Skip to main content

Reactive Oxygen Intermediates as Primary Signals and Second Messengers in the Activation of Transcription Factors

  • Chapter
Oxidative Stress and Signal Transduction

Abstract

Prokaryotic and eukaryotic cells have developed elaborate mechanisms to rapidly respond to changes in their environment by the novel expression of genes. Different forms of cellular stresses constitute primary signals that are transduced via the plasma membrane into the cytoplasm and ultimately stimulate the expression of specific genes in the cell nucleus. Increased production of reactive oxygen intermediates (ROIs), referred to as oxidative stress, was found to be implicated in a variety of distinct cellular stresses, such as heat shock, exposure to ionizing and UV irradiation and environmental pollutants. The products of genes that are newly induced in response to oxidative stress may confer protection against subsequent adversities; repair ROI-mediated damage of cellular components; or serve to signal stress to neighboring cells or cells in other parts of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maldonaldo, E., and D. Reinberg. 1995. News on initiation and elongation of transcription by RNA Polymerase II. Curr. Opin. Cell Biol. 7: 352–361.

    Article  Google Scholar 

  2. Baeuerle, P. A., and D. Baltimore. 1988. A specific inhibitor of the NF-κB transcription factor. Science 242: 540–546.

    Article  PubMed  CAS  Google Scholar 

  3. Treisman, R. 1992. The serum response element. Trends Biochem. Sci. 17: 423–426.

    Article  PubMed  CAS  Google Scholar 

  4. Janknecht, R., and A. Nordheim. 1993. Gene regulation by Ets proteins. Biochim. Biophys. Acta 1155: 346–356.

    PubMed  CAS  Google Scholar 

  5. Hunter, T., and M. Karin. 1992. The regulation of transcription by phosphorylation. Cell 70: 375–387.

    Article  PubMed  CAS  Google Scholar 

  6. Xanthoudakis, S., G. Miao, F. Wang, Y.-C.E Pan, and T. Curran. 1992. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 11: 3323–3335.

    PubMed  CAS  Google Scholar 

  7. Kumar, S., A. B. Rabson, and C. Gélinas. 1992. The RxxRxRxxC motif conserved in all Rel/κB proteins is essential for the DNA-binding activity and redox regulation of the v-Rel oncoprotein. Mol. Cell. Biol. 12: 3094–3106.

    PubMed  CAS  Google Scholar 

  8. Janssen, Y. M. W., B. Van Houten, P. J. A. Borm, and B. T. Mossman. 1993. Biology of disease. Cell and tissue responses to oxidative damage. Lab. Invest. 69: 261–321A.

    PubMed  CAS  Google Scholar 

  9. Schulze-Osthoff, K., and P. A. Baeuerle. In press. Redox regulation in gene expression. In J. M. McCord (eds.), Oxyradicals in Medical Biology. JAI Press, Greenwich, CT.

    Google Scholar 

  10. Storz, G., L. A. Tartaglia, S. B. Farr, and B. N. Ames. 1990. Bacterial defenses against oxidative stress. Trends Genet. 6: 363–368.

    Article  PubMed  CAS  Google Scholar 

  11. Demple, B., and C. F. Amabile-Cuevas. 1991. Redox redux: the control of oxidative stress responses. Cell 67: 837–839.

    Article  PubMed  CAS  Google Scholar 

  12. Pahl, H. L., and P. A. Baeuerle. 1994. Oxygen and the control of gene expression. Bioessays 16: 497–502.

    Article  PubMed  CAS  Google Scholar 

  13. Zitomer, R. S., and C. V. Lowry. 1992. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev. 56: 1–11.

    PubMed  CAS  Google Scholar 

  14. Chen, Z., H. Silva, and D. F. Klessing. 1993. Active oxygen species in induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  15. Baeuerle, P. A. 1991. The inducible transcription activator NF-κB: regulation by distinct protein subunits. Biochim. Biophys. Acta 1072: 63–80.

    PubMed  CAS  Google Scholar 

  16. Grilli, M., J. J.-S. Chiu, and M. J. Lenardo. 1993. NF-κB and Rel: participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 143: 1–62.

    Article  PubMed  CAS  Google Scholar 

  17. Liou, H.-C., and D. Baltimore. 1993. Regulation of the NF-KB/Rel transcription factor and IκBB inhibitor system. Curr. Opin. Cell Biol. 5: 477–487.

    Article  PubMed  CAS  Google Scholar 

  18. Baeuerle, P. A., and T. Henkel. 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12: 141–179.

    Article  PubMed  CAS  Google Scholar 

  19. Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequence. Cell 46: 705–716.

    Article  PubMed  CAS  Google Scholar 

  20. Blank, V., P. Kourilsky, and A. Israël. 1992. NF-κB and related proteins: Rel/ dorsal homologies meet ankyrin-like repeats. Trends Biochem. Sci. 17: 135–140.

    Article  PubMed  CAS  Google Scholar 

  21. Nolan, G. P., and D. Baltimore. 1992. The inhibitory ankyrin and activator Rel proteins. Curr. Opin. Genet. Dev. 2: 211–220.

    Article  PubMed  CAS  Google Scholar 

  22. Kang, S.-M., A.-C. Tran, M. Grilli, and M. Lenardo. 1992. NF-κB subunit regulation in nontransformed CD4+ T lymphocytes. Science 256: 1452–1456.

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz, M. L., T. Henkel, and P. A. Baeuerle. 1991. Proteins controlling the nuclear uptake of NF-κB, Rel and dorsal. Trends Cell Biol. 1: 130–137.

    Article  PubMed  CAS  Google Scholar 

  24. Beg, A. A., and A. S. Baldwin, Jr. 1993. The IκBB proteins: multifunctional regulators of Rel/NF-KB transcription factors. Genes Dev. 7: 2064–2070.

    Article  PubMed  CAS  Google Scholar 

  25. Inoue, J. L, L. K. Kerr, D. Rashid, N. Davis, H. R. Bose, and I. M. Verma. 1992. Direct association of pp40/lKB β with rel/NF-κB transcription factors—role of ankyrin repeats in the inhibition of DNA binding activity. Proc. Natl. Acad. Sci. USA 89: 4333–4337.

    Article  PubMed  CAS  Google Scholar 

  26. Zabel, U., and P. A. Baeuerle. 1990. Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA. Cell 61: 255–265.

    Article  PubMed  CAS  Google Scholar 

  27. Zabel, U., T. Henkel, M. dos Santos Silva, and P. A. Baeuerle. 1993. Nuclear uptake control of NF-κB by MAD-3, an IκBB protein present in the nucleus. EMBO J. 12: 201–211.

    PubMed  CAS  Google Scholar 

  28. Brown, K., S. Park, T. Kanno, G. Franzoso, and U. Siebenlist. 1993. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκB-α. Proc. Natl. Acad. Sci. USA 90: 2532–2536.

    Article  PubMed  CAS  Google Scholar 

  29. Sun, S.-C., P. A. Ganchi, D. W. Ballard, and W. C. Greene. 1993. NF-κB controls expression of inhibitor IκB-α: evidence for an inducible autoregulatory pathway. Science 259: 1912–1915.

    Article  PubMed  CAS  Google Scholar 

  30. Yamauchi, N., Y. H. Kuriyama, N. Watanabe, H. Neda, M. Maeda, and Y. Niitsu. 1989. Intracellular hydroxyl radical production induced by recombinant human tumor necrosis factor and its implication in the killing of tumor cells in vitro. Cancer Res. 49: 1671–1675.

    PubMed  CAS  Google Scholar 

  31. Schulze-Osthoff, K., A. C. Bakker, B. Vanhaesebroeck, R. Beyaert, W. Jacobs, and Fiers. 1992. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidences for the involvement of mitochondrial radical generation. J. Biol. Chem. 267: 5317–5323.

    PubMed  CAS  Google Scholar 

  32. Schreck, R., P. Rieber, P. A. Baeuerle. 1991. Reactive oxygen species intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  33. Schreck, R., B. Meier, D. N. Männel, W. Dröge, and P. A. Baeuerle. 1992. Dithiocarbamates as potent inhibitors of NF-κB activation in intact cells. J. Exp. Med. 175: 1181–1194.

    Article  PubMed  CAS  Google Scholar 

  34. Meyer, M., R. Schreck, and P. A. Baeuerle. 1993. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12: 2005–2015.

    PubMed  CAS  Google Scholar 

  35. Schreck, R., K. Albermann, and P. A. Baeuerle. 1992. Nuclear factor κB: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Rad. Res. Commun. 17: 221–237.

    Article  CAS  Google Scholar 

  36. Lander, H. M., P. Sehaipal, D. M. Levine, and A. Novogrodsky. 1993. Activation of human peripheral blood mononuclear cells by nitric oxide generating compounds. J. Immunol. 150: 1509–1516.

    PubMed  CAS  Google Scholar 

  37. Goebeler, M., J. Roth, E.-B. Bröcker, C. Sorg, and K. Schulze-Osthoff. 1995. Activation of nuclear factor-κB and gene expression in human endothelial cells by the common haptens nickel and cobalt. J. Immunol. 155: 2549–2467.

    Google Scholar 

  38. Schulze-Osthoff, K., M. Los, and P. A. Baeuerle. 1995. Redox signalling by transcription factors NF-κB and AP-1 in the immune system. Biochem. Pharmacol. 50: 735–741.

    Article  PubMed  CAS  Google Scholar 

  39. Schulze-Osthoff, K., R. Beyaert, V. Vandevoorde, G. Haegeman, and W. Fiers. 1993. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 12: 3095–3104.

    PubMed  CAS  Google Scholar 

  40. Munroe, D. G., E. Y. Wang, J. P. Maclntyre, S. S. C. Tarn, D. H. S. Lee, G. R. Taylor, L. Zhou, R. K. Plante, S. M. I. Kazmi, P. A. Baeuerle, and C. Y. Lau. In press. Novel intracellular signalling function of Prostaglandin H synthase-1 in NFκB activation. J. Inflamm.

    Google Scholar 

  41. Suzuki, Y. J., and L. Packer. 1993. Inhibition of NF-κB activation by vitamin E and derivatives. Biochem. Biophys. Res. Commun. 193: 277–283.

    Article  PubMed  CAS  Google Scholar 

  42. Schmidt, K. N., P. Amstad, P. Cerutti, and P. A. Baeuerle. 1995. The roles of hydrogen peroxide and Superoxide as messengers in the activation of transcription factor NF-κB. Chem. Biol. 2: 13–22.

    Article  PubMed  CAS  Google Scholar 

  43. Costello, R., C. Lipcey, M. Algarté, C. Cerdan, P. A. Baeuerle, D. Olive, and J. C. Imbert. 1993. Activation of primary human T lymphocytes through CD2 plus CD28 adhesion molecules induces long-term nuclear expression of NF-κB. Cell Growth Differ. 4: 329–339.

    PubMed  CAS  Google Scholar 

  44. Los, M., H. Schenk, K. Hexel, P. A. Baeuerle, W. Dröge, and K. Schulze-Osthoff. 1995. IL-2 gene expression and NF-κB activation through CD28 requires reactive oxygen production by 5-lipoxygenäse. EMBO J. 14: 3731–3740.

    PubMed  CAS  Google Scholar 

  45. Westendorp, M., V. Shatrov, K. Schulze-Osthoff, R. Frank, M. Kraft, M. Los, P. H. Krammer, W. Droge, and V. Lehmann. 1995. HIV-1 Tat potentiates TNF-induced NF-κB activation and cytotoxicity by altering the cellular redox state. EMBO J. 14: 546–554.

    PubMed  CAS  Google Scholar 

  46. Henkel, T., T. Machleidt, I. Alkalay, M. Krönke, Y. Ben-Neriah, and P. A. Baeuerle. 1993. Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature 365: 182–185.

    Article  PubMed  CAS  Google Scholar 

  47. Palombella, V. J., O. J. Rando, A. L. Goldberg, and T. Maniatis. 1994. The ubiquitinproteasome pathway is required for processing the NF-κB 1 precursor protein and the activation of NF-κB. Cell 78: 773–785.

    Article  PubMed  CAS  Google Scholar 

  48. Traenckner, E. B.-M., S. Wilk, and P. A. Baeuerle. 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκB-α that is still bound to NF-κB. EMBO J. 13: 5433–5441.

    PubMed  CAS  Google Scholar 

  49. Traenckner, E. B.-M., H. L. Pahl, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14: 2876–2883.

    PubMed  CAS  Google Scholar 

  50. Traenckner, E. B.-M., and P. A. Baeuerle. 1995. Appearance of ubiquitin-conjugated forms of IκB-α during its phosphorylation-induced degradation. J. Cell Sci Suppl. 19: 79–84.

    PubMed  CAS  Google Scholar 

  51. Toledano, M. B., and W. J. Leonard. 1991. Modulation of transcription factor NF-κB binding by oxidation-reduction in vitro. Proc. Natl. Acad. Sci. USA 88: 4328–4332.

    Article  PubMed  CAS  Google Scholar 

  52. Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett. 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160.

    Article  PubMed  CAS  Google Scholar 

  53. Bauskin, A. R., I. Alkalay, and Y. Ben-Neriah. 1991. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell 66: 685–696.

    Article  PubMed  CAS  Google Scholar 

  54. Gamou, S., and N. Shimizu. 1995. Hydrogen peroxide perferentially enhances tyrosine phosphorylation of epidermal growth factor receptor. FEBS Lett. 357: 161–164.

    Article  PubMed  CAS  Google Scholar 

  55. Schieven, G. L., J. M. Kirihara, D. E. Myers, J. A. Ledbetter, and F. M. Uckun. 1993. Reactive oxygen intermediates activate NF-κB in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in lymphocytes. Blood 82: 1212–1220.

    PubMed  CAS  Google Scholar 

  56. Nakamura, K., T. Hori, N. Sato, K. Sugie, T. Kawakami, and J. Yodoi. 1993. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene 8: 3133–3139.

    PubMed  CAS  Google Scholar 

  57. Devary, Y., C. Rosette, J. A. DiDonato, and M. Karin. 1993. NF-κB activation by ultraviolet light not dependent on a nuclear signal. Science 261: 1442–1445.

    Article  PubMed  CAS  Google Scholar 

  58. Eicher, D. M., T.-H. Tan, R. R. Rice, J. J. O’Shea, and I. C. S. Kennedy. 1994. Expression of v-src in T cells correlates with nuclear expression of NF-κB. J. Immunol. 152: 2710–2719.

    PubMed  CAS  Google Scholar 

  59. Angel, P., and M. Karin. 1991. The role of Jun, Fos, and the AP-1 complex in cell-proliferation and transformation. Biochem. Biophys. Acta 1072: 129–157.

    PubMed  CAS  Google Scholar 

  60. Karin, K., and T. Smeal. 1992. Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem. Sci. 17: 418–422.

    Article  PubMed  CAS  Google Scholar 

  61. Büscher, M., H. J. Rahmsdorf, M. Litfin, M. Karin, and P. Herrlich. 1988. Activation of c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element. Oncogene 3: 301–311.

    PubMed  Google Scholar 

  62. Devary, Y., R. A. Gottlieb, L. F. Laus, and M. Karin. 1991. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell. Biol. 11: 2804–2811.

    PubMed  CAS  Google Scholar 

  63. Nose, K., M. Shibanuma, K. Kikuchi, H. Kageyama, S. Sakiyama, and T. Kuroki. 1991. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur. J. Biochem. 201: 99–106.

    Article  PubMed  CAS  Google Scholar 

  64. Binétruy, B., T. Smeal, J. Meek and M. Karin. 1991. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351: 122–127.

    Article  PubMed  Google Scholar 

  65. Boyle, W. J., T. Smeal, L. H. K. Defize, P. Angel, J. R. Woodgett, M. Karin, and T. Hunter. 1991. Activation of protein kinase C decreases phosphorylation of c-jun at sites that negatively regulate its DNA-binding activity. Cell 64: 573–584.

    Article  PubMed  CAS  Google Scholar 

  66. Stein, B., H. J. Rahmsdorf, A. Steffen, M. Litfin, and P. Herrlich. 1989. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Mol. Cell. Biol. 9: 5169–5181.

    PubMed  CAS  Google Scholar 

  67. Los, M., W. Dröge, P. A. Baeuerle, and K. Schulze-Osthoff. 1995. Hydrogen peroxide as a potent activator of T-lymphocyte functions. Eur. J. Immunol. 25: 159–165.

    Article  PubMed  CAS  Google Scholar 

  68. Schenk, H., M. Klein, W. Erdbrügger, W. Dröge, and K. Schulze-Osthoff. 1994. Distinct effects of thioredoxin and other antioxidants on the activation of NF-κB and AP-1. Proc. Natl. Acad. Sci. USA 91: 1672–1676.

    Article  PubMed  CAS  Google Scholar 

  69. Yao, K. S., S. Xanthoudakis, T. Curran, and P. J. O’Dwyer. 1994. Activation of AP-1 and of nuclear redox factor, Ref-1, in the response of HT colon cancer cells to hypoxia. Mol. Cell. Biol. 14: 5997–6003.

    Article  PubMed  CAS  Google Scholar 

  70. Rupec, R. A., and P. A. Baeuerle. 1995. The genomic response of tumor cells to hypoxia and reoxygenation: differential activation of transcription factors AP-1 and NF-κB. Eur. J. Biochem. 234: 632–640.

    Article  PubMed  CAS  Google Scholar 

  71. Koong, A. C., E. Y. Chen, and A. J. Giaccia. 1994. Hypoxia causes the activation of nuclear factor κB through phosphorylation of IκB-α on tyrosine residues. Cancer Res. 54: 1425–1430.

    PubMed  CAS  Google Scholar 

  72. Brach, M. A., F. Herrmann, Y. Hamada, P. A. Baeuerle, and D. W. Kufe. 1992. Identification of NF-jun, a novel inducible transcription factor that regulates c-jun gene transcription. EMBO J. 11: 1479–1486.

    PubMed  CAS  Google Scholar 

  73. Herrlich, P., H. Ponta, and H. J. Rahmsdorf. 1992. DNA damage-induced gene expression: signal transduction and relation to growth factor signaling. Rev. Physiol. Biochem. Pharmacol 119: 187–223.

    PubMed  CAS  Google Scholar 

  74. Holbrook, N. J., and A. J. Fornace, Jr. 1991. Response to adversity: molecular control of gene activation following genotoxic stress. New Biol. 3: 825–833.

    PubMed  CAS  Google Scholar 

  75. Lo, S. K., K. Janakidevi, L. Lai, and A. B. Malik. 1993. Hydrogen peroxideinduced increase in endothelial adhesiveness is dependent on ICAM-1 activation. Am. J. Physiol. 264 (Lung Cell. Mol Physiol. 8): L406–L412.

    PubMed  CAS  Google Scholar 

  76. Marui, N., M. K. Offermann, R. Swerlick, C. Kunsch, C. A. Rosen, M. Ahmad, R. W. Alexander, and R. M. Medford. 1993. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidantsensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 92: 1866–1874.

    Article  PubMed  CAS  Google Scholar 

  77. Koga, S., S. Ogawa, K. Kuwabara, J. Brett, J. A. Leavy, J. Ryan, Y. Koga, J. Plocinski, W. Benjamin, D. K. Burns, and D. Stern. 1992. Synthesis and release of interleukin 1 by reoxygenated human mononuclear phagocytes. J. Clin. Invest. 90: 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  78. Brach, M. A., H. J. Gruβ, T. Kaisho, Y. Asano, T. Hirano, and F. Herrmann. 1993. Ionizing radiation induces expression of interleukin 6 by human fibroblasts involving activation of nuclear factor-κB. J. Biol. Chem. 268: 8466–8472.

    PubMed  CAS  Google Scholar 

  79. Deforge, L. E., A. M. Preston, E. Takeuchi, J. Kenney, L. Boxer, and D. R. Remick. 1993. Regulation of interleukin 8 expression by oxidant stress. J. Biol. Chem. 268: 25568–25576.

    PubMed  CAS  Google Scholar 

  80. Hallahan, D. E., D. R. Spriggs, M. A. Beckett, D. W. Kufe, and R. R. Weichselbaum 1989. Increased tumor necrosis factor a mRNA after cellular exposure to ionizing radiation. Proc. Natl. Acad. Sci. USA 86: 10104–10107.

    Article  PubMed  CAS  Google Scholar 

  81. Witte, L., Z. Fuks, A. Haimonovitz-Friedman, I. Vlodavsky, D. S. Goodman, and A. Eldor. 1989. Effects of irradiation on the release of growth factors from cultured bovine, procine and human endothelial cells. Cancer Res. 49: 5066–5072.

    PubMed  CAS  Google Scholar 

  82. Satriano, J. A., M. Shuldiner, K. Hora, Y. Xing, Z. Shan, and D. Schlondorff. 1993. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-a and Immunoglobulin G. J. Clin. Invest. 92: 1564–1571.

    Article  PubMed  CAS  Google Scholar 

  83. Halliwell, B., and J. C. M. Gutteridge. 1990. The role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: 1–85.

    Article  PubMed  CAS  Google Scholar 

  84. Nabel, G., and D. Baltimore, D. 1987. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711–713.

    Article  PubMed  CAS  Google Scholar 

  85. Staal, F. J. T., M. Roederer, L. A. Herzenberg, and L. A. Herzenberg. 1990. Intracellular thiols regulate activation of nuclear factor κB and transcription of human immunodeficiency virus. Proc. Natl Acad. Sci. USA 87: 9943–9947.

    Article  PubMed  CAS  Google Scholar 

  86. Roederer, M., F. J. T. Staal, P. A. Raju, S. W. Ela, L. A. Herzenberg, and L. A. Herzenberg. 1990. Cytokine-stimulated human immunodeficiency virus replication is inhibited by N-acetyl-L-cysteine. Proc. Natl. Acad. Sci. USA 87: 4884–4888.

    Article  PubMed  CAS  Google Scholar 

  87. Mihm, S., J. Ennen, U. Pessara, R. Kurth, and W. Dröge. 1991. Inhibition of HIV-1 replication and NF-κB activity by cysteine and cysteine derivatives. AIDS 5: 497–503.

    Article  PubMed  CAS  Google Scholar 

  88. Eck, H.-P., H. Gmünder, H. Hartmann, D. Petzoldt, V. Daniel, and W. Dröge. 1989. Low concentrations of acid soluble thiol (cysteine) in the blood plasma of HIV-1 infected patients. Biol. Chem. Hoppe-Seyler 370: 101–108.

    Article  PubMed  CAS  Google Scholar 

  89. Buhl, R., H. A. Jaffe, K. J. Holroyd, F. B. Wells, A. Mastangeli, C. Saltini, A. M. Cantin, and R. G. Crystal. 1989. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 2: 1294–1296.

    Article  PubMed  CAS  Google Scholar 

  90. Ameisen, J. C. 1994. Programmed cell death (apoptosis) and cell survival regulation: relevance to AIDS and cancer. AIDS 8: 1197–1213.

    Article  PubMed  CAS  Google Scholar 

  91. Buttke, T. M., and P. A. Sandstöm. 1994. Oxidative stress as a mediator of apoptosis. Immunol. Today 15: 7–10.

    Article  PubMed  CAS  Google Scholar 

  92. Hockenbery, D. M., Z. N. Oltvai, X.-M. Yin Yin, C. L. Milliman, and S. J. Korsmeyer. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251.

    Article  PubMed  CAS  Google Scholar 

  93. Grimm, S., M. Bauer, P. A. Baeuerle, and K. Schulze-Osthoff. 1996. Bcl-2 attenuates the activity of NF-κB which is induced upon apoptosis. J. Cell. Biol. 134: 13–23.

    Article  PubMed  CAS  Google Scholar 

  94. Wong, G. H. W., J. H. Elwell, L. W. Oberley, and D. W. Goeddel. 1989. Manganeous Superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58: 923–931.

    Article  PubMed  CAS  Google Scholar 

  95. Schulze-Osthoff, K., P. H. Krammer, and W. Dröge. 1994. Divergent signaling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13: 4587–4596.

    PubMed  CAS  Google Scholar 

  96. Westendorp, M. O., R. Frank, C. Ochsenbauer, K. Strieker, J. Dhein, H. Walczak, K.-M. Debatin, and P. H. Krammer. 1995. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375: 497–500.

    Article  PubMed  CAS  Google Scholar 

  97. Dröge, W., K. Schulze-Osthoff, S. Mihm, D. Gaiter, H. Schenk, H.-P. Eck, S. Roth, and H. Gmünder. 1994. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J. 14: 1131–1138.

    Google Scholar 

  98. Gilmore, T. D. 1991. Malignant transformation by mutant Rel proteins. Trends Genet. 7: 318–322.

    PubMed  CAS  Google Scholar 

  99. Narayanan, R., J. F. Klement, S. M. Ruben, K. A. Higgins, and C. A. Rosen. 1992. Identification of a naturally occurring transforming variant of the p65 subunit of NF-κB. Science 256: 367–370.

    Article  PubMed  CAS  Google Scholar 

  100. Neri, A., C. C. Chang, L. Lombardi, M. Salina, P. Corradini, A. T. Maiolo, R. S. Chagnati, and F. R. Dalla. 1991. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κB. Cell 67: 1075–1087.

    Article  PubMed  CAS  Google Scholar 

  101. Ohno, H., G. Takimoto, and T. W. McKeithan. 1990. The candiate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60: 991–997.

    Article  PubMed  CAS  Google Scholar 

  102. Baldwin, A. S., J. C. Azizkhan, D. E. Jensen, A. A. Beg, and L. R. Coodly. 1991. Induction of NF-κB DNA-binding activity during the Go to G1 transition in mouse fibroblasts. Mol. Cell. Biol. 11: 4943–4951.

    PubMed  CAS  Google Scholar 

  103. Duyao, M. P., A. J. Buckler, and G. E. Sonnenschein. 1990. Interaction of an NF-κB-like factor with a site upstream of the c-myc promoter. Proc. Natl. Acad. Sci. USA 87: 4727–4731.

    Article  PubMed  CAS  Google Scholar 

  104. Crawford, D., J. Zbinden, P. Amstad, and P.A. Cerutti. 1988. Oxidant stress induces the proto-oncogenes c-fos and c-myc in mouse epidermal cells. Oncogene 3: 27–32.

    CAS  Google Scholar 

  105. Cerutti, P. A. 1991. Oxidant stress and carcinogenesis. Eur. J. Clin. Invest. 21: 1–5.

    Article  PubMed  CAS  Google Scholar 

  106. Trush, M. A., and T. W. Kensler. 1991. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Rad. Biol. Med. 10: 201–210.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schulze-Osthoff, K., Bauer, M., Vogt, M., Wesselborg, S., Baeuerle, P.A. (1997). Reactive Oxygen Intermediates as Primary Signals and Second Messengers in the Activation of Transcription Factors. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics