Skip to main content

Tyrosine Phosphorylation in Oxidative Stress

  • Chapter

Abstract

Tyrosine phosphorylation is a central regulatory mechanism for cells to transmit signals from cell surface receptors to the nucleus. Signaling pathways involving tyrosine phosphorylation are conserved in diverse organisms ranging from nematodes and fruit flies to humans.1,2 Receptors for a wide variety of growth factors and hormones, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), insulin, and erthropoietin (EPO) induce cellular tyrosine phosphorylation either directly through intrinsic tyrosine kinase activity or by coupling to cytoplasmic tyrosine kinases (see Refs. 3 and 4 for review). Tyrosine kinases thus play key roles in growth and differentiation. Tyrosine kinases are also important in the functioning of the immune system. Lymphocyte antigen receptors are coupled to cytoplasmic tyrosine kinases, as are receptors for the cytokines that coordinate the response of the immune system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downward, J. 1995. KSR: A novel player in the RAS pathway. Cell 83: 831–834.

    Article  PubMed  CAS  Google Scholar 

  2. Schlessinger, J. 1993. How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18: 273–275.

    Article  PubMed  CAS  Google Scholar 

  3. Ullrich, A., and J. Schlessinger. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212.

    Article  PubMed  CAS  Google Scholar 

  4. Ihle, J. N. 1995. The Janus protein tyrosine kinases in hematopoetic cytokine signaling. Sem. Immunol. 7: 247–254.

    Article  CAS  Google Scholar 

  5. Cooper, J. A., B. A. Sefton, and T. Hunter. 1983. Detection and quantitation of phosphotyrosine in proteins. Methods Enzymol. 99: 387–402.

    Article  PubMed  CAS  Google Scholar 

  6. Slamon, D. J., W. Godolphin, L. A. Jones, J. A. Holt, S. G. Wong, D. E. Keith, W. J. Levin, S. G. Stuart, J. Udove, A. Ullrich, and M. F. Press. 1989. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  PubMed  CAS  Google Scholar 

  7. Pietras, R. J., J. Arboleda, D. M. Reese, N. Wongvipat, M. D. Pegram, L. Ramos, C. M. Gorman, M. G. Parker, M. X. Sliwkowski, and D. J. Slamon. 1995. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10: 2435–2446.

    PubMed  CAS  Google Scholar 

  8. Schieven, G. L., and J. A. Ledbetter. 1994. Activation of tyrosine kinase signaling pathways by radiation and oxidative stress. Trends Endocrinol. Metab. 5: 383–388.

    Article  PubMed  CAS  Google Scholar 

  9. Aitken, R. J., M. Paterson, H. Fisher, D. W. Buckingham, and M. Vanduin. 1996. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J. Cell. Sci. 108: 2017–2025.

    Google Scholar 

  10. Weiss, A., and D. R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76: 263–214.

    Article  PubMed  CAS  Google Scholar 

  11. Ames, B. N, M. K. Shigenaga, and T. M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90: 7915–7922.

    Article  PubMed  CAS  Google Scholar 

  12. El-Hag, A., P. E. Lipsky, M. Bennett, and R. A. Clark. 1986. Immunomodulation by neutrophil myeloperoxidase and hydrogen peroxide: differential susceptibility of human lymphocyte functions. J. Immunol. 136: 3420–3426.

    PubMed  CAS  Google Scholar 

  13. Sandstrom, P. A., and T. M. Buttke. 1993. Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc. Natl. Acad. Sci. USA 90: 4708–4712.

    Article  PubMed  CAS  Google Scholar 

  14. Yodai, J., and T. Uchiyama. 1993. Diseases associated with HTLV-I: virus, IL-2 receptor dysregulation and redox regulation. Immunol. Today 13: 405–411.

    Article  Google Scholar 

  15. El-Hag, A., and R. A. Clark. 1987. Immunosuppression by activated human neutrophils. J. Immunol. 139: 2406–2413.

    PubMed  CAS  Google Scholar 

  16. Mapp, P. I., M. C. Grootveld, and D. R. Blake. 1995. Hypoxia, oxidative stress and rheumatoid arthritis. Br. Med. Bull 51: 419–436.

    PubMed  CAS  Google Scholar 

  17. de Lorgeril, M., M. J. Richard, J. Arnaud, P. Boissonnat, J. Guidollet, G. Dureau, S. Renaud, and A. Favier. 1994. Increased production of reactive oxygen species in pharmacologically-immunosuppressed patients. Chem.-Biol Interact. 91: 159–164.

    Article  PubMed  Google Scholar 

  18. Duncan, D. D. and D. A. Lawrence. 1989. Differential lymphocyte growth-modifying effects of oxidants: changes in cytosolic Ca2+. Toxicol. Appl. Pharmacol 100: 485–497.

    Article  PubMed  CAS  Google Scholar 

  19. Kanner, S. B., T. J. Kavanagh, A. Grossmann, S. L. Hu, J. B. Bolen, P. S. Ravinovitch, and J. A. Ledbetter. 1992. Sulfhydryl oxidation down-regulates T-cell signaling and inhibits tyrosine phosphorylation of phospholipase Cγl. Proc. Natl. Acad. Sci. USA 89: 300–304.

    Article  PubMed  CAS  Google Scholar 

  20. Messina, J. P., and D. A. Lawrence. 1989. Cell cycle progression of glutathionedepleted human peripheral blood mononuclear cells is inhibited at S phase. J. Immunol. 143: 1974–1981.

    PubMed  CAS  Google Scholar 

  21. Kavanagh, T. J., A. Grossmann, E. P. Jaecks, J. C. Jinneman, D. L. Eaton, G. M. Martin, and P. S. Rabinovtich. 1990. Proliferative capacity of human peripheral blood lymphocytes sorted on the basis of glutathione content. J. Cell. Physiol. 145: 472–480.

    Article  PubMed  CAS  Google Scholar 

  22. Hunter, T., and B. M. Sefton. 1980. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl Acad. Sci. USA 77: 1311–1315.

    Article  PubMed  CAS  Google Scholar 

  23. Rosen, O. M., R. Herrera, Y. Olowe, L. M. Petruzzelli, and M. H. Cobb. 1983. Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc. Natl. Acad. Sci. USA 80: 3237–3240.

    Article  PubMed  CAS  Google Scholar 

  24. Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and L. C. Cantley. 1994. SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.

    Google Scholar 

  25. Twamley-Sein, G. M., R. Pepperkok, W. Ansorge, and S. A. Courtneidge. 1993. The Src family tyrosine kinases are required for platelet-derived growth factormediated signal transduction in NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 90: 7696–7700.

    Article  Google Scholar 

  26. Koch, C. A., D. Anderson, M. F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252: 668–674.

    Article  PubMed  CAS  Google Scholar 

  27. Kavanaugh, W. M., C. W. Turck, and L. T. Williams. 1995. PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268: 1177–1179.

    Article  PubMed  CAS  Google Scholar 

  28. Bork, P. and B. Margolis. 1995. A phosphotyrosine interaction domain. Cell 80: 693–694.

    Article  PubMed  CAS  Google Scholar 

  29. Carpenter, C. L., K. R. Auger, M. Chanudhuri, M. Yoakim, B. Schaffhausen, S. Shoelson, and L. C. Cantley. 1993. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J. Biol. Chem. 268: 9478–9483.

    PubMed  CAS  Google Scholar 

  30. Shoelson, S. E., M. Sivaraja, K. P. Wiliams, P. Hu, J. Schlessinger and M. A. Weiss. 1993. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J. 12: 795–802.

    PubMed  CAS  Google Scholar 

  31. McCormick, F. 1993. How receptors turn Ras on. Nature 363: 15–16.

    Article  PubMed  CAS  Google Scholar 

  32. Pastor, M. I., K. Reif, and D. Cantrell. 1995. The regulation and function of p21ras during T-cell activation and growth. Immunol. Today 16: 159–164.

    Article  CAS  Google Scholar 

  33. Huang, X., Y. Li, K. Tanaka, K. G. Moore, and J. I. Hayashi. 1995. Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase Cγ1, Grb2, and phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 92: 11618–11622.

    Article  PubMed  CAS  Google Scholar 

  34. Lander, H. M., J. S. Ogiste, K. K. Teng, and A. Novogrodsky. 1995. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J. Biol. Chem. 270: 21195–21198.

    Article  PubMed  CAS  Google Scholar 

  35. Kulas, D. T., B. J. Goldstein, and R. A. Mooney. 1996. The transmembrane proteintyrosine Phosphatase LAR modulates signaling by multiple receptor tyrosine kinases. J. Biol. Chem. 271: 748–754.

    Article  PubMed  CAS  Google Scholar 

  36. Sundarensan, M., Z. X. Yu, V. J. Ferrans, K. Irani, and T. Finkel. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296–299.

    Article  Google Scholar 

  37. Cambier, J. C. 1995. Antigen and Fc receptor signaling. J. Immunol. 155: 3281–3285.

    PubMed  CAS  Google Scholar 

  38. Hatada, M. H., X. Lu, E. R. Laird, J. Green, J. P. Morgenstern, M. Lou, C. S. Marr, T. B. Phillips, M. K. Ram, K. Theriault, M. J. Zoller, and J. L. Karas. 1995. Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 377: 32–38.

    Article  PubMed  CAS  Google Scholar 

  39. Chan, A. C., M. Dalton, R. Johnson, G. Kong, T. Wang, R. Thoma, and T. Kurosaki. 1995. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 14: 2499–2508.

    PubMed  CAS  Google Scholar 

  40. Gilliland, L. K., G. L. Schieven, N. Norris, S. B. Kanner, A. Aruffo, and J. A. Ledbetter. 1992. Lymphocyte lineage-restricted tyrosine phosphorylated proteins that bind PLCγl SH2 domains. J. Biol. Chem. 267: 13610–13616.

    PubMed  CAS  Google Scholar 

  41. Law, C. L, S. P. Sidorenko, and E. A. Clark. 1994. Regulation of lymphocyte activation by the cell-surface molecule CD22. Immunol. Today 15: 442–449.

    Article  PubMed  CAS  Google Scholar 

  42. Kolanus, W., C. Romeo, and B. Seed. 1993. T cell activation by clustered tyrosine kinases. Cell 74: 171–183.

    Article  PubMed  CAS  Google Scholar 

  43. Bolen, J. B., R. B. Rowley, C. Spana, and A. Y. Tsygankov. 1992. The Src family of tyrosine protein kinases in hemopoietic signal transduction. FASEB J. 6: 3403–3409.

    PubMed  CAS  Google Scholar 

  44. Chow, L.M.L., and A. Veillette. 1995. The Src and Csk families of tyrosine protein kinases in hemopoietic cells. Semin. Immunol. 7: 207–226.

    Article  PubMed  CAS  Google Scholar 

  45. Cooper, J. A., and B. Howell. 1993. The when and how of Src regulation. Cell 73: 1051–1054.

    Article  PubMed  CAS  Google Scholar 

  46. Thomas, M. L. 1995. Positive and negative regulation of leukocyte activation by protein tyrosine phosphatases. Semin. Immunol. 7: 279–288.

    Article  PubMed  CAS  Google Scholar 

  47. Furukawa, T., M. Itoh, N. X. Krueger, M. Streuli and H. Saito. 1994. Specific interaction of the CD45 protein-tyrosine Phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc. Natl. Acad. Sci. USA 91: 10928–10932.

    Article  PubMed  CAS  Google Scholar 

  48. Ledbetter, J. A., G. L. Schieven, F. M. Uckun, and J. B. Imboden. 1991. CD45 cross-linking regulates phospholipase C activation and tyrosine phosphorylation of specific substrates in CD3/Ti stimulated cells. J. Immunol. 146: 1577–1583.

    PubMed  CAS  Google Scholar 

  49. Kanner, S. B., J. P. Deans, and J. A. Ledbetter. 1992. Regulation of CD3-induced phospholipase-Cγ-l (PLCγ-1) tyrosine phosphorylation by CD4 and CD45 receptors. Immunology 75: 441–447.

    PubMed  CAS  Google Scholar 

  50. Kulas, D. T., G. G. Freund, and R. A. Mooney. 1996. The transmembrane proteintyrosine Phosphatase CD45 is associated with decreased insulin receptor signaling. J. Biol Chem. 271: 755–760.

    Article  PubMed  CAS  Google Scholar 

  51. Su, X., T. Zhou, Z. Wang, P. Yang, R. S. Jope, and J. D. Mountz. 1995. Defective expression of hematopoietic cell protein tyrosine Phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis. Immunity 2: 353–362.

    Article  PubMed  CAS  Google Scholar 

  52. Heffetz, D., and Y. Zick. 1989. H2O2 potentiates phosphorylation of novel putative substrates for the insulin receptor kinase in intact Fao cells. J. Biol. Chem. 264: 10126–10132.

    PubMed  CAS  Google Scholar 

  53. Heffetz, D., I. Bushkin, R. Dror, and Y. Zick. 1990. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 265: 2896–2902.

    PubMed  CAS  Google Scholar 

  54. Schieven, G. L., J. M. Kirihara, D. L. Burg, R. L. Geahlen, and J. A. Ledbetter. 1993. p72syk tyrosine kinase is activated by oxidizing conditions which induce lymphocyte tyrosine phosphorylation and Ca2+ signals. J. Biol. Chem. 268: 16688–16692.

    PubMed  CAS  Google Scholar 

  55. Schieven, G. L., R. S. Mittler, S. G. Nadler, J. M. Kirihara, J. B. Bolen, S. B. Kanner, and J. A. Ledbetter. 1994. ZAP-70 tyrosine kinase, CD45 and T cell receptor involvement in UV and H2O2 induced T cell signal transduction. J. Biol. Chem. 269: 20718–20726.

    PubMed  CAS  Google Scholar 

  56. Schieven, G. L., J. M. Kirihara, D. E. Myers, J. A. Ledbetter, and F. M. Uckun. 1993. Reactive oxygen intermediates activate NF-κB in a tyrosine kinase dependent mechanism and in combination with vanadate activate the p56Ick and p59fyn tyrosine kinases in human lymphocytes. Blood 82: 1212–1220.

    PubMed  CAS  Google Scholar 

  57. Berridge, M. J. and R. F. Irvine. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  58. Brumell, J. H., A. L. Burkhardt, J. B. Bolen, and S. Grinstein. 1996. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J. Biol. Chem. 271: 1455–1461.

    Article  PubMed  CAS  Google Scholar 

  59. Low, P. S., A. Kiyatkin, Q. Li, and M. L. Harrison. 1995. Control of erythrocyte metabolism by redox-regulated tyrosine phosphatases and kinases. Protoplasma 184: 196–202.

    Article  CAS  Google Scholar 

  60. Hecht, D. and Y. Zick. 1992. Selective inhibition of protein tyrosine Phosphatase activities by H2O2 and vanadate in vitro. Biochem. Biophys. Res. Commun. 188: 773–779.

    Article  PubMed  CAS  Google Scholar 

  61. Fantus, I. G., F. Ahmad, and G. Deragon. 1994. Vanadate augments insulin stimulated insulin receptor kinase activity and prolongs insulin action in rat adipocytes: evidence for transduction of amplitude of signaling into duration of response. Diabetes 43: 375–383.

    Article  PubMed  CAS  Google Scholar 

  62. Barford, D. 1995. Protein phosphatases. Curr. Opin. Struct. Biol. 5: 728–734.

    Article  PubMed  CAS  Google Scholar 

  63. Barford, D., A. J. Flint, and N. K. Tonks. 1994. Crystal structure of human protein tyrosine Phosphatase 1B. Science 263: 1397–1404.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang, Z. Y., and J. E. Dixon. 1993. Active site labeling of the Yersinia protein tyrosine Phosphatase: the determination of the pKa of the active site cysteine and the function of the conserved histidine 402. Biochemistry 32: 9340–9345.

    Article  PubMed  CAS  Google Scholar 

  65. Guan, K. L., and J. E. Dixon. 1993. Evidence of protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J. Biol. Chem. 266: 17026–17030.

    Google Scholar 

  66. Caselli, A., P. Chiarugi, G. Camici, G. Manao, and G. Ramponi. 1995. In vivo inactivation of phosphotyrosine protein phosphatases by nitric oxide. FEBS Lett. 374: 249–252.

    Article  PubMed  CAS  Google Scholar 

  67. Frost, S. C., and M. D. Lane. 1985. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose tranport by 3T3-L1 adipocytes. J. Biol Chem. 260: 2646–2652.

    PubMed  CAS  Google Scholar 

  68. Garcia-Morales, P., Y. Minami, E. Luong, R. D. Klausner, and L. E. Samelson. 1990. Tyrosine phosphorylation in T cells is regulated by Phosphatase activity: studies with phenylarsine oxide. Proc. Natl Acad. Sci. USA 87: 9255–9259.

    Article  PubMed  CAS  Google Scholar 

  69. Secrist, J. P., Burns, L. A., L. Karnitz, G. A. Koretzky, and R. T. Abrahams. 1993. Stimulatory effects of the protein tyrosine Phosphatase inhibitor, pervanadate, on T-cell activation events. J. Biol. Chem. 268: 5886–5893.

    PubMed  CAS  Google Scholar 

  70. O’Shea, J. J., D. W. McVicar, T. L. Bailey, C. Burns, and M. J. Smyth. 1992. Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc. Natl. Acad. Sci. USA 89: 10306–10310.

    Article  PubMed  Google Scholar 

  71. Keyse, S. M., and E. A. Emslie. 1992. Oxidative stress and heat shock induce a human gene encoding a protein tyrosine Phosphatase. Nature 359: 644–647.

    Article  PubMed  CAS  Google Scholar 

  72. Liu, Y., M. Gorospe, C. Yang, and N. J. Holbrook. 1995. Role of mitogen-activated protein kinase Phosphatase during the cellular response to genotoxic stress. J. Biol. Chem. 270: 8377–8380.

    Article  PubMed  CAS  Google Scholar 

  73. Feng, L. L., Y. Y. Xia, D. Seiffert, and C. B. Wilson. 1995. Oxidative stressinducible protein tyrosine Phosphatase in glomerulonephritis. Kidney Int. 48: 1920–1928.

    Article  PubMed  CAS  Google Scholar 

  74. Wardman, P. 1983. Principles of radiation chemistry, p. 51. In G.G. Steel and G.E. Adams, (eds.), The Biological Basis of Radiotherapy. Elsevier, New York.

    Google Scholar 

  75. Hall, E. J., M. Astor, J. Bedford, C. Borek, S. B. Curtis, M. Fry, C. Geard, T. Hei, J. Mitchell, and N. Oleinick. 1988. Basic radiobiology. Am. J. Clin. Oncol. 11: 220–252.

    Article  PubMed  CAS  Google Scholar 

  76. Sherman, M. L., R. Datta, D. E. Hallahan, R. R. Weichselbaum, and D. W. Kufe. 1990. Ionizing radiation regulates expression of the c-jun protooncogene. Proc. Natl. Acad. Sci. USA 87: 5663–5666.

    Article  PubMed  CAS  Google Scholar 

  77. Hallahan, D. E., V. P. Sukhatme, J. L. Sherman, S. Virudachalam, D. Kufe, and R. R. Weichselbaum. 1991. Protein kinase C mediates X-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc. Natl. Acad. Sci. USA 88: 2156–2160.

    Article  PubMed  CAS  Google Scholar 

  78. Uckun, F. M., L. Tuel-Ahlgren, C. W. Song, K. Waddick, D. E. Myers, J. Kirihara, J. A. Ledbetter, and G. L. Schieven. 1992. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors triggering apoptosis and clonogenic cell death. Proc. Natl. Acad. Sci. USA 89: 9005–9009.

    Article  PubMed  CAS  Google Scholar 

  79. Waddick, K. G., H.P. Chae, L. Tuel-Ahlgren, L. J. Jarvis, I. Dibirdik, D. E. Myers, and F. M. Uckun. 1993. Engagement of the CD19 receptor on human B-lineage leukemia cells activates LCK tyrosine kinase and facilitates radiation-induced apoptosis. Radiat. Res. 136: 313–319.

    Article  PubMed  CAS  Google Scholar 

  80. Kharbanda, S., Z. M. Yuan, E. Rubin, R. Weichselbaum, and D. Kufe. 1994. Activation of Src-like p56/p53lyn tyrosine kinase by ionizing radiation. J. Biol. Chem. 269: 20739–20743.

    PubMed  CAS  Google Scholar 

  81. Uckun, F. M., G. L. Schieven, L. M. Tuel-Ahlgren, I. Dibirdik, D. E. Myers, J. A. Ledbetter, and C. W. Song. 1993. Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the proten kinase C signaling pathway in human B-lymphocyte precursors. Proc. Natl. Acad. Sci. USA 90: 252–256.

    Article  PubMed  CAS  Google Scholar 

  82. Chae, H. P. L. J. Jarvis and F. M. Uckun. 1993. Role of tyrosine phosphorylation in radiation-induced activation of c-jun protooncogene in human lymphohematopoietic precursor cells. Cancer Res. 53: 447–451.

    PubMed  CAS  Google Scholar 

  83. Prasad, A. V., N. Mohan, B. Chandrasekar, and M. L. Meltz. 1995. Induction of transcription of “immediate early genes” by low-dose ionizing radiation. Radiat. Res. 143: 263–272.

    Article  PubMed  CAS  Google Scholar 

  84. Kharbanda, S. R. B. Ren, P. Pandey, T. D. Shafman, S. M. Feller, R. R. Weichselbaum, and D. W. Kufe. 1995. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376: 785–788.

    Article  PubMed  CAS  Google Scholar 

  85. Schieven, G. L., A. F. Wahl, S. Myrdal, L. Grosmaire, and J. A. Ledbetter. 1995. Lineage-specific induction of B cell apoptosis and altered signal transduction by the phosphotyrosine Phosphatase inhibitor bis(maltolato)oxovanadium(IV). J. Biol. Chem. 270: 20824–20831.

    Article  PubMed  CAS  Google Scholar 

  86. Cohen, J. J., R. C. Duke, V. A. Fadok, and K. S. Sellins. 1992. Apoptosis and programmed cell death in immunity. Annu. Rev. Immunol. 10: 267–293.

    Article  PubMed  CAS  Google Scholar 

  87. Hallahan, D. E., E. Dunphy, S. Virudachalam, V. P. Sukhatme, D. W. Kufe, and R. R. Weichselbaum. 1995. c-jun and EGR-1 participate in DNA synthesis and cell survival in response to ionizing radiation exposure. J. Biol. Chem. 270: 30303–30309.

    Article  PubMed  CAS  Google Scholar 

  88. Kripke, M. L. 1984. Immunological unresponsiveness induced by ultraviolet radiation. Immunol. Rev. 80: 87–102.

    Article  PubMed  CAS  Google Scholar 

  89. Schieven, G. L., J. M. Kirihara, L. K. Gilliland, F. M. Uckun, and J. A. Ledbetter. 1993. Ultraviolet radiation rapidly induces tyrosine phosphorylation and calcium signaling in lymphocytes. Mol. Biol. Cell 4: 523–530.

    PubMed  CAS  Google Scholar 

  90. Schieven, G. L., and J. A. Ledbetter. 1993. Ultraviolet radiation induces differential calcium signals in human peripheral blood lymphocyte subsets. J. Immunother. 14: 221–225.

    Article  CAS  Google Scholar 

  91. Black, H. S. 1987. Potential involvement of free radical reactions in ultraviolet lightmediated cutaneous damage. Photochem. Photobiol. 46: 213–221.

    Article  PubMed  CAS  Google Scholar 

  92. Ronai, Z. A., E. Lambert, and I. B. Weinstein. 1990. Inducible cellular responses to ultraviolet light irradiation and other mediators of DNA damage in mammalian cells. Cell Biol. Toxicol. 6: 105–126.

    Article  PubMed  CAS  Google Scholar 

  93. Holbrook, N. J., and A. J. Fornace, Jr. 1991. Response to adversity: molecular control of gene activation following genotoxic stress. New Biol 3: 825–833.

    PubMed  CAS  Google Scholar 

  94. Karin, M., and P. Herrlich. 1989. Cis and transacting genetic elements responsible for induction of specific genes by tumor promoters, serum fctors and stress, pp. 415–440. In N.H. Colburn, (ed.), Genes and Signal Transduction in Multistage Carcinogenesis. Marcel Dekker, New York.

    Google Scholar 

  95. Sachsenmaier, C., A. Radler-Pohl, R. Zinck, A. Nordheim, P. Herrlich, and H. J. Rahmsdorf. 1994. Involvement of growth factor receptors in the mammalian UV response. Cell 78: 963–972.

    Article  PubMed  CAS  Google Scholar 

  96. Devary, Y., C. Rosette, J. A. Didonato and M. Karin. 1993. NF-κB activation by ultraviolet light not dependent on a nuclear signal. Science 261: 1442–1445.

    Article  PubMed  CAS  Google Scholar 

  97. Devary, Y., R. A. Gottlieb, T. Smeal, and M. Karin. 1992. The mammalian ultraviolet response is triggered by activation of src tyrosine kinases. Cell 71: 1081–1091.

    Article  PubMed  CAS  Google Scholar 

  98. Kypta, R. M., Y. Goldberg, E. T. Ulug, and S. A. Courtneidge. 1990. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62: 481–492.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schieven, G.L. (1997). Tyrosine Phosphorylation in Oxidative Stress. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics