Skip to main content

Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland

  • Chapter
Book cover Regulatory Mechanisms in Breast Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 53))

Abstract

The mammary gland of nonpregnant mammals is composed of an epithelium embedded in a fatty stroma. The epithelium consists of a branching ductal tree terminating in alveolar buds (ABs) in rats or in terminal ductal- lobuloalveolar units (TDLUs) in humans [1, 2]. The boundary of the epithelium is formed by a basement membrane, on the inner surface of which is a more or less continuous layer of elongated myoepithelial cells possessing smooth muscle-like myofilaments and pinocytotic vesicles [3–6]. One or more layers of cuboidal epithelial cells constitute the core of the ducts, with the inner layer bordering a lumen that is continuous throughout the ductal tree [7]. The luminal, cuboidal epithelial cells have apical microvilli and specialized junctional complexes with associated desmosomes. In the terminal ABs and TDLUs that form distended lobules, the luminal layer is composed of secretory or alveolar cells that synthesize and secrete milk products during lactation [2, 8]. More recently a battery of immunocytochemical probes has been used to define, on a more molecular basis, the cuboidal epithelial cell of the ducts, the epithelial cells of the ABs/TDLUs, the myoepithelial cells, and potential transitional cells [9–11]. These probes have been important in understanding the developmental relationship between the different cell types found in the mature mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 419.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raynaud A, 1961. Morphogenesis of the mammary gland. In Milk, The Mammary Gland And Its Secretions, Vol 1 (Kon SK, Cowie AT, eds). New York: Academic Press, pp. 3–46.

    Google Scholar 

  2. Ozzello L, 1971. Ultrastructure of the human mammary gland. Pathol Ann 6:1–58.

    CAS  Google Scholar 

  3. Radnor CJP, 1972. Myoepithelial cell differentiation in rat mammary gland. J Anat 111: 381–398.

    PubMed  CAS  Google Scholar 

  4. Radnor CJP, 1972. Myoepithelium in the prelactating and lactating mammary glands of the rat. J Anat 112:337–353.

    PubMed  CAS  Google Scholar 

  5. Hollman KH, 1974. Cytology and fine structure of the mammary gland. In Lactation: A Comprehensive Treatise, Vol 1 (Larson BL, Smith VB, eds). New York: Academic Press, pp. 3–37.

    Google Scholar 

  6. Vorherr H, 1974. The Breast, Morphology, Physiology And Lactation. New York: Academic Press, pp. 1–18.

    Google Scholar 

  7. Anderson RR, 1974. Endocrinological control in the development of the mammary gland. In Lactation: A Comprehensive Treatise, Vol 1 (Larson BL, Smith VB, eds). New York: Academic Press, pp. 97–140.

    Google Scholar 

  8. Radnor CJP, 1971. A cytological study of the myoepithelial cells in the rat mammary gland. M.Sc. thesis, University of Manchester.

    Google Scholar 

  9. Rudland PS, 1987. Stem cells and the development of mammary cancers in rats and in humans. Cancer Metast Rev 6:55–83.

    Article  CAS  Google Scholar 

  10. Rudland, PS, Barraclough BR, 1988. Stem cells in mammary gland differentiation and cancer. J Cell Sci 10:95–114.

    CAS  Google Scholar 

  11. Rudland PS, Hughes CM, 1989. Immunocytochemical identification of cell types in the human mammary gland: Variations in cellular markers are dependent on glandular topography and differentiation. J Histochem Cytochem, in press.

    Google Scholar 

  12. Warburton MJ, Mitchell D, Ormerod EJ, Rudland PS, (1982). Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating and involuting rat mammary gland. J Histochem Cytochem 30:667–676.

    Article  PubMed  CAS  Google Scholar 

  13. Myers JA 1919. Studies on the mammary gland IV. The histology of the mammary gland in male and female albino rats from birth to ten weeks of age. Am J Anat 25:394–435.

    Article  Google Scholar 

  14. Dawson EK, 1934. A histological study of the normal mamma in relation to tumor growth. I. Early development to maturity. Edinburgh Med J 41:653–682.

    Google Scholar 

  15. Cole HA, 1933. The mammary gland of the mouse during the oestrous cycle, pregnancy and lactation. Proc Royal Soc London (Biol) 114:136–161.

    Article  Google Scholar 

  16. Turner CV, Gomez ET, 1933. The normal development of the mammary gland of the male and female albino mouse. Mo Agric Station Res Bull 182:3–20.

    Google Scholar 

  17. Russo IH, Russo, J, 1978. Development stage of the rat mammary gland as determinant of its susceptibility to 7,12 dimethylbenz[a]anthracene. J Natl Cancer Inst 61:1439–1449.

    PubMed  CAS  Google Scholar 

  18. Russo J, Russo IH, 1980. Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res 40:2677–2687.

    PubMed  CAS  Google Scholar 

  19. Russo J, Tay LK, Russo IH, 1982. Differentiation of the rat mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat 2:5–73.

    Article  PubMed  CAS  Google Scholar 

  20. Dulbecco R, Henahan M, Armstrong B, 1982. Cell types and morphogenesis in the mammary gland. Proc Nat Acad Sci USA 79:7346–7350.

    Article  PubMed  CAS  Google Scholar 

  21. Dulbecco R, 1983. Immunological markers in the study of development and oncogenesis in the rat mammary gland. J Cell Physiol (Suppl. 2), pp. 19–22.

    Google Scholar 

  22. Williams JM, Daniel CW, 1983. Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 97:274–290.

    Article  PubMed  CAS  Google Scholar 

  23. Ormerod EJ, Rudland PS, 1984. Cellular composition and organization of ductal buds in developing rat mammary gland: Evidence for morphological intermediates between epithelial and myoepithelial cells. Am J Anat 170:631–652.

    Article  PubMed  CAS  Google Scholar 

  24. Stirling JW, Chandler JA, 1976. The fine structure of the normal, resting terminal ductal-lobular unit of the female breast. Virchows Arch A (Pathol Anat) 372:205–226.

    Article  CAS  Google Scholar 

  25. Smith CA, Monaghan P, Neville AM, 1984. Basal clear cells of the normal human breast. Virchows Arch A (Pathol Anat) 402:319–329.

    Article  CAS  Google Scholar 

  26. Huggins C, Grand LC, Brillantes FP, 1961. Mammary cancer induced by a single feeding of polynuclear hydrocarbons and its suppression. Nature 189:204–207.

    Article  PubMed  CAS  Google Scholar 

  27. Dao TL, 1969. Mammary cancer induction by 7,12-dimethylbenz[a]anthracene: Relation to age. Science 165:810–811.

    Article  PubMed  CAS  Google Scholar 

  28. Gullino PM, Pettigrew HW, Grantham FH, 1975. N-nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst 54:401–411.

    PubMed  CAS  Google Scholar 

  29. Russo J, Saby J, Isenburg WM, Russo IH, 1977. Pathogenesis of mammary carcinomas induced by 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst 59:435–455.

    Google Scholar 

  30. Williams JC, Gusterson BA, Humphreys J, Monaghan P, Coombes RC, Rudland PS, Neville AM, 1981. N-methyl-N-nitrosourea-induced rat mammary tumors: Hormone responsiveness but lack of spontaneous metastasis. J Natl Cancer Inst 66:147–155.

    PubMed  CAS  Google Scholar 

  31. Archer FL, 1969. Fine structure of spontaneous and estrogen-induced secretion in breast tumors in the rat induced by 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst 42:347–362.

    PubMed  CAS  Google Scholar 

  32. Murad TM, von Haam E, 1972. The ultrastructure of DMBA-induced breast tumors in Sprague-Dawley rats. Acta Cytol 16:447–453.

    PubMed  CAS  Google Scholar 

  33. Dunnington DJ, Kim U, Hughes CM, Monaghan P, Ormerod EJ, Rudland PS, 1984. Loss of myoepithelial cell characteristics in metastasizing rat mammary tumors relative to their nonmetastasizing counterparts. J Natl Cancer Inst 78:455–466.

    Google Scholar 

  34. Ormerod EJ, Warburton MJ, Gusterson B, Hughes CM, Rudland PS, 1985. Abnormal deposition of basement membrane and connective tissue components in dimethylbenz[a]an-thracene-induced rat mammary tumours: An itnmunocytochemical and ultrastructural study. Histochem J 17:1155–1166.

    Article  PubMed  CAS  Google Scholar 

  35. Herbert DC, Burk RE, McGuire WL, 1978. Casein and alactalbumin detection in breast cancer cells by immunocytochemistry. Cancer Res 38:221–223.

    Google Scholar 

  36. Supowit SC, Rosen JM, 1982. Hormonal induction of casein gene expression is limited to a small subpopulation of 7,12-dimethylbenz[a]anthracene-induced mammary cells. Cancer Res 42:1355–1360.

    PubMed  CAS  Google Scholar 

  37. Rudland PS, Hughes CM, Twiston-Davies AC, Warburton MJ, 1983. Immunocytochemi-cal demonstration of hormonally regulable casein in tumors produced by a rat mammary stem cell line. Cancer Res 43:3305–3309.

    PubMed  CAS  Google Scholar 

  38. Kim U, 1979. Factors influencing metastasis of breast cancer. In Breast Cancer, Vol 3 (McGuire WL, ed). New York: Plenum Press, pp. 1–49.

    Google Scholar 

  39. Williams JC, Gusterson BA, Monaghan P, Coombes RC, Rudland PS, 1985. Isolation and characterization of clonal cell lines from a transplantable metastasizing rat mammary tumor, TR2CL. J Natl Cancer Inst 74:415–428.

    PubMed  CAS  Google Scholar 

  40. McGregor DH, Land CE, Choi K, Tokuoka S, Liv PI, 1977. Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagasaki, 1950-1969. J Natl Cancer Inst 59:799–811.

    PubMed  CAS  Google Scholar 

  41. Wellings SR, Jensen HM, Marcum RG, 1975. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 25: 231–275.

    Google Scholar 

  42. Wellings SR, Yang J, 1983. Human mammary pathology: A guide to breast cancer biology. In Understanding Breast Cancer, Clinical and Laboratory Concepts (Rich MA, Hager JC, Furmanski P, eds). New York: Marcel Dekker, pp. 27–41.

    Google Scholar 

  43. Azzopardi JG, 1979. Problems in Breast Pathology. Philadelphia: WB Saunders.

    Google Scholar 

  44. Ahmed A, 1978. Atlas of the Ultrastructure of Human Breast Diseases. Edinburgh: Churchill Livingstone.

    Google Scholar 

  45. Macartney JC, Roxburgh J, Curran RC, 1979. Intracellular filaments in human cancer cells: A histological study. J Pathol 129:13–20.

    Article  PubMed  CAS  Google Scholar 

  46. Gould VE, Jao W, Battifora H, 1980. Ultrastructural analysis in the differential diagnosis of breast tumors. Pathol Res Pract 167:45–70.

    Article  PubMed  CAS  Google Scholar 

  47. Albrechstein R, Nielson M, Wewer U, Engvall E, Ruoslahti E, 1981. Basement membrane changes in breast cancer detected by immunocytochemical staining for laminin. Cancer Res 41:5076–5081.

    Google Scholar 

  48. Bussolati G, Alfani V, Weber K, Osborn M, 1980. Immunocytochemical detection of actin on fixed and embedded tissues: Its potential use in routine pathology. J Histochem Cytochem 28:169–173.

    Article  PubMed  CAS  Google Scholar 

  49. Barsky SH, Siegal GP, Janotta F, Liotta LA, 1982. Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest Abstract p. 7A.

    Google Scholar 

  50. Gusterson BA, Warburton MJ, Mitchell D, Ellison M, Neville AM, Rudland PS, 1982. Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res 42:4763–4770.

    PubMed  CAS  Google Scholar 

  51. Gusterson BA, Mcllhinney RAJ, Patel S, Knight J, Monaghan P, 1985. The biochemical and immunocytochemical characterization of an antigen on the membrane of basal cells of the epidermis. Differentiation 30:102–110.

    Article  PubMed  CAS  Google Scholar 

  52. Gusterson BA, Monaghan P, Mahendran R, Ellis J, O’Hare MJ, 1986. Identification of myoepithelial cells in human and rat breasts by anti-common acute lymphoblastic leukemia antigen antibody-A12. J Natl Cancer Inst 77:343–349.

    PubMed  CAS  Google Scholar 

  53. Earl HM, Mcllhinney RAJ, 1985. Monoclonal antibodies to human casein. Molec Immunol 22:981–991.

    Article  CAS  Google Scholar 

  54. Earl HM, 1987. Markers of human breast differentiation and breast carcinomas, and characterisation of monoclonal antibodies to human casein. Ph.D.thesis, University of London.

    Google Scholar 

  55. Hallowes RC, Rudland PS, Hawkins RA, Lewis DJ, Bennett DC, Durbin H, 1977. Comparison of the effects of hormones on DNA synthesis in cell cultures of nonneoplastic and neoplastic mammary epithelium from rats. Cancer Res 37:2492–2504.

    PubMed  CAS  Google Scholar 

  56. Rudland PS, Hallowes RC, Durbin H, Lewis D, 1977. Mitogenic activity of pituitary hormones on cell cultures of normal and carcinogen-induced tumor epithelium from rat mammary glands. J Cell Biol 73:561–577.

    Article  PubMed  CAS  Google Scholar 

  57. Warburton MJ, Ferns SA, Hughes CM, Rudland PS, 1985. Characterisation of rat mammary cell types in primary culture: Lectin and antisera to basement membrane and intermediate filament proteins as indicators of cellular heterogeneity. J Cell Sci 79:287–304.

    PubMed  CAS  Google Scholar 

  58. Rudland PS, Bennett DC, Warburton MJ, 1980. Growth and differentiation of culture rat mammary epithelial cells. In Hormones and Cancer (Iacobelli S et al., eds). New York: Raven Press, pp. 265–269.

    Google Scholar 

  59. McGrath CM, 1975. Cell organisation and responsiveness to hormones in vitro: Genesis of domes on mammary cultures. Amer J Zool 15:231–226.

    Google Scholar 

  60. Ormerod EJ, Rudland PS, 1985. Isolation and characterisation of cloned epithelial cell lines from normal rat mammary glands. In Vitro 21:143–153.

    CAS  Google Scholar 

  61. Dunnington DJ, Monaghan P, Hughes CM, Rudland PS, 1983. Phenotypic instability of rat mammary tumor epithelial cells. J Natl Cancer Inst 71:1227–1240.

    PubMed  CAS  Google Scholar 

  62. Bennett DC, Peachey LA, Durbin H, Rudland PS, 1978. A possible mammary stem cell line. Cell 15:283–298.

    Article  PubMed  CAS  Google Scholar 

  63. Dulbecco R, Henahan M, Bowman M, Okada S, Battifora H, Unger M, 1981. Generation of fibroblast-like cells from cloned mammary cells in vitro: A possible new cell type. Proc Nat Acad sciUSA 78:2345–2349.

    Article  CAS  Google Scholar 

  64. Hallowes RC, Millis R, Pigott D, Shearer M, Stoker MGP, Taylor-Papadimitriou J, 1977. Results of a pilot study of cultures of human lacteal secretions and benign and malignant breast tumors. J Clin Oncol 3:81–90.

    CAS  Google Scholar 

  65. Kirkland WL, Yang NS, Jorgensen T, Longley C, Furmanski P, 1979. Growth of normal and malignant human mammary epithelial cells in culture. J Natl Cancer Inst 63:29–41.

    PubMed  CAS  Google Scholar 

  66. Stampfer M, Hallowes RC, Hackett AJ, 1980. Growth of normal human mammary cells in culture. In Vitro 16:414–425.

    Article  Google Scholar 

  67. Easty GC, Easty DM, Monaghan P, Ormerod MG, Neville AM, 1980. Preparation and identification of human breast epithelial cells in culture. Int J Cancer 26:577–584.

    Article  PubMed  CAS  Google Scholar 

  68. Rudland PS, Hughes CM, Ferns SA, Warburton MJ, 1989. Characterisation of human mammary cell types in primary culture: Immunofluorescent and immunocytochemical indicators of cellular heterogeneity. In Vitro 25:23–36.

    CAS  Google Scholar 

  69. Chang SE, Keen J, Lane EB, Taylor-Papadimitriou J, 1983. Establishment and characterisation of SV40-transformed human breast epithelial cell lines. Cancer Res 42:2040–2053.

    Google Scholar 

  70. Rudland PS, Ollerhead G, Barraclough R, 1989. Isolation of simian virus 40-transformed human mammary epithelial stem cell lines that can differentiate to myoepithelial-like cells in culture and in vivo. Dev Biol 136:167–180.

    Article  PubMed  CAS  Google Scholar 

  71. Paterson FC, Graham JM, Rudland PS, 1985. The effect of ionophores and related agents on the induction of doming in a rat mammary epithelial cell line. J Cell Physiol 123:89–100.

    Article  PubMed  CAS  Google Scholar 

  72. Friend C, Scher W, Holland JG, Sato T, 1971. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethylsul-foxide. Proc Nat Acad Sci USA 68:378–382.

    PubMed  CAS  Google Scholar 

  73. Rudland PS, Davies A-T, Warburton MJ, 1982. Prostaglandin-induced differentiation or dimethylsulfoxide-induced differentiation: Reduction of the neoplastic potential of a rat mammary tumor stem cell line. J Natl Cancer Inst 69:1083–1093.

    PubMed  CAS  Google Scholar 

  74. Rudland PS, Paterson FC, Twiston-Davies AC, Warburton MJ, 1983. Retinoid-specific induction of differentiation and reudction of the DNA synthesis and tumor-forming ability of a stem cell line from a rat mammary tumor. J Natl Cancer Inst 70:949–958.

    PubMed  CAS  Google Scholar 

  75. Warburton MJ, Head LP, Ferns SA, Rudland PS, 1983. Induction of differentiation in a rat mammary epithelial stem cell line by dimethylsulphoxide and mammatrophic hormones. Eur J Biochem 133:707–715.

    Article  PubMed  CAS  Google Scholar 

  76. Paterson FC, Warburton MJ, Rudland PS, 1985. Differentiation of mammary epithelial stem cells to alveolar-like cells in culture: Cellular pathways and kinetics of the conversion process. Dev Biol 107:301–313.

    Article  PubMed  CAS  Google Scholar 

  77. Paterson FC, Rudland PS, 1985. Identification of novel stage-specific polypeptides associated with the differentiation of mammary epithelial stem cells to alveolar-like cells in culture. J Cell Physiol 124:525–538.

    Article  PubMed  CAS  Google Scholar 

  78. Dexter DL, Kowalski HM, Blazar BA, Fligiel S, Vogel R, Heppner GH, 1978. Heterogeneity of cells from a single mouse mammary tumor. Cancer Res 38:3174–3181.

    PubMed  CAS  Google Scholar 

  79. Rudland PS, Bennett DC, Ritter MA, Newman RA, Warburton MJ, 1979. Differentiation of a rat mammary stem cell line in culture. In Control Mechanisms in Animal cells (Jiminez de Asua L, ed). New York: Raven Press, pp. 341–365.

    Google Scholar 

  80. Hager JC, Fligiel S, Stanley W, Richardson AM, Heppner GH, 1981. Characterization of a variant producing tumor cell line from a heterogeneous strain Balb/cfC3H mouse mammary tumor. Cancer Res 41:1293–1300.

    PubMed  CAS  Google Scholar 

  81. Warburton MJ, Head LP, Rudland PS, 1981. Redistribution of fibronectin and cytoskeletal proteins during the differentiation of rat mammary tumor cells. Exp Cell Res 132:57–66.

    Article  PubMed  CAS  Google Scholar 

  82. Ormerod EJ, Rudland PS, 1982. Mammary gland morphogenesis in vitro: Formation of branched tubules in collagen gels by a cloned rat mammary cell line. Dev Biol 91:360–375.

    Article  PubMed  CAS  Google Scholar 

  83. Rudland PS, Warburton MJ, Monaghan P, Ritter MA, 1982. Thy-1 antigen on normal and neoplastic rat mammary tissue: Changes in location and amount of antigen during differentiation of cultured stem cells. J Natl Cancer Inst 68:799–811.

    PubMed  CAS  Google Scholar 

  84. Warburton MJ, Ferns SA, Rudland PS, 1982. Enhanced synthesis of basement membrane proteins during the differentiation of rat mammary epithelial cells into myoepithelial-like cellsin vitro. Exp Cell Res 137:373–380.

    Article  PubMed  CAS  Google Scholar 

  85. Hughes CM, 1988. Lectin binding to the rat mammary gland. M.Phil.thesis, University of London, England.

    Google Scholar 

  86. Rudland PS, Paterson FC, Monaghan P, Davies AC, Warburton MJ, 1986. Isolation and properties of rat cell lines morphologically intermediate between cultured mammary epithelial and myoepithelial cells. Dev Biol 113:388–405.

    Article  PubMed  CAS  Google Scholar 

  87. Jamieson S, Dunnington DJ, Ormerod EJ, Warburton MJ, Rudland PS, 1986. Dedif-ferentiation of rat mammary myoepithelial-like cell lines after passage in vivo or cloningin vitro. J Natl Cancer Inst 76:247–256.

    PubMed  CAS  Google Scholar 

  88. Joshi K, Smith JA, Perusinghe N, Monaghan P, 1986. Cell proliferation in the human mammary epithelium: Differential contribution by epithelial and myoepithelial cells. Am J Pathol 124:199–206.

    PubMed  CAS  Google Scholar 

  89. Joshi K, Ellis JTB, Hughes CM, Monaghan P, Neville AM, 1986. Cellular proliferation in the rat mammary gland during pregnancy and lactation. Lab Invest 54:52-61

    Google Scholar 

  90. Warburton MJ, Ormerod EJ, Monaghan P, Ferns SA, Rudland PS, 1981. Characterisation of a myoepithelial cell line derived from a neonatal rat mammary gland. J Cell Biol 91:827–836.

    Article  PubMed  CAS  Google Scholar 

  91. Barraclough R, Kimbell R, Rudland PS, 1987. Differential control of mRNA levels for Thy-1 antigen and laminin in rat mammary epithelial and myoepithelial-like cells. J Cell Physiol 131:393–401.

    Article  PubMed  CAS  Google Scholar 

  92. Barraclough R, 1988. Control of expression of the novel potential calcium-binding protein, p9Ka, in cultured rat mammary cells. Biochem Soc Trans 107:301–313.

    Google Scholar 

  93. Paterson FC, Rudland PS, 1985. Micotubule-disrupting drugs increase the frequency of conversion of a rat mammary epithelial stem cell line to elongated, myoepithelial-like cells in culture. J Cell Physiol 125:135–150.

    Article  PubMed  CAS  Google Scholar 

  94. Stoker MPG, Perryman M, Eeles R, 1982. Clonal analysis of morphological phenotype in cultured mammary epithelial cells from human milk. Proc Royal Soc Londo (B) 215: 231–240.

    Article  CAS  Google Scholar 

  95. Edwards PAW, Brooks IM, Monaghan P, 1984. Antigenic subsets of human breast epithelial cells distinguished by monoclonal antibodies. Differentiation 25:247–258.

    Article  PubMed  CAS  Google Scholar 

  96. Williams JC, Gusterson BA, Coombes RC, 1982. Spontaneous metastasizing variants derived from MNU-induced rat mammary tumor. Brit J Cancer 45:588–597.

    Article  PubMed  CAS  Google Scholar 

  97. Ghosh S, Roholt OA, Kim U, 1983. Establishment of two non-metastasizing and one metastasizing rat mammary carcinoma cell lines. In Vitro 19:919–928.

    Article  PubMed  CAS  Google Scholar 

  98. Rudland PS, Dunnington DJ, Kim U, Gusterson BA, O’Hare MJ, Monaghan P, 1989. Isolation and properties of cell lines from the metastasizing rat mammary tumor, SMT-2A. Brit J Cancer, in press.

    Google Scholar 

  99. Neri A, Welch D, Kawaguchi T, Nicholson GL, 1982. Development and biological properties of malignant cell sublines and clones of spontaneously metastasizing rat mammary adenocarcinoma. J Natl Cancer Inst 68:507–517.

    PubMed  CAS  Google Scholar 

  100. Dunnington DJ, Kim U, Hughes CM, Monaghan P, Rudland PS, 1984. Lack of production of myoepithelial variants by cloned epithelial cell lines derived from the TMT-081 metastasizing rat mammary tumor. Cancer Res 44:5338–5346.

    PubMed  CAS  Google Scholar 

  101. Kim U, 1984. On the immunogenicity of tumor cells and the pattern of metastasis. In Cancer Invasion and Metastasis, Biologic and Therapeutic Aspects (Nicholson GL, Milas L, eds). New York: Raven Press, pp. 337–3751.

    Google Scholar 

  102. Beuhring GC, Williams RR, 1976. Growth rates of normal and abnormal mammary epithelia in cell culture. Cancer Res 36:3742–3746.

    Google Scholar 

  103. Lasfargues EY, Ozzello L, 1958. Cultivation of human breast carcinomas. J Natl Cancer Inst 21:1131–1147.

    PubMed  CAS  Google Scholar 

  104. Nordquist RE, Ishmael DR, Lovig CA, 1975. The tissue culture and morphology of human breast tumor cell line BOT-2. Cancer Res 35:3100–3105.

    PubMed  CAS  Google Scholar 

  105. Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL, Gardner MB, 1977. Two syngeneic cell lines from human breast tissue: The aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs598Bst) cell lines. J Natl Cancer Inst 58:1795–1806.

    PubMed  CAS  Google Scholar 

  106. Lasfargues EY, Coutinko WG, Redfield ES, 1978. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J Natl Cancer Inst 61:967–978.

    PubMed  CAS  Google Scholar 

  107. Hallowes RC, Peachey LA, Cox S, 1983. Epithelium from human breast cancers in culture: Is it really cancer. In Vitro 19:286.

    Google Scholar 

  108. Rudland PS, Hallowes RC, Cox SA, Ormerod EJ, Warburton MJ, 1985. Loss of production of myoepithelial cells and basement membrane proteins but retention of response to certain growth factors and hormones by a new malignant human breast cancer cell strain. Cancer Res 45:3864–3877.

    PubMed  CAS  Google Scholar 

  109. Whitehead RH, Bertoncello I, Weber LM, Pedersen JS, 1983. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. 1. Morphological characterisation. J Natl Cancer Inst 48:117–1120.

    Google Scholar 

  110. Peterson OW, van Deurs B, 1987. Preservation of defined phenotypic traits in short-term cultured human breast carcinoma-derived epithelial cells. Cancer Res 47:856–866.

    Google Scholar 

  111. Feller WF, Stewart SE, Kanton J, 1972. Primary tissue culture expiants of human breast cancer. J Natl Cancer Inst 48:1117–1120.

    PubMed  CAS  Google Scholar 

  112. Owens RB, Smith HS, Nelson-Rees WA, Springer EL, 1976. Epithelial cell cultures from normal and cancerous human tissues. J Natl Cancer Inst 56:843–849.

    PubMed  CAS  Google Scholar 

  113. Engel LW, Young NA, Lippman ME, O’Brien SJ, Joyce MJ, 1978. Establishment of three new continuous cell lines derived from human breast carcinomas. Cancer Res 38:3352–3364.

    PubMed  CAS  Google Scholar 

  114. Semen G, Hunter SJ, Miller RC, Dmochowski L, 1976. Characterisation of an established cell line (SH3) derived from pleural effusions of a patient with breast cancer. Cancer 37:1814–1824.

    Article  Google Scholar 

  115. McManus MJ, Welch CW, 1980. DNA synthesis of benign breast tumors in the untreated athymic ‘nude’ mouse. Cancer 45:2160–2165.

    Article  PubMed  CAS  Google Scholar 

  116. Smith HS, Wolman SR, Hackett AJ, 1984. The biology of breast cancer at the cellular level. Biochem Biophys Acta 738:103–123.

    PubMed  CAS  Google Scholar 

  117. Monaghan P, Whitehead RH, Perusinghe N, O’Hare MJ, 1985. An ultrastructural study of heterogeneity in the human breast carcinoma cell line PMC-42. Cancer Res 45:5088–5097.

    PubMed  CAS  Google Scholar 

  118. Taylor-Papadimitriou J, Lane EB, Chang SE, 1983. Cell lineages and interactions in neoplastic expression in the human breast. In Understanding Breast Cancer, Clinical and Laboratory Concepts (Rich MA, Hager JC, Furmanski P, eds). New York: Marcel Dekker: pp. 215–246.

    Google Scholar 

  119. Rudland PS, Barraclough R, 1989. Differentiation of simian virus 40-transformed human mammary epithelial stem cells to myoepithelial-like cells is associated with increased expression of viral large T antigen. J Cell Physiol 162:657-665

    Google Scholar 

  120. Rudland PS, Gusterson BA, Hughes CM, Ormerod EJ, Warburton MJ, 1982. A neoplastic rat mammary stem cell line generates two forms of tumors in nude mice. Cancer Res 42:5196–5208.

    PubMed  CAS  Google Scholar 

  121. Dao TL, Bock FG, Greiner MJ, 1960. Mammary carcinogenesis by 3-methylcholanthrene. II. Inhibitory effect of pregnancy and lactation on tumor induction. J Natl Cancer Inst 25:991–1003.

    PubMed  CAS  Google Scholar 

  122. Moon RC, 1969. Relationship between previous reproductive history and chemical induced mammary cancer in rats. Int J Cancer 4:312–317.

    Article  PubMed  CAS  Google Scholar 

  123. Sporn MB, Newton DL, 1979. Chemoprevention of cancer with retinoids. Fed Proc 38:2528–2534.

    PubMed  CAS  Google Scholar 

  124. MacMahon B, Cole P, Brown J, 1973. Etiology of human breast cancer: A review. J Natl Cancer Inst 50:21–42.

    PubMed  CAS  Google Scholar 

  125. Peto R, Doll R, Buckley JD, Sporn MB, 1981. Can dietary beta-carotene materially reduce human cancer rates. Nature 290:201–208.

    Article  PubMed  CAS  Google Scholar 

  126. Lyons RW, Li CH, Johnson RE, 1958. The hormonal control of mammary growth and lactation and the growth of tumours. Recent Prog Horm Res 94:219–254.

    Google Scholar 

  127. Nandi SJ, 1958. Endocrine control of mammary gland development and function in the C3H/He Crgl mouse. J Natl Cancer Inst 21:1039–1055.

    PubMed  CAS  Google Scholar 

  128. Topper YJ, Freeman SC, 1980. Multiple hormone interactions in the development of the mammary gland. Physiol Rev 60:1049–1105.

    PubMed  CAS  Google Scholar 

  129. DeOme KB, Faulkin LJ, Bern HA, Blair PB, 1959. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of C3H mice. Cancer Res 19:515–529.

    PubMed  CAS  Google Scholar 

  130. Beuving LJ, Bern HA, DeOme KB, 1967. Occurence and tranplantation of carcinogen-induced hyperplastic nodules in Fischer rats. J Natl Cancer Inst 39:431–447.

    Google Scholar 

  131. Meites J, 1972. Relation of prolactin and estrogen to mammary tumorigenesis in the rat. J Natl Cancer Inst 48:1217–1224.

    PubMed  CAS  Google Scholar 

  132. Pearson OH, Molina A, Butler TP, Llerena L, Nasr H, 1972. Estrogens and prolactin in mammary cancer. In Estrogen Target Tissues and Neoplasia (Dao TL, ed). Chicago: University of Chicago Press, pp. 287–305.

    Google Scholar 

  133. Kano-Sueoka T, 1983. Factors affecting mammary cells in culture. In Biochemical Action of Hormones,Vol 10 (Litwack G, ed). New York: Academic Press, pp. 163–185.

    Google Scholar 

  134. Ben-David M, 1968. Mechanism of induction of mammary differentiation in Sprague-Dawley female rats by perphenazine. Endocrinology 83:1217–1223.

    Article  PubMed  CAS  Google Scholar 

  135. Oka T, Topper YJ, 1972. Is prolactin mitogenic for mammary epithelium? Proc Nat Acad Sci USA 69:1693–1696.

    Article  PubMed  CAS  Google Scholar 

  136. Kano-Sueoka T, Cambell GR, Gerber M, 1977. Growth-stimulating activity in bovine pituitary extract specific for a rat mammary carcinoma cell line. J Cell Physiol 93:417–424.

    Article  PubMed  CAS  Google Scholar 

  137. Rudland PS, Bennett DC, Warburton MJ, 1979. Hormonal control of growth and differentiation of cultured rat mammary gland epithelial cells. Cold Spr Harb Conf Cell Prolif 6:677–699.

    CAS  Google Scholar 

  138. Jimenez de Asua L, Richmond V, Otto AM, Kubler AM, Rudland PS, 1979. Growth factors and hormones interact in a series of temporal steps to regulate the rate of initiation of DNA synthesis in mouse fibroblasts. Cold Spr Harb Conf Cell Prolif 6:403–424.

    CAS  Google Scholar 

  139. Rudland PS, Jimenez de Asua L, 1979. Action of growth factors in the cell cycle. Biochim Biophys Acta 560:91–133.

    PubMed  CAS  Google Scholar 

  140. Rudland PS, Durbin H, Clingan D, Jimenez de Asua L, 1977. Iron salts and transferrin are specifically required for cell division of cultured 3T6 cells, Biochem Biophys Res Comm 75:556–562.

    Article  PubMed  CAS  Google Scholar 

  141. Turkington RW, 1969. The role of epithelial growth factor in mammary gland developmentin vitro. Exp Cell Res 57:79–85.

    Article  PubMed  CAS  Google Scholar 

  142. Stoker MPG, Pigott D, Taylor-Papadimitriou J, 1976. Response to epidermal growth factor of cultured human mammary epithelial cells from benign tumors. Nature 264: 764–765.

    Article  PubMed  CAS  Google Scholar 

  143. Taylor-Papadimitriou J, Shearer M, Stoker MPG, 1977. Growth requirements of human mammary epithelial cells in culture. Int J Cancer 20:903–908.

    Article  PubMed  CAS  Google Scholar 

  144. Pollak MN, Polychronakos C, Yousefi S, Richard M, 1988. Characterization of insulin-like growth factor (IGF-I) receptors of human breast cancer cells. Biochem Biophys Res Comm 154:326–331.

    Article  PubMed  CAS  Google Scholar 

  145. Sirbasku DA, Officer JB, Leland FE, Lio M, 1982. Evidence of a new role for pituitary-derived hormones and growth factors in mammary tumor cell growth in vivo and in vitro. In Growth of Cells in Hormonally Defined Mediax, Book B (Sato GH, Pardee AB, Sirbasku DA, eds). New York: Cold Spr Harb Lab, pp. 765–788.

    Google Scholar 

  146. Kano-Sueoka T, Cohen DM, Yamaizumi Z, Nishimura S, Mori M, Fujiki H, 1979. Phosphoethanolamine as a growth factor of a mammary carcinoma cell line of rat. Proc Nat Acad Sci USA 76:5741–5749.

    Article  PubMed  CAS  Google Scholar 

  147. Hammond SL, Ham RC, Stampfer MR, 1984. Serum-free growth of human epithelial cells. Rapid clonal growth in defined medium and extended passage with pituitary extracts. Proc Nat Acad Sci USA 81:5435–5439.

    Article  PubMed  CAS  Google Scholar 

  148. Dembinski TC, Leung CKH, Shin RPC, 1985. Evidence for a novel pituitary factor that potentiates the mitogenic effect of estrogen in human breast cancer cells. Cancer Res 45:3083–3089.

    PubMed  CAS  Google Scholar 

  149. Newman CB, Crosby H, Friesen HG, Feldman M, Cooper O, De Crescito V, Pilon M, Kleinberg DL, 1987. Evidence for a non-prolactin, non-growth hormone mammary mitogen in the human pituitary gland. Proc Nat Acad Sci USA 84:8110–8114.

    Article  PubMed  CAS  Google Scholar 

  150. Smith JA, Winslow DP, Rudland PS, 1984. Different growth factors stimulate cell division of rat mammary epithelial, myoepithelial and stromal cell lines in culture. J Cell Physiol 119:320–326.

    Article  PubMed  CAS  Google Scholar 

  151. Rudland PS, Twiston Davis AC, Tsao S-W, 1984. Rat mammary preadipocytes in culture produce a trophic agent for mammary epithelia &3x2014; Prostaglandin E2. J Cell Physiol 120:364–376.

    Article  PubMed  CAS  Google Scholar 

  152. Bandyopadhyay GK, Imagawa W, Wallace DR, Nandi S, 1988. Proliferative effects of insulin and epidermal growth factor on mouse mammary epithelial cells in primary culture: Enhancement by hydroxyeicosatetraenoic acids and synergism with PGE2. J Biol Chem 263:7567–7573.

    PubMed  CAS  Google Scholar 

  153. Smith JA, Barraclough BR, Fernig DG, Rudland PS, 1989. Identification of alpha transforming growth factor (aTGF) as a possible local trophic agent for the mammary gland. J Cell Physiol 141:362–370.

    Article  PubMed  CAS  Google Scholar 

  154. Smith JA, Ham J, Winslow DP, O’Hare MJ, Rudland PS, 1984. The use of high-performance liquid chromatography in the isolation and characterization of mouse and rat epidermal growth factors and examination of apparent heterogeneity. J Chromatogr 305:295–308.

    Article  PubMed  CAS  Google Scholar 

  155. Simpson RJ, Smith JA, Moritz RL, O’Hare MJ, Rudland PS, Morrison JR, Lloyd CJ, Grego B, Burgess AW, Nice EC, 1985. Rat epidermal growth factor: Complete amino acid sequence. Eur J Biochem 153:629–637.

    Article  PubMed  CAS  Google Scholar 

  156. Derynck R, 1988. Transforming growth factor a. Cell 54:593–595.

    Article  PubMed  CAS  Google Scholar 

  157. Massagué J, 1983. Epidermal-like transforming growth factor 1. J Biol Chem 258:13606–13613.

    PubMed  Google Scholar 

  158. Massagué J, 1983. Epidermal-like transforming growth factor 2. J Biol Chem 258:13614–13620.

    PubMed  Google Scholar 

  159. Liu SC, Sanfilippo B, Perroteau I, Derynk R, Salomon DS, Kidwell WR, 1987. Expression of transforming growth factor a (TGFα) in differentiated rat mammary tumors: Estrogen induction of TGFa production. Mol Endocrinol 1:683–692.

    Article  PubMed  CAS  Google Scholar 

  160. Vonderhaar BK, 1987. Local effects of EGF, αTGF, and EGF-like growth factors on lobular alveolar development of the mouse mammary gland in vivo. J Cell Physiol 132:581–584.

    Article  PubMed  CAS  Google Scholar 

  161. Silberstein GB, Daniel CW, 1987. Investigation of mouse mammary ductal growth regulation using slow-release plastic implants. J Dairy Sci 70:1981–1990.

    Article  PubMed  CAS  Google Scholar 

  162. Fernig DG, Smith JA, Rudland PS, 1990. Appearance of basic fibroblast growth factor receptors upon differentiation of rat mammary epithelial to myoepithelial-like cells in culture. J Cell Physiol 142:108–116.

    Article  PubMed  CAS  Google Scholar 

  163. Coleman S, Silberstein GB, Daniel CW, 1988. Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev Biol 127:304–315.

    Article  PubMed  CAS  Google Scholar 

  164. Valverius EM, Bates SE, Stampfer MR, Clark R, McCormick F, Salomon DS, Lippman ME, Dickson RB, 1989. Transforming growth factor alpha and its receptor in human mammary epithelial cells: Modulation of epidermal growth factor receptor function with oncogenic transformation. Mol Endocrinol 3:203–214.

    Article  PubMed  CAS  Google Scholar 

  165. Smith JA, Winslow DP, O’Hare MJ, Rudland PS, 1984. Brain and pituitary fibroblast growth factor behave identically on three independent high performance liquid chromatography systems. Biochem Biophys Res Comm 119:311–318.

    Article  PubMed  CAS  Google Scholar 

  166. Gospodarowicz D, 1974. Localisation of fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249:123–127.

    Article  PubMed  CAS  Google Scholar 

  167. Rudland PS, Seifert WE, Gospodarowicz D, 1974. Growth control and mitogenic response in cultured fibroblasts: Induction of the pleiotypic and mitogenic response by a purified growth factor. Proc Nat Acad Sci USA 71:2600–2604.

    Article  PubMed  CAS  Google Scholar 

  168. Thomas KA, Gimenez-Gallego G, 1986. Fibroblast growth factors: Broad spectrum mitogens with potent angiogenic activity. TIBS 11:81–84.

    CAS  Google Scholar 

  169. Gospodarowicz D, Neufeld G, Schweigerer R, 1987. Fibroblast growth factor: Structural and biological preperties. J Cell Physiol (Suppl. 5), pp. 15–26.

    Google Scholar 

  170. Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Böhlen P, Guillemin R, 1985. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Nat Acad Sci USA 82:6507–6511.

    Article  PubMed  CAS  Google Scholar 

  171. Crabb JW, Armes LG, Carr SA, Johnson CM, Roberts GD, Bordoli RS, McKeehan WL, 1986. Complete primary structure of prostatropin, a prostate epithelial cell growth factor. Biochem (USA) 25:4988–4993.

    Article  CAS  Google Scholar 

  172. Kurokawa T, Seno M, Igarashi K, 1988. Nucleotide sequence of rat basic fibroblast growth factor cDNA. Nuc Acid Res 16:5201.

    Google Scholar 

  173. Neufeld G, Gospodarowicz D, 1985. The identification and partial characterization of the fibroblast growth factor receptor of baby hamster kidney cells. J Biol Chem 260: 13860–13868.

    PubMed  CAS  Google Scholar 

  174. Lidereau R, Callahan R, Dickson C, Peters G, Escot C, Ali IU, 1988. Amplification of the int-2 gene in primary human breast tumors. Oncogene Res 2:285–291.

    PubMed  CAS  Google Scholar 

  175. Moore R, Casey G, Brookes S, Dixon M, Peters G, Dickson C, 1986. Sequence, topography and protein coding potential of mouse int-2: A putative oncogene activated by mouse mammary tumor virus. EMBO J 5:919–924.

    PubMed  CAS  Google Scholar 

  176. Dunnington DJ, 1984. The development and study of single-cell-cloned metastasizing mammary tumor cell systems in the rat. Ph.D.thesis, University of London, England.

    Google Scholar 

  177. Meyvisch C, 1983. Influence of implantation site on formation of metastases. Cancer metastasis Rev 2:295–306.

    Article  PubMed  CAS  Google Scholar 

  178. Horak E, Darling DL, Tarin D, 1986. Analysis of organ-specific effects on metastatic tumor formation by studiesin vitro. J Natl Cancer Inst 76:913–922.

    PubMed  CAS  Google Scholar 

  179. Vorherr H, 1980. Treatment of primary and recurrent breast cancer. In Breast Cancer: Epidemiology, Endocrinology, Biochemistry and Pathology. Baltimore: Urban and Schwar-zenberg, pp. 374–408.

    Google Scholar 

  180. Segaloff, 1978. Hormones and mammary carcinogenesis. In Breast Cancer: Advances in Research and Treatment, Vol 2 (McGuire WL, ed). New York: Plenum Press, pp. 1–22.

    Google Scholar 

  181. Mansel RE, Preece PE, Hughes LE, 1978. A double-blind trial of the prolactin inhibitor bromocriptine in painful benign breast disease. Brit J Surg 65:724–727.

    Article  PubMed  CAS  Google Scholar 

  182. Hinton CP, Bishop HM, Holliday HW, Doyle PL, Blarney RW, 1986. A double-blind controlled trial of danozol and bromocriptine in the management of severe cyclical breast pain. Brit J Clin Pract 40:326–330.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernig, D.G., Smith, J.A., Rudland, P.S. (1991). Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland. In: Lippman, M.E., Dickson, R.B. (eds) Regulatory Mechanisms in Breast Cancer. Cancer Treatment and Research, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3940-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3940-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6758-1

  • Online ISBN: 978-1-4615-3940-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics