Skip to main content

Variable Selection in the Cascade-Correlation Learning Architecture

  • Chapter
Molecular Modeling and Prediction of Bioactivity

Abstract

Recently there has been a growing interest in the application of neural networks in the field of QSAR. It was demonstrated that this method is often superior to the traditional approaches.1 Other studies have shown that prediction ability of such methods can be substantially improved if the number of input variables for neural networks is optimized.2,3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Maddalena, Applications of artificial neural networks to quantitative structure-activity relationships, Exp. Opin. Thee. Patents. 6: 239–251 (1996).

    Article  CAS  Google Scholar 

  2. I.V. Tetko, A.E.P. Villa, and D.J. Livingstone, Neural network studies. 2. Variable selection, J. Chem. Inf. Comput. Sci. 36: 794–803 (1996).

    Article  CAS  Google Scholar 

  3. D.J. Maddalena and S.A.R. Johnston, Prediction of receptor properties and binding affinity of ligands to benzodiazepines/gabaa receptors using artificial neural networks, J. Med. Chem. 38: 715–724 (1995).

    Article  CAS  Google Scholar 

  4. S. Demon, E. Bienenstock, and R. Dourstat, Neural networks and the bias/variance dilemma, Neural Computation 4: 1–58 (1992).

    Article  Google Scholar 

  5. I.V. Tetko, D.T. Livingstone, and A.I. Luik, Neural network studies. I. Comparison of overfitting and overtraining, J. Chem. Inf. Comput. Sri. 35: 826–833 (1995).

    Article  CAS  Google Scholar 

  6. T. Ash and G. Cottrell, Topology-modifying neural network algorithms, in: The Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed., MIT, Cambridge, (1995).

    Google Scholar 

  7. S.E. Fahlman and C. Lebiere, The cascade-correlation learning architecture, in: NIPS°2, D.S. Touretzky, cd., Morgan-Kaufmann, San Mateo (1990).

    Google Scholar 

  8. V.V. Kovalishyn, LV. Tetko, A.I. Luik, V.V. Kholodovych, A.E.P. Villa, and D.J. Livingstone, Neural network studies. 3. Variable selection in the cascade-correlation learning architecture, J. Chem. Inf. Comput. Sci. 38: 651–659 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tetko, I.V., Kovalishyn, V.V., Luik, A.I., Kasheva, T.N., Villa, A.E.P., Livingstone, D.J. (2000). Variable Selection in the Cascade-Correlation Learning Architecture. In: Gundertofte, K., Jørgensen, F.S. (eds) Molecular Modeling and Prediction of Bioactivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4141-7_124

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4141-7_124

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6857-1

  • Online ISBN: 978-1-4615-4141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics