Skip to main content

Transcription-Coupled DNA Repair

Which Lesions? Which Diseases?

  • Chapter
Advances in DNA Damage and Repair

Part of the book series: NATO ASI Series ((NSSA,volume 302))

Abstract

Certain DNA lesions are removed preferentially from the transcribed strands of active genes in bacteria, yeast and mammalian cells. Initially it was thought that only lesions removed by nucleotide excision repair (NER) were subject to this pathway of transcription-coupled repair (TCR), but recent investigations have shown that some lesions caused by reactive oxygen species, that are recognized by glycosylases and are subject to base excision repair (BER), can be preferentially repaired in the transcribed strands of active genes in mammalian cells. We will discuss the pathways and the proteins involved in the repair of different lesions or groups of lesions, produced by environmental agents or endogenous metabolic activities. The victims of the human hereditary diseases, xeroderma pig-mentosum (XP) and Cockayne syndrome (CS) are highly sensitive to DNA lesions induced by sunlight but only the former exhibit predisposition to cancer. While XP patients are generally deficient in NER, those with CS are specifically defective in TCR and are characterized by dwarfism and severe developmental abnormalities. The role of TCR in human health will be discussed with specific consideration of the problems of cancer and early development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. S. Balajee, A. May, G. L. Dianov, E. C. Friedberg and V. A. Bohr (1997). Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc. Natl. Acad. Sci. USA 94, 4306–4311.

    Article  PubMed  CAS  Google Scholar 

  • V. A. Bohr, C. A. Smith, D. S. Okumoto, and P. C. Hanawalt (1985). DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369.

    Article  PubMed  CAS  Google Scholar 

  • D. Bootsma and J. H. J. Hoeijmakers (1993). DNA repair: Engagement with transcription. Nature 363, 114–115.

    Article  PubMed  CAS  Google Scholar 

  • K. K. Bowman, C. A. Smith and P. C. Hanawalt (1997) Excision-repair lengths are similar for transcription-coupled repair and global genome repair in UV-irradiated human cells. Mut. Res. 385, 95–105.

    Article  CAS  Google Scholar 

  • D. B. Bregman, R. Halaban, A. J. van Gool, K. A. Henning, E. C. Friedberg and S. L. Warren (1996) UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad, Sci. USA 93, 11586–11590.

    Article  CAS  Google Scholar 

  • M. Carreau and D. Hunting (1992) Transcription-dependent and independent DNA excision repair pathways in human cells. Mut. Res. 274, 57–64.

    Article  CAS  Google Scholar 

  • F. C. Christians and P. C. Hanawalt (1992) Inhibition of transcription and strand-specific DNA repair a-amanitin in Chinese hamster ovary cells. Mut. Res. 274, 93–101.

    Article  CAS  Google Scholar 

  • F. C. Christians and P. C. Hanawalt (1993) Lack of transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry 32, 10512–10518.

    Article  PubMed  CAS  Google Scholar 

  • P. K. Cooper, T. Nouspikel, S. G. Clarkson, and S. A. Leadon (1997) Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275, 990–993.

    Article  PubMed  CAS  Google Scholar 

  • R. Dammann and G. P. Pfeifer (1997) Lack of gene-and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol. Cell. Biol. 17, 219–229.

    PubMed  CAS  Google Scholar 

  • A. Datta and S. Jinks-Robertson (1995) Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268, 1616–1619.

    Article  PubMed  CAS  Google Scholar 

  • W. P. Deng and J. A. Nickoloff (1994) Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells. Mol. Cell. Biol. 14, 391–399.

    PubMed  CAS  Google Scholar 

  • B. A. Donahue, R. P. P. Fuchs, D. Reines, and P. C. Hanawalt (1996) Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J. Biol. Chem. 271, 10588–10594.

    Article  PubMed  CAS  Google Scholar 

  • B. A. Donahue, S. Yin, J.-S. Taylor, D. Reines, and P. C. Hanawalt (1994) Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. USA 91, 8502–8506.

    Article  PubMed  CAS  Google Scholar 

  • H. Echols and M. F. Goodman (1991) Fidelity mechanisms in DNA replication. Ann. Rev. Biochemistiy 60, 477–571.

    Article  CAS  Google Scholar 

  • J. W. Feaver, J. Q. Svejstrup, L. Bardwell, J. A. Bardwell, S. Buratowski, K. D. Gulyas, T. F. Donahue, E. C. Friedberg and R. D. Kornberg (1993) Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  • J. M. Ford and P. C. Hanawalt (1995) Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV-resistance. Proc. Natl. Acad. Sci. USA 92, 8876–8880.

    Article  PubMed  CAS  Google Scholar 

  • J. M. Ford and P. C. Hanawalt (1997) Expression of wild type p53 is required for efficient global genomic nucleotide excision repair in the non-transcribed strand of an active gene. J. Biol. Chem. 272, 28073–28080.

    Article  PubMed  CAS  Google Scholar 

  • E. C. Friedberg, G. C. Walker and W. Siede (1995) DNA Repair and Mutagenesis. American Society for Microbiology Press, Washington D.C.

    Google Scholar 

  • A. R. Grivell, M. B. Grivell, and P. C. Hanawalt (1975) Turnover in bacterial DNA containing thymine or 5-bromouracil. J. Mol. Biol. 98, 219–233.

    Article  PubMed  CAS  Google Scholar 

  • P. C. Hanawalt and I. Mellon (1993) DNA repair: stranded in an active gene. Current Biology 3, 67–69.

    Article  PubMed  CAS  Google Scholar 

  • A. L. Islas, F. J. Baker and P. C. Hanawalt (1994) Transcription-coupled repair of psoralen crosslinks but not monoadducts in Chinese hamster ovary cells. Biochemistry 33, 10794–10799.

    Article  PubMed  CAS  Google Scholar 

  • D. R. Koehler and P. C. Hanawalt (1996) Recruitment of damaged DNA to the nuclear matrix in hamster cells following ultraviolet irradiation. Nucl. Acids. Res. 24, 2877–2884.

    Article  PubMed  CAS  Google Scholar 

  • V. I. Korogodin, V. L. Korogodina, C. Fajszi, A. I. Chepurnoy, N. Mikhova-Tsenova and N. V. Simonyan (1991) On the dependence of spontaneous mutation Rrates on the functional state of genes. Yeast 7, 105–117.

    Article  PubMed  CAS  Google Scholar 

  • S. A. Leadon and P. K. Cooper (1993) Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc. Natl. A cad. Sci. USA 90, 10499–10503.

    Article  CAS  Google Scholar 

  • S. A. Leadon and D. A. Lawrence (1991) Preferential repair of DNA damage on the transcribed strand of the human metallothionein genes requires RNApolymerase-ii. Mut. Res. 255, 67–78.

    Article  CAS  Google Scholar 

  • S. A. Leadon and D. A. Lawrence (1992) Strand-selective repair of DNA damage in the yeast gal7-gene requires RNApolymerase-II. J. Biol. Chem. 267, 23175–23182.

    PubMed  CAS  Google Scholar 

  • T. Lindahl (1993) Instability and decay of the primary structure of DNA. Nature 362, 709–715.

    Article  PubMed  CAS  Google Scholar 

  • M. Ljungman and F. Zhang (1996) Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13, 823–831.

    PubMed  CAS  Google Scholar 

  • L. Lommel, C. Carswell-Crumpton and P. C. Hanawalt (1995) Preferential repair of the transcribed DNA strand in the dihydrofolate reductase gene throughout the cell cycle in UV-irradiated human cells. Mut. Res. 336, 181–192.

    Article  CAS  Google Scholar 

  • L. Lommel and P. C. Hanawalt (1991) The genetic defect in the Chinese hamster ovary cell mutant UV61 permits moderate selective repair of cyclobutane pyrimidine dimers in an expressed gene. Mut. Res. 255, 183–191.

    Article  CAS  Google Scholar 

  • D. H. Madhani, V. A. Bohr and P. C. Hanawalt (1986) Differential DNA repair in transcriptionally active and inactive proto-oncogenes: c-abl and c-mos. Cell 45, 417–423.

    Article  PubMed  CAS  Google Scholar 

  • S. K. Mauldin and R. A. Deering (1994) Differential repair of UV damage in developmentally regulated gene of Dictyostelium discoideum. Mut. Res. 314, 187–198.

    Article  CAS  Google Scholar 

  • I. Mellon, V. A. Bohr, A. C. Smith and P. C. Hanawalt (1986) Preferential DNA repair of an active gene in human cells. Proc. Natl. Acad. Sci. USA 83, 8878–8882.

    Article  PubMed  CAS  Google Scholar 

  • I. Mellon and G. N. Champe (1996a) Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  • I. Mellon and P. C. Hanawalt (1989) Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342, 95–98.

    Article  PubMed  CAS  Google Scholar 

  • I. Mellon, D. K. Rajpal, M. Koi, C. R. Boland and G. N. Champe (1996b) Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272, 557–560.

    Article  PubMed  CAS  Google Scholar 

  • I. Mellon, G. Spivak and P. C. Hanawalt (1987) Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • L. C. Mounkes, R. S. Jones, B.-C. Liang, W. Gelbart and M. T. Fuller (1992) A Drosophila model for xeroderma pigmentosum and Cockayne’s syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell 71, 925–937.

    Article  PubMed  CAS  Google Scholar 

  • T. Nouspikel, P. Lalle, S. A. Leadon, P. K. Cooper and S. G. Clarkson (1997) A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc. Natl. Acad. Sci. USA 94, 3116–3121.

    Article  PubMed  CAS  Google Scholar 

  • A. Peters and U. Storb (1996) Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • H. Qui, E. Park, L. Prakash and S. Prakash (1993) The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes & Development 7, 2161–2171.

    Article  Google Scholar 

  • J. N. Ratner, B. Balasubramanian, J. Corden, S. L. Warren and D. B. Bregman (1998) Ultraviolet-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. J. Biol. Chem. 273, 5184–5189.

    Article  PubMed  CAS  Google Scholar 

  • A. Sancar (1996) DNA excision repair. Ann. Rev. Biochem. 65, 43–81.

    Article  PubMed  CAS  Google Scholar 

  • M. S. Satoh and P. C. Hanawalt (1997) Competent transcription initiation by RNA polymerase II in cell-free extracts from xeroderma pigmentosum groups B and D in an optimized RNA transcription assay. Biochim. Biophys. Acta 1354, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • M. S. Satoh, C. J. Jones, R. D. Wood and T. Lindahl (1993) DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free-radical induced base lesions. Proc. Natl. Acad. Sci. USA 90, 6335–6339.

    Article  PubMed  CAS  Google Scholar 

  • L. Schaeffer, R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. J. Hoeijmakers, P. Chambon and J.-M. Egly (1993) DNA repair helicase: A component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63.

    Article  PubMed  CAS  Google Scholar 

  • D. A. Scicchitano and P. C. Hanawalt (1989) Repair of N-methylpurines in specific DNA sequences in Chinese hamster ovary cells: Absence of strand specificity in the dihydrofolate reductase gene. Proc. Natl. Acad. Sci. USA 86, 3050–3054.

    Article  PubMed  CAS  Google Scholar 

  • C. B. Selby, E. M. Witkin and A. Sancar (1991) Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: In vitro complementation with purified coupling factor. Proc. Natl Acad. Sci. USA 88, 11574–11578.

    Article  PubMed  CAS  Google Scholar 

  • C. P. Selby and A. Sancar (1997) Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. USA 94, 11205–11209.

    Article  PubMed  CAS  Google Scholar 

  • A. Sitaram, G. Plitas, W. Wang and D. A. Scicchitano (1997) Functional nucleotide excision repair is required for the preferential removal of N-ethylpurines from the transcribed strand of the dihydrofolate reductase gene of Chinese hamster ovary cells. Molec. Cell Biol 17, 564–570.

    PubMed  CAS  Google Scholar 

  • M. J. Smerdon and F. Thoma (1990) Site-specific DNA-repair at the nucleosome level in a yeast minichromosome. Cell 61, 675–684.

    Article  PubMed  CAS  Google Scholar 

  • K. S. Sweder and P. C. Hanawalt (1992) Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc. Natl. Acad. Sci. USA 89, 10696–10700.

    Article  PubMed  CAS  Google Scholar 

  • K. S. Sweder and P. C. Hanawalt (1994) The COOH terminus of supressor of stem loop (SSL2) (RAD25) in yeast is essential for overall genomic excision repair and transcription-coupled repair. J. Biol. Chem. 269, in press.

    Google Scholar 

  • K. S. Sweder, R. A. Verhage, D. J. Crowley, G. F. Crouse, J. Brouwer and P. C. Hanawalt (1996) Mismatch repair mutants in yeast are not defective in transcription-coupled DNA repair of UV-induced DNA damage. Genetics 143, 1127–1135.

    PubMed  CAS  Google Scholar 

  • B.G. Taffe, F. Larminat, J. Laval, D.L. Croteau, R.M. Anson, and V.A. Bohr (1996) Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mut. Res. 364, 183–192.

    Article  CAS  Google Scholar 

  • M. Tijsterman, R. A. Verhage, P. van de Putte, J. G. Tasseron-de Jong and J. Brouwer (1997) Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 8027–8032.

    Article  PubMed  CAS  Google Scholar 

  • C. Troelstra, A. van Gool, J. D. Wit, W. Vermeulen, D. Bootsma and J. H. J. Hoeijmakers (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71, 939–953.

    Article  PubMed  CAS  Google Scholar 

  • Y. Tu, S. Bates and G. P. Pfeifer (1997) Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells. J. Biol. Chem. 272, 20747–20755.

    Article  PubMed  CAS  Google Scholar 

  • M. F. van Oosterwijk, R. Filon, W. H. Kalle, L. H. Mullenders and A. A. van Zeeland (1996a) The sensitivity of human fibroblasts to N-acetoxy-2-acetylaminofluorene is determined by the extent of transcription-coupled repair, and/or their capability to counteract RNA synthesis inhibition. Nucl. Acids Res. 24, 4653–4659.

    Article  PubMed  Google Scholar 

  • M. F. van Oosterwijk, A. Versteeg, R. Filon, A. A. van Zeeland and L. H. Mullenders (1996b) The sensitivity of Cockayne’s syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes. Mol. Cell. Biol. 16, 4436–4444.

    PubMed  Google Scholar 

  • J. Venema, L. H. F. Mullenders, A. T. Natarajan, A. A. van Zeeland and L. V. Mayne (1990) The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA 87, 4707–4711.

    Article  PubMed  CAS  Google Scholar 

  • W. Vermeulen, J. Jaeken, N. G. J. Jaspers, D. Bootsma and J. H. J. Hoeijmakers (1993) Xeroderma-pigmentosum complementation group-G associated with Cockayne syndrome. Am. J. Hum. Genet. 53, 185–192.

    PubMed  CAS  Google Scholar 

  • J. M. H. Vos and P. C. Hanawalt (1987) Processing of psoralen adducts in an active human gene: repair and replication of DNA containing monoadducts and interstrand crosslinks. Cell 50, 789–799.

    Article  PubMed  CAS  Google Scholar 

  • J. M. H. Vos and E. L. Wauthier (1991) Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerase-I and polymerase-II. Mol Cell. Biol. 11, 2245–2252.

    PubMed  CAS  Google Scholar 

  • G. Wand, M. M. Seidman and P. M. Glazer (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271, 802–805.

    Article  Google Scholar 

  • Z. Wang and T. M. Rana (1997) DNA damage-dependent transcriptional arrest and termination of RNA polymerase II elongation complexes in DNA template containing HIV-1 promoter. Proc. Natl Acad. Sci. USA 94, 6688–6693.

    Article  PubMed  CAS  Google Scholar 

  • R. D. Wood (1996) DNA repair in eukaryotes. Ann. Rev. Biochem. 65, 135–167.

    Article  PubMed  CAS  Google Scholar 

  • M. Yamaizumi and T. Sugano (1994) UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9, 2775–2784.

    PubMed  CAS  Google Scholar 

  • M. E. Zolan, G. A. Cortopassi C. A. Smith and P. C. Hanawalt (1982) Deficient repair of chemical adducts in alpha DNA of monkey cells. Cell 28, 613–619.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanawalt, P.C., Spivak, G. (1999). Transcription-Coupled DNA Repair. In: Dizdaroglu, M., Karakaya, A.E. (eds) Advances in DNA Damage and Repair. NATO ASI Series, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4865-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4865-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7207-3

  • Online ISBN: 978-1-4615-4865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics