. 6:15–25.

    CAS  Google Scholar 

  83. Kamoun, S., K. M. Klucher, M. D. Coffey, and B. M. Tyler. 1993b. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol. Plant-Microbe Interact. 6:573–581.

    CAS  Google Scholar 

  84. Kamoun, S., M. Young, H. Foster, M. D. Coffey, and B. Tyler. 1994. Potential role of elicitins in the interaction between Phytophthora species and tomato. Appl. Environ. Microbiol. 60:1593–1598.

    PubMed  CAS  Google Scholar 

  85. Brown, I., J. Mansfield, I. Irlam, J. Conrads-Strauch, and U. Bonas. 1993. Ultra-structure of interactions between Xanthomonas campestris pv. vesicatoria and pepper, including immunocytochemical localization of extracellular polysaccharides and the avrBs3 protein. Mol. Plant-Microbe Interact. 6:376–386.

    CAS  Google Scholar 

  86. Wagner, W., M. Kuhn, and W. Goebel. 1988. Active and inactive forms of hemolysin (Hy1A) from Escherichia coli. J. Biol. Chem. 369:39–46.

    CAS  Google Scholar 

  87. Hughes, C., J. P. Issartel, K. Hardie, P. Stanley, E. Koronakis, and V. Koronakis 1992. Activation of Escherichia coli prohemolysin to the membrane-targeted toxin by H1yC-directed ACP-dependence fatty acylation. FEMS Microbiol. Immunol. 5:37–43.

    PubMed  CAS  Google Scholar 

  88. Rosquist, R., K. E. Magnusson, and H. Wolf-Watz. 1994. Target cells contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13:964–972.

    Google Scholar 

  89. Fenselau, S., I. Balbo, and U. Bonas. 1992. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals. Mol. Plant-Microbe Interact. 5:390–396.

    PubMed  CAS  Google Scholar 

  90. Gough, C. L., S. Genin, C. Zischek, and C. Boucher. 1992. hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. Mol. Plant-Microbe Interact. 5:384–389.

    PubMed  CAS  Google Scholar 

  91. Huang, H., R. Lin, C. Chang, A. Collmer, and W. Deng. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinpss secretion that are arranged colinearly with Yersinia ysc homologues. Mol. Plant-Microbe Interact. 8:733–746.

    PubMed  CAS  Google Scholar 

  92. Huang, H., S. W. Hutcheson, and A. Collmer. 1992. The Pseudomonas syringae pv. syringae 61 hrpH product: an envelope protein required for elicitation of the hypersensitive response in plants. J. Bacteriol. 174:6878–6885.

    PubMed  CAS  Google Scholar 

  93. Yang, Y. and D. Gabriel. 1995. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol. Plant-Microbe Interact. 8:627–631.

    PubMed  CAS  Google Scholar 

  94. Johnson, P. F. and S. L. McKnight. 1989. Eukaryotic transcriptional regulatory proteins. Annu. Rev. Biochem. 58:799–839.

    PubMed  CAS  Google Scholar 

  95. Gabriel, D. W. 1989. The genetics of plant pathogen population structure and host-parasite specificity. In Plant-Microbe Interactions: Molecular and Genetic Perspectives. Vol. 3 ed. T. Kosuge and E. W. Nester, pp. 343–379. Macmillan, New York.

    Google Scholar 

  96. Keen, N. T. 1990. Gene-for-gene complimentary in plant-pathogen interaction. Annu. Rev. Genet. 24:447–463.

    PubMed  CAS  Google Scholar 

  97. Knorr, D. A. and W. O. Dawson. 1988. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc. Nat. Acad. Science USA 85:170–174.

    CAS  Google Scholar 

  98. Culver, J. N. and W. O. Dawson. 1989. Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in Nicotiana sylvestris. Mol. Plant-Microbe Interact. 4:209–213.

    Google Scholar 

  99. Kearney, B. and B. J. Staskawicz. 1990. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346:385–386.

    PubMed  CAS  Google Scholar 

  100. Minsavage, G. V., D. Dahlbeck, M. C. Whalen, B. Kearney, U. Bonas, B. J. Staskawicz, and R. E. Stall. 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Mol. Plant-Microbe Interact. 3:41–47.

    CAS  Google Scholar 

  101. Mazzola, M., J. E. Leach, R. Nelson, and F. F. White. 1994. Analysis of the interaction between Xanthomonas oryzae pv. oryzae and the rice cultivars IR24 and IRBB21. Phytopathology 84:392–397.

    CAS  Google Scholar 

  102. Swamp, S., R. De Feyter, R. H. Brlansky and D. W. Gabriel. 1991. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology 81:802–809.

    Google Scholar 

  103. Choi, S. 1993. Restriction-modification systems and genetic variability of Xanthomonas oryzae pv. oryzae. Ph.D. dissertation, Kansas State University, Manhattan, KS.

    Google Scholar 

  104. Marmeisse, R., G. F. J. M. van den Ackerveken, T. Goosen, P. J. G. M. De Wit, and H. W. J. van den Broek. 1993. Disruption of the avirulence gene Avr9 in two races of the tomato pathogen Cladosporium fulvum causes virulence on tomato genotypes with the complementary resistance gene Cf9. Mol. Plant-Microbe Interact. 6:412–417.

    CAS  Google Scholar 

  105. Bauer, D. W., A. J. Bogdanove, S. V. Beer, and A. Collmer. 1994. Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol. Plant-Microbe Interact. 7:573–581.

    PubMed  CAS  Google Scholar 

  106. van Kan, J. A. L., G. F. van den Ackerveken, and P. J. G. M. De Wit. 1991. Cloning and characterization of cDNA of avirulence gene Avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol. Plant-Microbe Interact. 4:52–59.

    PubMed  Google Scholar 

  107. Dahlbeck, D. and R. E. Stall. 1979. Mutations for change of race in cultures of Xanthomonas vesicatoria. Phytopathology 69:634–636.

    Google Scholar 

  108. Kearney, B., P. C. Ronald, D. Dahlbeck, B. J. Staskawicz. 1988. Molecular basis for evasion of plant host defense in bacterial spot disease of pepper. Nature 332:541–543.

    CAS  Google Scholar 

  109. Leung, H., R. J. Nelson, and J. E. Leach. 1993. Population structure of plant pathogenic fungi and bacteria. Adv. Plant Pathol. 10: 157–205.

    Google Scholar 

  110. De Feyter, R. and D. W. Gabriel. 1991. At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv. malvacearum. Mol. Plant-Microbe Interact. 4:423–432.

    Google Scholar 

  111. Leach, J. E., A. Guo, R. Reimers, S. -H. Choi, C. M. Hopkins. 1995. Physiology of resistant interactions between Xanthomonas oryzae pv. oryzae and rice. In Molecular Mechanisms of Bacterial Virulence,eds., C.I. Kado and J.H. Crosa, pp. 551–560. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  112. Callow, J. A. 1977. Recognition, resistance and the role of plant lectins in host parasite interactions. Adv. Bot. Res. 4:1–49.

    CAS  Google Scholar 

  113. Keen, N. T. 1982. Specific recognition in gene-for-gene host-parasite systems. Adv. Plant Pathol. 2:35–82.

    Google Scholar 

  114. Gabriel, D. W., D. C. Loschke, and B. G. Rolfe. 1988. Gene-for-gene recognition: The ion channel defense model. In Molecular Genetics of Plant-Microbe Interactions, eds. R. Palacios and D. P. S. Verma, pp. 3–14. APS Press, St. Paul, MN.

    Google Scholar 

  115. Gabriel, D. W. and B. G. Rolfe. 1990. Working models of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol. 28:365–391.

    CAS  Google Scholar 

  116. Albersheim, P. and A. J. Anderson-Prouty. 1975. Carbohydrates, proteins, cell-surfaces, and the biochemistry of pathogenesis. Annu. Rev. Plant Physiol. 26:31–52.

    CAS  Google Scholar 

  117. Denarie, J., G. Truchet, and J. C. Prome. 1994. Rhizobium nodulation factors: synthesis and induction of plant responses. In Advances in Molecular Genetics of Plant-Microbe Interactions, eds., M. J. Daniels, J. A. Downie, and A. E. Osbourn, pp. 81–90. Kluwer Academic, Boston.

    Google Scholar 

  118. Hooykaas, R J. J. and A. G. M. Beijersbergen. 1994. The virulence system of Agrobacterium tumefaciens. Annu. Rev. Phytopathol. 32:157–179.

    CAS  Google Scholar 

  119. Denarie, J., F. Debelle, and C. Rosenberg. 1992. Signaling and host range variation in nodulation. Annu. Rev. Microbiol. 46:497–531.

    PubMed  CAS  Google Scholar 

  120. Fisher, R. F. and S. R. Long. 1992. Rhizobium-plant signal exchange. Nature 357:655–660.

    PubMed  CAS  Google Scholar 

  121. Denarie, J. and J. Cullimore. 1993. Lipo-oligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis. Cell 74:951–954.

    PubMed  CAS  Google Scholar 

  122. Carlson, R. W., N. R J. Price, and G. Stacey. 1994. The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol. Plant-Microbe Interact. 6: 684–695.

    Google Scholar 

  123. Martin, G. B., S. H. Brommonschenkel, J. Chunwongse, A. Frary, M. W. Ganal, R. Spivey, T. Wu, E. D. Earle, S. D. Tanksley. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1435.

    PubMed  CAS  Google Scholar 

  124. Jones, D. A., C. M. Thomas, K. E. Hammond-Kosack, R J. Balint-Kurti, and J. D. G. Jones. 1994. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793.

    PubMed  CAS  Google Scholar 

  125. Bent, A. F., B. N. Kunkel, D. Dahlbeck, K. L. Brown, R. Schmidt, J. Giraudat, J. Leung, B. J. Staskawicz. 1994. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860.

    PubMed  CAS  Google Scholar 

  126. Mindrinos, M., F. Katagiri, G. -L. Yu, and F. M. Ausubel. 1994. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089–1099.

    PubMed  CAS  Google Scholar 

  127. Lawrence, G. J., J. G. Ellis, and E. J. Finnegan. 1994. Cloning a rust-resistance gene in flax. In Advances in Molecular Genetics of Plant-Microbe Interactions, eds., M. J. Daniels, J. A. Downie, and A. E. Osbourn, pp. 303–306. Kluwer Academic, Boston.

    Google Scholar 

  128. Whitham, S., S. P. Dinesh-Kumar, D. Choi, R. Hehl, C. Con, and B. Baker. 1994. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115.

    PubMed  CAS  Google Scholar 

  129. Song, W-Y., G.-L. Wang, L.-L. Chen, H.-S. Kim, L.-Y. Pi, T. Holsten, J. Gardner, B. Wang, W.-X. Zhai, L.-H. Zhu, C. Fauquet, and P. Ronald. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806.

    CAS  Google Scholar 

  130. Martin, G. B. 1995. Molecular cloning of plant disease resistance genes. In Plant-Microbe Interactions, Vol. 1, eds., G. Stacey and N. Keen, pp. 1–32. Chapman & Hall, New York.

    Google Scholar 

  131. Kobe, B. and J. Deisenhofer. 1994. The leucine-rich repeat: a versatile binding motif. Trends in Biochem. 19:415–421.

    CAS  Google Scholar 

  132. van den Ackerveken, G. F., P. Vossen, and R J. De Wit. 1993. The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant pro-teases. Plant Physiol. 103:91–96.

    PubMed  Google Scholar 

  133. Midland, S. L., N. T. Keen, J. J. Sims, M. M. Midland, M. M. Stayton, V. Burton, M. J. Smith, E. R Mazzola, K. J. Graham, and J. Clardy. 1993. The structure of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomomas syringae pv. tomato. J. Am. Chem. Soc. 58:2940–2945.

    CAS  Google Scholar 

  134. Smith, M. J., E. R. Mazzola, J. J. Sims, S. L. Midland, N. T. Keen, V. Burton, and M. M. Stayton. 1993. The syringolides: Bacterial glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett. 34:223–226.

    CAS  Google Scholar 

  135. Yucel, I., S. L. Midland, J. J. Sims, and N. T. Keen. 1994B. Class I and Class II avrD alleles direct the production of different products in gram-negative bacteria. Mol. Plant-Microbe Interact. 7:148–50.

    CAS  Google Scholar 

  136. Honée, G. F. J. M., H. W. J. van den Ackerveken, T. J. van den Broek, M. H. A. J. Cozijnsen, R. L. Joosten, M. Kooman-Gersmann, J. Vervoort, R. Vogelsang, P. Vossen, J. P. Wubben, and P. J. G. M. De Wit. 1994. Molecular characterization of the interaction between the fungal pathogen Cladosporium fulvum and tomato. In Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 3, eds. M. J. Daniels, J. A. Downie, and A. E. Osbourn, pp. 199–206. Kluwer Academic, Boston.

    Google Scholar 

  137. Keen, N. T. and R. I. Buzzell. 1991. New disease resistance genes in soybean against Pseudomonas syringae pv. glycinea: evidence that one of them interacts with a bacterial elicitor. Theo. Appl. Genet. 81:133–138.

    CAS  Google Scholar 

  138. Beppu, T. 1992 Secondary metabolites as chemical signals for cellular differentiation. Gene 115:159–165.

    PubMed  CAS  Google Scholar 

  139. Bainton, N. J., B. W. Bycroft, S. R. Chhabra, P. Stead, L. Gledhill, P. J. Hill, C. E. D. Rees, M. K. Winson, G. P. C. Salmond, G. S. A. B. Steward, and P. Williams 1992. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene 116:87–91.

    CAS  Google Scholar 

  140. Cao, J. and E. A. Meighen. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264: 21670–21676.

    PubMed  CAS  Google Scholar 

  141. Zhang, L., P. J. Murphy, A. Kerr, and M. E. Tate. 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446–448.

    PubMed  CAS  Google Scholar 

  142. Flego, D., M. Pirhonen, R. Heikinheimo, M. B. Karlsson, T. K. Palva, and E. T. Palva. 1993. Global and specific control of exoenzyme production and virulence in Erwinia carotovora. Proceedings Symposium Molecular Genetics of Plant-Microbe Interactions, Rutgers Univ.

    Google Scholar 

  143. Passador, L., J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130.

    PubMed  CAS  Google Scholar 

  144. Gundlach, H., M. J. Muller, T. M. Kutchan, and M. H. Zenk. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Nat. Acad. Science USA 89:2389–2393.

    CAS  Google Scholar 

  145. Bennetzen, J. L. and S. H. Hulbert. 1992. Organization, instability and evolution of plant disease resistance genes. Plant Mol. Biol. 20:575–580.

    PubMed  CAS  Google Scholar 

  146. Walton, J. D. and D. G. Panaccione. 1993. Host-selective toxins and disease specificity: perspectives and progress. Annu. Rev. Phytopathol. 31:275–303.

    PubMed  CAS  Google Scholar 

  147. Dangl, J. L. 1993. The emergence of Arabidopsis thaliana as a model for plant-pathogen interactions. Adv. Plant Pathol. 10:127–155.

    Google Scholar 

  148. Napoli, C. and B. Staskawicz. 1987. Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169:572–578.

    PubMed  CAS  Google Scholar 

  149. Tamaki, S. J., D. Y. Kobayashi, and N. T. Keen. 1991. Sequence domains required for the activity of avirulence genes avrB and avrC from Pseudomonas syringae pv. glycinea. J. Bacteriol. 173:301–307.

    PubMed  CAS  Google Scholar 

  150. Wanner, L. A., S. Mittal, and K. R. Davis. 1993. Recognition of the avirulence gene avrB from Pseudomonas syringae pv. glycinea by Arabidopsis thaliana. Mol. Plant-Microbe Interact. 6:582–591.

    PubMed  CAS  Google Scholar 

  151. Kobayashi, D. Y., S. J. Tamaki, D. J. Trollinger, S. Gold, and N. T. Keen. 1990. A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P. s. pv. tomato but devoid of the avirulence phenotype. Mol. Plant-Microbe Interact. 3:103–111.

    PubMed  CAS  Google Scholar 

  152. Yucel, I. and N. T. Keen. 1994 Amino acid residues required for the activity of avrD alleles. Mol. Plant-Microbe Interact. 7:140–147.

    PubMed  CAS  Google Scholar 

  153. Whalen, M. C., R. W. Innes, A. F. Bent, and B. J. Staskawicz. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59.

    PubMed  CAS  Google Scholar 

  154. Kunkel, B. N., A. F Bent, D. Dahlbeck, R. W. Innes, and B. J. Staskawicz. 1993. RPS2, and Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:865–875.

    PubMed  CAS  Google Scholar 

  155. Dong, X., M. Mindrinos, K. R. Davis, and F. M. Ausubel. 1991. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3:61–72.

    PubMed  CAS  Google Scholar 

  156. Debener, T., H. Lehnackers, M. Arnold, and J. L. Dangl. 1991. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1:289–302.

    PubMed  CAS  Google Scholar 

  157. Bavage, A. D., A. Vivian, G. T. Atherton, J. D. Taylor, and A. N. Malik. 1991. Molecular genetics of Pseudomonas syringae pathovar pisi: plasmid involvement in cultivar-specific incompatibility. J. Gen. Microbiol. 137:2231–2239.

    PubMed  CAS  Google Scholar 

  158. Cournoyer, B., J. D. Sharp, A. Astuto, M. J. Gibbon, J. D. Taylor, and A. Vivian. 1995. Molecular characterization of Pseudomonas syringae pathovar pisi plasmidborne avirulence gene avrPpiB which matches the R3 resistance locus in pea. Mol. Plant-Microbe Interact. 8:700–708.

    PubMed  CAS  Google Scholar 

  159. Shintaku, M. H., D. A. Kluepfel, A. Yacoub, and S. S. Patil. 1989. Cloning and partial characterization of an avirulence gene from race 1 of Pseudomonas syringae pv. phaseolicola. Physiol. Mol. Plant Pathol. 35:313–322.

    CAS  Google Scholar 

  160. Swanson, J., B. Kearney, D. Dahlbeck, and B. Staskawicz. 1988. Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Mol. Plant-Microbe Interact. 1:5–9.

    Google Scholar 

  161. Parker, J. E., C. E. Barber, M. J. Fan, and M. J. Daniels. 1993. Interaction of Xanthomonas campestris with Arabidopsis thaliana: characterization of a gene from X. c. pv. raphani that confers avirulence to most A. thaliana accessions. Mol. Plant-Microbe Interact. 6:216–224.

    PubMed  CAS  Google Scholar 

  162. Martin, G. B., A. Frary, T. Wu, S. Brommonschenkel, J. Chunwongse, E. Earle, and S. Tanksley. 1994. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543–1552.

    PubMed  CAS  Google Scholar 

  163. Bowling, S. A., A. Guo, H. Cao, A. S. Gordon, D. E Klessig, and X. Dong. 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845–1857.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leach, J.E., White, F.F. (1997). Avirulence Genes. In: Stacey, G., Keen, N.T. (eds) Plant-microbe Interactions 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6053-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6053-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7772-6

  • Online ISBN: 978-1-4615-6053-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics