Skip to main content

Abstract

The removal of UV radiation-induced pyrimidine dimers and (6-4) photoproducts as well as other bulky base adducts from the DNA of higher eukaryotes relies on the concerted action of about 30 proteins which excise base damage and restore the DNA to its native state. This process is known as nucleotide excision repair (NER), and the proteins involved are highly conserved throughout the eukaryotae. There are indications that the initial steps of NER are effected by a large preformed multi-protein complex comprising the RNA polymerase II transcription factor IIH (TFIIH) and other NER proteins known to be required for damage recognition and DNA incision. Humans with inactivating mutations in the genes encoding NER proteins suffer from the cancer-prone syndrome xeroderma pigmentosum (XP). In yeast, a mode of NER which is apparently coupled to transcription requires the activity of Rad26 protein, while transcription-independent NER requires the activity of the Rad7 and Rad 16 proteins. Defects in transcription-dependent NER are associated with the human hereditary disorder Cockayne syndrome (CS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Aboussekhra, M. Biggerstaff, M.K.K. Shivji, J.A. Vilpo, V. Moncollin, V.N. Podust, M. Protic, U. Hubscher, J.M. Egly and R.D. Wood (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868.

    Article  PubMed  CAS  Google Scholar 

  • R. Ayyagari, K.J. Impellizzeri, B.L. Yoder, S.L. Gary and P. M. J. Burgers (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 15, 4420–4429.

    PubMed  CAS  Google Scholar 

  • A.S. Balajee, A. May, G.L. Dianov, E.C. Friedberg and V.A. Bohr (1997) Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome B cells. Proc.Natl. Acad. Sci. USA 94, 4306–4311.

    Article  PubMed  CAS  Google Scholar 

  • D.D. Bang, R.A. Verhage, N. Goosen, J. Brouwer and P. van de Putte (1992) Molecular cloning of RAD 16, a gene involved in differential repair in Saccharomyces cerevisiae. Nucleic Acids Res. 20, 3925–3931.

    Article  PubMed  CAS  Google Scholar 

  • A.J. Bardwell, L. Bardwell, D.K. Johnson and E.C. Friedberg (1993) Yeast DNA recombiantion and repair proteins constitute a complex in vivo mediated by localized hydrophobic domains. Mol. Microbiol. 8, 1177–1188.

    Article  PubMed  CAS  Google Scholar 

  • A.J. Bardwell, L. Bardwell, A.E. Tomkinson and E.C. Friedberg (1994a) Specific cleavage of model recombination and repair intermediates by the yeast Radl-Rad 10 DNA endonuclease. Science 265, 2082–2085.

    Article  PubMed  CAS  Google Scholar 

  • A.J. Bardwell, L. Bardwell, N. Iyer, J.Q. Svejstrup, W.J. Feaver, R.D. Kornberg and E.C. Friedberg (1994c) Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol. Cell Biol. 14, 3569–3576.

    PubMed  CAS  Google Scholar 

  • P.K. Bhatia, R.A. Verhage, J. Brouwer and E.C. Friedberg (1996) Molecular cloning and characterization of S. cerevisiae RAD28, homolog of the human Cockayne syndrome A (CSA) gene. J. Bacteriol. 128, 5877–5987.

    Google Scholar 

  • V.A. Bohr, C.A. Smith, D.S. Okkumoto and P.C. Hanawalt (1985) DNA repair in an acitve gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369.

    Article  PubMed  CAS  Google Scholar 

  • D. Bootsma and J.H.J. Hoeijmakers (1993) Engagement with transcription. Nature 363, 114–115.

    Article  PubMed  CAS  Google Scholar 

  • S. Brill and B. Stillman (1989) Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication. Nature 342, 92–95.

    Article  PubMed  CAS  Google Scholar 

  • S. Brill and B. Stillman (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes & Dev. 5, 1589–1600.

    Article  CAS  Google Scholar 

  • A.A. Davies, E.C. Friedberg, A.E. Tomkinson, R.D. Wood, and S.C. West. (1995) Role of the Radl and Rad 10 proteins in nucleotide excision repair and recombination. J. Biol. Chem. 270, 24638–24641.

    Article  PubMed  CAS  Google Scholar 

  • G.L. Dianov, J.F. Houle, N. Iyer, V.A. Bohr and E.C. Friedberg (1997) Reduced RNA polymerase II trasneription in extracts of Cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucelic Acids Res. 25, 3636–3642.

    Article  CAS  Google Scholar 

  • R.J. Dohmen, P. Wu. and A. Varshavsky (1994) Heat-inducible degron: A method for constructing temperature-sensitive mutants. Science 263, 1273–1276.

    Article  PubMed  CAS  Google Scholar 

  • B.A. Donahue, S. Yin, J.S., Taylor, D. Rienes and P.C. Hanawalt (1994) Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. USA 91, 8502–8506.

    Article  PubMed  CAS  Google Scholar 

  • M.P. Fairman and B. Stillman (1988) Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J. 7, 1211–1218.

    PubMed  CAS  Google Scholar 

  • W.J. Feaver, O. Gileadi and R.D. Kornberg (1991a) Purification and characterization of yeast RNA polymerase II transcription factor b. J. Biol. Chem. 266, 19000–19005.

    PubMed  CAS  Google Scholar 

  • W.J. Feaver, O. Gileadi, Y. Li and R.D. Kornberg (1991b) CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67, 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  • W.J. Feaver, J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Buratowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg and R.D. Kornberg (1993) Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  • W.J. Feaver, J.Q. Svejstrup, N.L. Henry and R.D. Kornberg (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79, 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • W.J. Feaver, N.L. Henry, Z.Wang, X. Wu, J.Q. Svejstrup, D.A. Bushnell, E.C. Friedberg and R.D. Kornberg (1997) Genes for Tfb2, Tfb3 and Tfb4 subunits of yeast transcription/repair factor IIH: Homology to human “CAK” and IIH subunits. J. Biol. Chem. 272, 19319–19327.

    Article  PubMed  CAS  Google Scholar 

  • E.C. Friedberg, G.C. Walker and W. Siede (1995) DNA Repair and Mutagenesis. ASM Press, Washington, DC.

    Google Scholar 

  • E.C. Friedberg (1996) Cockayne syndrome — A primary defect in DNA repair, transcription, both or neither? BioEssays 18, 731–738.

    Article  PubMed  CAS  Google Scholar 

  • S.N. Guzder, P. Sung, L. Prakash and S. Prakash (1993) Yeast DNA-repair gene RAD 14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc. Natl. Acad. Sci. USA 90, 5433–5437.

    Article  PubMed  CAS  Google Scholar 

  • S.N. Guzder, Y. Habraken, P. Sung, L. Prakash and S. Prakash (1995a) Reconstitution of yeast nucleotide excision repair with purified rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270, 12873–12976.

    Google Scholar 

  • S.N. Guzder, V. Bailly, P. Sung, L. Prakash and S. Prakash (1995b) Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD 14. J. Biol. Chem. 270, 8385–8388.

    Article  PubMed  CAS  Google Scholar 

  • S.N. Guzder, P. Sung, L. Prakash and S. Prakash (1996) Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem. 271, 8903–8910.

    Article  PubMed  CAS  Google Scholar 

  • S.N. Guzder, P. Sung, L. Prakash and S. Prakash (1997) Yeast Rad7-16 complex, specific for the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J. Biol. Chem. 272, 21665–21668.

    Article  PubMed  CAS  Google Scholar 

  • Y. Habraken, P. Sung, L. Prakash and S. Prakash (1993) Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 366, 365–368.

    Article  PubMed  CAS  Google Scholar 

  • P.C. Hanawalt (1994) Transcription coupled repair and human disease. Science 266, 1957–1958.

    Article  PubMed  CAS  Google Scholar 

  • Z. He, L.A. Hendrickson, M.S. Wold and C.J. Ingles (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374, 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Z. He and C.J. Ingles (1997) Isolation of human complexes proficient in nucleotide excision repair. Nucleic Acids Res. 25, 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  • K.A. Henning, L. Li, N. Iyer, L.D. McDaniel, M.S. Regan, S. Legerski, R.A. Shultz, M. Stefanini, A.R. Leman, L.V. Mayne and E.C. Friedberg (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II transcription factor IIH. Cell 82, 555–564.

    Article  PubMed  CAS  Google Scholar 

  • J.H.J. Hoeijmakers (1993a) Nucleotide excision repair I: from E. coli to yeast. Trends Genet. 9, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • J.H.J. Hoeijmakers (1993b) Nucleotide excision repair. II: From yeast to mammals., Trends Genet, 9, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • W. Huang, W.J. Feaver, A.E. Tomkinson, and E.C. Friedberg (1998) The N-degron protein degradation strategy for investigating the function of essential genes: Requirement for RPA and PCNA proteins for nucleotide excision repair in yeast. Mutation Res. 408, 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Z. Kelman (1997) PCNA: structure, functions and interactions. Oncogene 14, 629–640.

    Article  PubMed  CAS  Google Scholar 

  • B.C. Laurent, I. Treich and M. Carlson (1993) Genes & Dev. 7, 583–592.

    Article  CAS  Google Scholar 

  • J.C. Marinoni, R. Roy, W. Vermeulen, P. Miniou, Y. Lutz, G. Weeda, T. Seroz, D.M. Gomez, J.M. Hoeijmakers and J.M. Egly (1997) Cloning and characterization of p52, the fifth subunit of the core of the transcription/DNA excision repair factor TFIIH. EMBO J. 16, 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  • T. Matsunaga, D. Mu, C.H. Park, J.T. Reardon and A. Sancar (1995) Human DNA repair excision endonuclease: Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCCl antibodies. J. Biol. Chem. 270, 20862–20869.

    Article  PubMed  CAS  Google Scholar 

  • K.A. Nasmyth (1982) The regulation of yeast mating-type chromatin structure by SIR: an action at a distance affecting both transcription and transposition. Cell 30, 567–578.

    Article  PubMed  CAS  Google Scholar 

  • E.J. Neer, C.J. Schmidt, R. Nambudiripad and T.F. Smith (1994) The ancient regulatorγ-protein family of WD-repeat proteins. Nature 371, 297–300.

    Article  PubMed  CAS  Google Scholar 

  • M.S. Reagan and E.C. Friedberg (1997) Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res., 25, 4236–4257.

    Article  Google Scholar 

  • S.H. Reed, Z. You, and E.C. Friedberg (1998) The yeast Rad7 and Rad 16 Proteins are required for post-incision events during nucleotide excision repair: in vitro and in vivo studies with rad7 and rad 16 mutants and purification of a Rad7/Rad 16 protein complex. J. Biol. Chem. 273, 29481–29488.

    Article  PubMed  CAS  Google Scholar 

  • K. Rodriguez, K.J. Talamantez, W. Huang, S.H. Reed, L. Chen, W.J. Feaver, E.C. Friedberg, and A.E. Tomkinson (1999) Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad 14 protein. J. Biol. Chem. (in press).

    Google Scholar 

  • C.P. Selby and A. Sancar (1993) Molecular mechanism of transcription repair coupling. Science 260, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • C.P. Selby, R. Drapkin, D. Reinberg and A. Sancar (1997) RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res. 25, 787–793.

    Article  PubMed  CAS  Google Scholar 

  • M.K.K. Shivji, M.K. Kenny and R.D. Wood (1992) Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • G. Stelzer, A. Goppelt, F. Lottspeich and M. Meisterernst (1994) Repression of basal transcription by HMG2 is counteracted by TFIIH-associated factors in an ATP-dependent process. Mol. Cell Biol. 14, 4712–4721.

    PubMed  CAS  Google Scholar 

  • P. Sung, S.N. Guzder, L. Prakash and S. Prakash (1996) Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J. Biol. Chem. 271, 10821–10826.

    Article  PubMed  CAS  Google Scholar 

  • J.Q. Svejstrup, W.J. Feaver, J. LaPoint and R.D. Kornberg (1994) RNA polymerase transcription factor IIH holoenzyme from yeast. J. Biol. Chem. 269, 28044–28048.

    PubMed  CAS  Google Scholar 

  • J.Q. Svejstrup, Z. Wang, W.J. Feaver, X. Wu, D.A. Bushnell, T.F. Donahue, E.C. Friedberg and R.D. Kornberg (1995) Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome. Cell 80, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • J.Q. Svejstrup, P. Vichi and J.M. Egly (1996a) The multiple role of transcription/repair factor TFIIH. Trends Biochem. Sci. 249, 346–350.

    Google Scholar 

  • J.Q. Svejstrup, W.J. Feaver and R.D. Kornberg (1996b) Subunits of yeast RNA polymerase II transcription factor TFIIH encoded by the CCL1 gene. J. Biol. Chem. 271, 643–645.

    Article  PubMed  CAS  Google Scholar 

  • D. Tantin, A. Kansal and M. Carey (1997) Recruitment of the putative transcription/repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol Cell. Biol., 17, 6803–6814.

    PubMed  CAS  Google Scholar 

  • M. Tijsterman, R.A. Verhage, P. van de Putte, J.G. Tasseron-De Jong and J. Brouwer (1997). Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II transcribed genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 8027–8032.

    Article  PubMed  CAS  Google Scholar 

  • A.E. Tomkinson, A.J. Bardwell, L. Bardwell, N.J. Tapppe and E.C. Friedberg (1993) Yeast DNA repair and recombination proteins Rad 1 and Rad 10 constitite a single-stranded DNA endonuclease. Nature 362, 860–862.

    Article  PubMed  CAS  Google Scholar 

  • J.G. Valay, M. Simon and G. Faye (1993) The Kin28 protein kinase is associated with a cyclin in Saccharomyces cerevisiae. J. Mol. Biol. 234, 307–310.

    Article  PubMed  CAS  Google Scholar 

  • A.J. van Gool, R. Verhage, S.M.A. Swagemakers, P. van de Putte, J. Brouwer, C. Troelstra, D. Bootsma and J.H.J. Hoeijmakers (1994) RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13, 5361–5369.

    PubMed  Google Scholar 

  • A.J. van Gool, E. Citterio, S. Rademakers, R. van Os, W. Vermeulen, A. Constantinou, J.M. Egly, D. Bootsma and J.H.J. Hoeijmakers (1997) The Cockayne syndrome B protein, involved in transcription coupled DNA repair, resides in an RNA polymerase II containing complex. EMBO J., 16, 5955–5965.

    Article  PubMed  Google Scholar 

  • R.A. Verhage, A.M. Zeeman, N. de Groot, F. Gleig, D.D. Bang, P. van de Putte and J. Brouwer (1994) The RAD7 and RAD 16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell Biol. 14, 6135–6142.

    Article  PubMed  CAS  Google Scholar 

  • W. Vermeulen, A.J. van Vuuren, A.J., Chipoulet, L. Schaeffer, E. Appledoorn, G. Weeda, N.G.J. Jaspers, A. Priestly, C.F. Arlett, A.R. Lehmann, M. Stefanini, M. Mezzina, A. Sarasin, D. Bootsma, J.M. Egly and J.H.J. Hoeijimakers (1994). Three unusual repair deficiencies associated with transcription factor BTF2 (TFIIH): Evidence for the existence of a transcription syndrome. Cold Spring Harbor Symposium of Quant. Biol. LIX, 317–329.

    Article  Google Scholar 

  • Z. Wang, J.Q. Svejstrup, W.J. Feaver, X. Wu, R.D. Kornberg and E.C. Friedberg (1994) Transcription factor b (TFIIH) is required during nucleotide excision repair in yeast. Nature 368, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Z. Wang, S. Buratowski, J.Q. Svejstrup, W.J. Feaver, X. Wu, R.D. Kornberg, T.F. Donahue and E.C. Friedberg (1995a) The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription. Mol. Cell. Biol. 15, 2288–2293.

    PubMed  CAS  Google Scholar 

  • Z. Wang, X. Wu and E.C. Friedberg (1995b) The detection and measurement of base and nucleotide excision repair in cell-free extracts of the yeast Saccharomyces cerevisiae. METHODS: A Companion to Methods in Enzymology 7, 177–186.

    Article  Google Scholar 

  • Z. Wang, S. Wei, S.H. Reed, X. Wu, J.Q. Svejstrup, W.J. Feaver, R.D. Kornberg and E.C. Friedberg (1997) The RAD7, RAD 16 and RAD23 genes of Saccharomyces cerevisiae: Requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol. Cell Biol. 17, 635–643.

    PubMed  CAS  Google Scholar 

  • J. Watkins, P. Sung, L. Prakash and S. Prakash (1993) The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13, 7757–7765.

    PubMed  CAS  Google Scholar 

  • D.R. Wilcox and L. Prakash (1981) Incision and post-incision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J. Bacteriol. 148, 618–623.

    PubMed  CAS  Google Scholar 

  • C.R. Wobbe, L. Weissbach, J.A. Borowiec, F.B. Dean, Y. Murakami, P. Bullock and J. Hurwitz (1987) Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl. Acad. Sci. USA 84, 1834–1838.

    Article  PubMed  CAS  Google Scholar 

  • M.S. Wold and T. Kelly (1988) Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc. Natl. Acad. Sci. USA 85, 2523–2527.

    Article  PubMed  CAS  Google Scholar 

  • Z. You, W.J. Feaver and E.C. Friedberg (1998) Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: Complementation of inhibition by holo-TFIIH and requirement for RAD26. Mol. Cell. BioL 18, 2668–2676.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedberg, E.C. et al. (1999). Saccharomyces Cerevisiae . In: Dizdaroglu, M., Karakaya, A.E. (eds) Advances in DNA Damage and Repair. NATO ASI Series, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4865-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4865-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7207-3

  • Online ISBN: 978-1-4615-4865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics