Skip to main content

A Computational Model of Birdsong Learning by Auditory Experience and Auditory Feedback

  • Chapter
Central Auditory Processing and Neural Modeling

Abstract

In addition to the goal of acquiring a precise description of the acoustic environment, central auditory processing also provides useful information for animal behaviors, such as navigation and communication. Singing is a learned behavior of male songbirds for protecting territories and attracting females (Konishi, 1985; Catchpole and Slater, 1995). It has been experimentally shown that singing behavior depends on auditory information in two ways. First, the phonetic features of a bird’s song depends on the bird’s auditory experience during a limited period after birth. Second, the development of songs of a juvenile bird depends on the auditory feedback of its own vocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans Systems, Man, and Cybernetics 13: 834–846.

    Article  Google Scholar 

  • Bottjer SW, Halsema KA, Brown SA, Miesner EA (1989) Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J Comp Neurol 279: 312–326.

    Article  PubMed  CAS  Google Scholar 

  • Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224: 901–903.

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury JH (1982) The structural basis of voice production and its relationship to sound characteristics. (In: Evolutionary and Ecological Aspects of Acoustic Communication in Birds, volume 1), pp 53–73. New York: Academic Press.

    Google Scholar 

  • Casto JM, Ball GF (1994) Characterization and localization of D1 dopamine receptors in the sexually dimorphic vocal control nucleus, area X, and the basal ganglia of European starlings. J Neurobiol 225: 767–780.

    Article  Google Scholar 

  • Catchpole CK, Slater PJB (1995) Bird Song: Biological themes and variations. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Doupe AJ (1993) A neural circuit specialized for vocal learning. Curr Opin Neurobiol 3: 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Doupe AJ Konishi M (1991) Song-selective auditory circuits in the vocal control system of the zebra finch. Proc Nat Acad of Sci USA 88: 11339–11343.

    Article  CAS  Google Scholar 

  • Doya K Sejnowski TJ (1994) A computational model of song learning in the anterior forebrain pathway of the birdsong control system. Soc Neurosci Abstr 20: 166.

    Google Scholar 

  • Doya K Sejnowski TJ (1995) A novel reinforcement model of birdsong vocalization learning. In: Advances in Neural Information Processing Systems 7 (Tesauro G et al. ed), pp 101–108, Cambridge, MA: MIT Press.

    Google Scholar 

  • Goller F, Suthers RA (1995) Implications for lateralization of bird song from unilateral gating of bilateral motor patterns. Nature 373: 63–66.

    Article  CAS  Google Scholar 

  • Gullapalli V (1990) A stochastic reinforcement learning algorithm for learning real-valued functions. Neural Networks 3: 671–692.

    Article  Google Scholar 

  • Gullapalli V (1995) Direct associative reinforcement learning methods for dynamic systems control. Neurocomp 9: 271–292.

    Article  Google Scholar 

  • Jordan MI, Rumelhart DE (1992) Forward models: Supervised learning with a distal teacher. Cogn Sci 16: 307–354.

    Article  Google Scholar 

  • Kawato M (1990) The feedback-error-learning neural network for supervised motor learning. In: Neural Network for Sensory and Motor Systems (Eckmiller R, ed), Amsterdam: Elsevier.

    Google Scholar 

  • Konishi M (1965) The role of auditory feedback in the control of vocalization in the white-crowned sparrow. ZeiT für Tierpsychol 22: 770–783.

    CAS  Google Scholar 

  • Konishi M (1985) Birdsong: From behavior to neuron. Ann Rev Neurosci 8: 125–170.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Akutagawa E (1985) Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch brain. Nature 315: 145–147.

    Article  PubMed  CAS  Google Scholar 

  • Kubota M, Saito N (1991) NMDA receptors participate differentially in two different synaptic inputs in neurons of the zebra finch robust nucleus of the archistriatum in vitro. Neurosci Lett 125: 1107–109.

    Article  Google Scholar 

  • Lewicki MS, Konishi M (1995) Mechanisms underlying the sensitivity of songbird forebrain neurons to temporal order. Proc Nat Acad Sci USA 92: 5582–5586.

    Article  PubMed  CAS  Google Scholar 

  • Lewis JW, Ryan SM, Arnold AP, Butcher LL (1981) Evidence for a catecholaminergic projection to area X in the zebra finch. J Comp Neurol 196: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Margoliash D (1986) Preference for autogenous song by auditory neurons in a song system nucleus of the white crowned sparrow. J Neurosci 6: 1643–1661.

    PubMed  CAS  Google Scholar 

  • Margoliash D, Fortune ES (1992) Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc. J Neurosci 12: 4309–4326.

    PubMed  CAS  Google Scholar 

  • McCasland JS (1987) Neuronal control of bird song production. J Neurosci 7: 23–39.

    PubMed  CAS  Google Scholar 

  • McCasland JS, Konishi M (1981) Interaction between auditory and motor activities in an avian song control nucleus. Proc Nat Acad Sci USA 78: 7815–7819.

    Article  PubMed  CAS  Google Scholar 

  • Mooney R (1992) Synaptic basis of developmental plasticity in a birdsong nucleus. J Neurosci 12: 2464–2477.

    PubMed  CAS  Google Scholar 

  • Mooney R, Konishi M (1991) Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc Nat Acad Sci USA 88: 4075–4079.

    Article  PubMed  CAS  Google Scholar 

  • Nixdorf-Bergweiler BE, Lips MB, Heinemann U (1995) Electrophysiological and mophological evidence for a new projection of LMAN-neurones toward area X. Neuroreport 6: 1729.

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, serinus canarius. J Comp Neurol 165: 457–486.

    Article  PubMed  CAS  Google Scholar 

  • Nowicki S (1987) Vocal tract resonances in oscine bird sound production: evidence from bird-songs in a helium atmosphere. Nature 325: 533–55.

    Article  Google Scholar 

  • Perkel DJ (1994) Differential modulation of excitatory synaptic transmission by norepinephrine and baclofen in zebra finch nucleus RA. Soc Neurosci Abstr 20: 165.

    Google Scholar 

  • Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song systems: Implications for vocal learning. J Neurosci 11: 2896–2913.

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Arbib MA, Dominey PF (1996) A model of the cerebellum in adaptive control of saccadic gain. I. The model and its biological substrate. Biol Cybern 75: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Sohrabji F, Nordeen EJ, Nordeen KW (1990) Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neur Biol 53: 51–63.

    Article  CAS  Google Scholar 

  • Solis MM, Doupe AJ (1995) The development of song-and order-selectivity in the anterior forebrain of juvenile zebra finches. Soc Neurosci Abstr 21: 959.

    Google Scholar 

  • Sutter ML, Margoliash D (1994) Global synchronous response to autogenous song in zebra finch HVc. J Neurophysiol 72(5): 2105–2123.

    PubMed  CAS  Google Scholar 

  • Vates GE, Nottebohm F (1995) Feedback circuitry within a song-learning pathway. Proc Nat Acad Sci USA 92: 5139–5143.

    Article  PubMed  CAS  Google Scholar 

  • Vicario DS (1988) Organization of the zebra finch song control system: I. representation of syringeal muscles in the hypoglossal nucleus. J Comp Neurol 271: 346–354.

    Article  PubMed  CAS  Google Scholar 

  • Vicario DS (1991) Organization of the zebra finch song control system: II. functional organization of outputs from nucleus robustus archistriatalis. J Comp Neurol 309: 486–494.

    Article  PubMed  CAS  Google Scholar 

  • Volman SF (1993) Development of neural selectivity for birdsong during vocal learning. J Neurosci 13: 4737–4747.

    PubMed  CAS  Google Scholar 

  • Vu ET, Mazurek ME, Kuo YC (1994) Identification of a forebrain motor programming network for the learned song of zebra finches. J Neurosci 14: 6924–6934.

    PubMed  CAS  Google Scholar 

  • Wild JM (1993) Descending projections of the songbird nucleus robustus archistriatalis. J Comp Neurol, 338: 225–241.

    Article  PubMed  CAS  Google Scholar 

  • Williams H (1989) Multiple representations and auditory-motor interactions in the avian song system. Ann New York Acad Sci 563: 148–164.

    Article  Google Scholar 

  • Yu AC, Margoliash D (1996) Temporal hierarchical control of singing birds. Science 273: 1871–1875.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doya, K., Sejnowski, T.J. (1998). A Computational Model of Birdsong Learning by Auditory Experience and Auditory Feedback. In: Poon, P.W.F., Brugge, J.F. (eds) Central Auditory Processing and Neural Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5351-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5351-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7441-1

  • Online ISBN: 978-1-4615-5351-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics