Skip to main content

Expression of rat intestinal fatty acid binding protein in E. coli and its subsequent structural analysis: a model system for studying the molecular details of fatty acid-protein interaction

  • Chapter
  • 87 Accesses

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 6))

Abstract

A prokaryotic expression vector containing the rec A promoter and a translational enhancer element from the gene 10 leader of bacteriophage T7 was used to direct efficient synthesis of rat intestinal fatty acid binding protein (I-FABP) in E. coli. Expression of I-FABP in E. coli has no apparent, deleterious effects on the organism. High levels of expression of I-FABP mRNA in supE+ strains of E. coli, such as JM101, is associated with suppression of termination at its UGA stop codon. This can be eliminated by using a supE- strain as MG1655 and by site-directed mutagenesis of the cDNA to create an in frame UAA stop codon. E. coli-derived rat I-FABP lacks its initiator Met residues. It has been crystallized with and without bound palmitate. High resolution x-ray crystallographic studies of the 131 residue apo- and holo-proteins have revealed the following. I-FABP contains 10 anti-parallel β-strands organized into two orthogonally situated β-sheets. The overall conformation of the protein resembles that of a clam — hence the term β-clam. The bound ligand is located in the interior of the protein. Its carboxylate group forms part of a unique five member hydrogen bonding network consisting of two ordered solvent molecules as well as the side chains of Arg106 and Gin115. The hydrocarbon chain of the bound C16:0 fatty acid has a distinctive bent conformation with a slight left-handed helical twist. This conformation is maintained by interactions with the side chains of a number of hydrophobic and aromatic amino acids. Apo-I-FABF has a similar overall conformation to holo-I-FABP indicating that the β-clam structure is stable even without bound ligand. The space occupied by bound ligand in the core of the holo-protein is occupied by additional ordered solvent molecules in the apo-protein. Differences in the side chain orientations of several residues located over a potential opening to the cores of the apo- and holo-proteins suggest that solvent may play an important role in the binding mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sweetser DA, Hauft SM, Hoppe PC, Birkenmeier EH, Gordon JI: Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc Natl Acad Sci USA 85: 9611–9615, 1988

    Article  PubMed  CAS  Google Scholar 

  2. Shields HM, Bates ML, Bass NM, Best CJ, Alpers DH, Ockner RK: Light microscopic immunocytochemical localization of hepatic and intestinal types of fatty acid-binding proteins in rat small intestine. J Lipid Res 27: 549–557, 1986

    PubMed  CAS  Google Scholar 

  3. Alpers DH, Strauss AW, Ockner RK, Bass NM, Gordon JI: Cloning of a cDNA encoding rat intestinal fatty acid binding protein. Proc Natl Acad Sci USA 81: 313–317, 1984

    Article  PubMed  CAS  Google Scholar 

  4. Sweetser DA, Birkenmeier EH, Klisak IJ, Zollman S, Sparkes RS, Mohandas T, Lusis AJ, Gordon JI: The human and rodent intestinal fatty acid binding protein genes. J Biol Chem 262: 16060–16071, 1987

    PubMed  CAS  Google Scholar 

  5. Rubin DC, Ong DE, Gordon JI: Cellular differentiation in the emerging fetal rat small intestinal epithelium: Mosaic patterns of gene expression. Proc Natl Acad Sci USA 86: 1278–1282, 1989

    Article  PubMed  CAS  Google Scholar 

  6. Bass NM, Manning JA: Tissues expression of three structurally different fatty acid binding proteins from rat heart muscle, liver, and intestine. Biochem Biophys Res Commun 137: 929–935, 1986

    Article  PubMed  CAS  Google Scholar 

  7. Glatz JFC, VeerKamp JH: A radiochemical procedure for the assay of fatty acid binding by proteins. Anal Biochem 132: 89–95, 1983

    Article  PubMed  CAS  Google Scholar 

  8. Lowe JB, Sacchettini JC, Laposata M, McQuillan JJ, Gordon JI: Expression of rat intestinal fatty acid-binding protein in Escherichia coli J Biol Chem 262: 5931–5937, 1987

    PubMed  CAS  Google Scholar 

  9. Gangl A, Ockner RK: Intestinal metabolism of plasma free fatty acids. J Clin Invest 55: 803–813, 1975

    Article  PubMed  CAS  Google Scholar 

  10. Cistola DP, Sacchettini JC, Banaszak LJ, Walsh MT, Gordon JI: Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. J Biol Chem 264: 2700–2710, 1989

    PubMed  CAS  Google Scholar 

  11. Remaut EW, DeWaele P, Marmenout A, Stanssens P, Fiers W: Functional expression of individual plasmid-coded RNA bacteriophage MS2 genes. EMBO J 1: 205–209, 1982

    PubMed  CAS  Google Scholar 

  12. Olins PO, Rangwala SH: Versatile vector for enhanced translation of foreign genes in Escherichia coli. Methods Enzymol 185: 115–119, 1990

    Article  PubMed  CAS  Google Scholar 

  13. Horii T, Ogawa T, Ogawa H: Organization of the recA gene of Escherichia coli. Proc Natl Acad Sci USA 77: 313–317, 1980

    Article  PubMed  CAS  Google Scholar 

  14. Olins PO, Devine CS, Rangwala SH, Kavka KS: The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 7: 227–235, 1988

    Article  Google Scholar 

  15. Dente L, Cersarini G, Cortese J: pEMBL: A new family of single stranded plasmids. Nuc Acids Res 11: 1645–1655, 1983

    Article  CAS  Google Scholar 

  16. Meade PA, Szczesna-Skapura E, Kemper B: Single stranded DNA SP6 promoter plasmids for engineering mutant RNAs and proteins: synthesis of a ‘stretched’ preproparathyroid hormone. Nuc Acids Res 14: 1103–1107, 1985

    Article  Google Scholar 

  17. Krueger JK, Kulke MH, Schatt C, Stock J: Protein inclusion body formation and purification. BioPharm 40–4, 1989

    Google Scholar 

  18. Roth JR: UGA nonsense mutations in Salmonella typhimurium. J Bacteriol 102: 467–475, 1970

    PubMed  CAS  Google Scholar 

  19. Sharp PM, Bulmer M: Selective differences among translation termination codons. Gene 63: 141–145, 1988

    Article  PubMed  CAS  Google Scholar 

  20. Capecchi, MR: Initiation of E. coli proteins. Proc Natl Acad Sci USA 55; 1517–1524, 1966

    Article  PubMed  CAS  Google Scholar 

  21. Hirel P-H, Schmitter J-M, Dessen P, Fayat G, and Blanquet S: Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain lenghtt of the penultimate amino acid. Proc Natl Acad Sci USA 86: 8247–8251, 1989

    Article  PubMed  CAS  Google Scholar 

  22. Sacchettini JC, Gordon JI, Banaszak LJ: Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol 208: 327–340, 1989

    Article  PubMed  CAS  Google Scholar 

  23. Sacchettini JC, Gordon JI, Banaszak LJ: The structure of crystalline Escherichia coli-derived rat intestinal fatty acid-binding protein at 2.5-Å resolution. J Biol Chem 263: 5815–5819, 1988

    PubMed  CAS  Google Scholar 

  24. Sacchettini JC, Gordon JI, Banaszak LJ: Refined apoprotein structure of rat intestinal fatty acid binding protein produced in Escherichia coli. Proc Natl Acad Sci USA 86: 7736–7740, 1989

    Article  PubMed  CAS  Google Scholar 

  25. Lipman DJ, Pearson WR: Rapid and sensitive protein similarity searches. Science 227: 1435–1441, 1985

    Article  PubMed  CAS  Google Scholar 

  26. Sweetser DA, Lowe JB, Gordon JI: The nucleotide sequence of the rat liver fatty acid-binding protein gene. J Biol Chem 261: 5553–5561, 1986

    PubMed  CAS  Google Scholar 

  27. Demmer LA, Birkenmeier EH, Sweetser DA, Levin MS, Zollman S, Sparkes RS, Mohandas T, Lusis AJ, Gordon JI: The cellular retinol binding protein II gene: Sequence analysis of the rat gene, chromosomal localization in mice and humans, documentation of its close linkage to the cellular retinol binding protein gene. J Biol Chem 262: 2458–2467, 1987

    PubMed  CAS  Google Scholar 

  28. Hunt, CR, Ro JHS, Dobson DE, Min HY, Spiegelman BM: Adipocyte P2 gene: Developmental expression and homology of 5’-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci USA 83: 3786–3790, 1986

    Article  PubMed  CAS  Google Scholar 

  29. Chan L, Chik-Fong W, Li W-H, Yang C-Y, Ratner P, Pownall H, Grotto AM Jr, Smith LC: Human liver fatty acid binding protein cDNA and amino acid sequence. J Biol Chem 260: 2629–2632, 1985

    PubMed  CAS  Google Scholar 

  30. Jones TA, Bergfors T, Sedzik J, Unge T: The three-dimensional structure of P2 myelin protein. EMBO J 7: 1597–1604, 1988

    PubMed  CAS  Google Scholar 

  31. Li E, Locke B, Yang NC, Ong DE, Gordon JI: Characterization of rat cellular retinol-binding protein II expressed in Escherichia coli. J Biol Chem 262: 13773–13779, 1987

    PubMed  CAS  Google Scholar 

  32. Levin MS, Locke B, Yang NC, Li E, Gordon JI: Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli. J Biol Chem 263: 17715–17723, 1988

    PubMed  CAS  Google Scholar 

  33. Newcomer ME, Liljas A, Eriksson U, Rask C, Peterson PA: Crystallization of and preliminary x-ray data for an intracellular vitamin A-binding protein from rat liver. J Biol Chem 256: 8162–8163, 1981

    PubMed  CAS  Google Scholar 

  34. Sacchettini JC, Stockhausen D, Li E, Banaszak LJ, Gordon JI: Crystallization of rat cellular retinol binding protein II: preliminary x-ray data obtained from the apoprotein expressed in Escherichia coli. J Biol Chem 262: 15756–15757, 1987

    PubMed  CAS  Google Scholar 

  35. Fitzgerald PMD: MERLOT, an integrated package of computer programs for the determination of crystal structures by molecular replacement. J Appl Cryst 21: 273–278, 1988

    Article  CAS  Google Scholar 

  36. McRee DE, Tainer JA, Meyer TE, Van Beeamen J, Cusanovich MA, Getzoff ED: Crystallographic structure of a photoreceptor protein at 2.4 Å resolution. Proc Natl Acad Sci USA 86: 6533–6537, 1989

    Article  PubMed  CAS  Google Scholar 

  37. Meyer TE, Yakali E, Cusanovich MA, Tollin G: Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochem 26: 418–423, 1987

    Article  CAS  Google Scholar 

  38. Sawyer L: One fold among many. Nature 327: 659, 1987

    Article  PubMed  CAS  Google Scholar 

  39. Godovac-Zimmerman J: The structural motif of β-lactoglobulin and retinol-binding protein: a basic framework for binding and transport of small hydrophobic molecules? TIBS 13: 64–66, 1988

    Google Scholar 

  40. Sundelin J, Eriksson U, Melhus H, Nilsson M, Lunduall J, Bovik CO, Hansson E, Laurent B, Peterson PA: Cellular retinoid binding proteins. Chem and Phys of Lipids 38: 175–185, 1985

    Article  CAS  Google Scholar 

  41. Papiz MZ, Sawyer L, Eliopoulos EE, North ACT, Findlay JBC, Sivaprasadarac R, Jones TA, Newcomer ME, Kraulis PJ: The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324: 383–385, 1986

    Article  PubMed  CAS  Google Scholar 

  42. Sawyer L, Papiz MZ, North ACT, Eliopoulos SE: Structure and function of bovine beta-lactoglobulin. Biochem Soc Trans 13: 265–266, 1985

    CAS  Google Scholar 

  43. Monaco HL, Zanotti G, Spadon P, Bolognesi M, Sawyer L, Eliopoulos EE: Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2.5 Å resolution. J Mol Biol 147: 695–706, 1987

    Article  Google Scholar 

  44. Burnette WN: ‘Western Blotting’: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195–203, 1981

    Article  PubMed  CAS  Google Scholar 

  45. Gordon JI, Alpers DH, Ockner RK, Strauss AW: The nucleotide sequence of rat liver fatty acid binding protein mRNA. J Biol Chem 258: 3356–3363, 1983

    PubMed  CAS  Google Scholar 

  46. Heuckeroth RO, Birkenmeier EH, Levin MS, Gordon JI: Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem 262: 9709–9717, 1987

    PubMed  CAS  Google Scholar 

  47. Sundelin J, Anundi H, Tagardh L, Eriksson U, Lind P, Ronne H, Peterson PA, Rask L: The primary structure of rat liver cellular retinol-binding protein. J Biol Chem 260: 6488–6493, 1985

    PubMed  CAS  Google Scholar 

  48. Li, E, Demmer LA, Sweetser DA, Ong DE, Gordon JI: Rat cellular retinol-binding protein II: Use of a cloned cDNA to define its primary structure, tissue-specific expression, and developmental regulation. Proc Natl Acad Sci USA 83: 5779–5783, 1986

    Article  PubMed  CAS  Google Scholar 

  49. Sundelin J, Das SR, Eriksson U, Rask L, Peterson PA: The primary structure of bovine cellular retinoic acid-binding protein. J Biol Chem 260: 6494–6499, 1985

    PubMed  CAS  Google Scholar 

  50. Bohmer F-D, Kraft R, Otto A, Wernstedt C, Hellman U, Kurtz A, Muller T, Rohde K, Etzold G, Lehmann W, Langen P, Heldon CH, Grosse R: Identification of a polypeptide growth inhibitor from bovine mammary gland. J Biol Chem 262: 15137–15143, 1987

    PubMed  CAS  Google Scholar 

  51. Suzuki M, Kitamura K, Sakamoto Y, Uyemura K: The complete amino acid sequence of human P2 protein. J Neurochem 39: 1759–1762

    Google Scholar 

  52. Bernlohr DA, Angus CW, Lane MD, Bolanowski MA, Kelly TJ Jr: Expression of specific mRNAs during adipose differentiation: Identification of an mRNA encoding a homologue of myelin P2 protein. Proc Natl Acad Sci USA 81: 5468–5472, 1984

    Article  PubMed  CAS  Google Scholar 

  53. Gantz I, Nothwehr SR, Lucey M, Sacchettini JC, Del Valle J, Banaszak LJ, Naud M, Gordon JI, Yamada T: Gastro-tropin: Not an enteroxyntin but a member of a family of cytoplasmic hydrophobic ligand binding proteins. J Biol Chem 264: 20248–20254, 1989

    PubMed  CAS  Google Scholar 

  54. Newcomer ME, Jones TA, Aquist J, Sundelin J, Eriksson U, Rask C, Peterson PA: The three-dimensional structure of retinol-binding protein. EMBO J 3: 1451–1454, 1987

    Google Scholar 

  55. Huber R, Schneider M, Epp O, Mayr I, Messerschmidt A, Pflugrath J, Kayser H: Crystallization, crystal structure analysis and preliminary molecular model of the bilin binding protein from insect Pieris brassicae. J Mol Biol 195: 423–434, 1987

    Article  PubMed  CAS  Google Scholar 

  56. Huber R, Schneider M, Mayr I, Muller R, Pentzmann R, Suter F, Zuber H, Falk H, Kayser A: Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 Å resolution. J Mol Biol 198: 499–515, 1987

    Article  PubMed  CAS  Google Scholar 

  57. Holden HM, Rypniewski WR, Low JH, Rayment I: The molecular structure of insecticyanin from the tobacco horn-worm Manduca sexta L. at 2.6 Å resolution. EMBO J 6: 1565–1570, 1987

    PubMed  CAS  Google Scholar 

  58. Lee KH, Wells RG, Reed RR: Isolation of an olfactory cDNA: similarity to retinol binding protein suggests a role in olfaction. Science 235: 1053–1056, 1987

    Article  PubMed  CAS  Google Scholar 

  59. Perviaz S, Brew K: Homology of β-lactoglobulin, serum retinol-binding protein, and protein HC. Science 228: 335–337, 1985

    Article  Google Scholar 

  60. Crayna D, Fielding C, McLean J, Baer B, Castro G, Chen E, Comstock L, Henzel W, Kohr W, Rhee L, Wion K, Lawn R: Cloning and expression of human apolipoprotein D cDNA. J Biol Chem 261: 16535–16539, 1986

    Google Scholar 

  61. Peitsch MC, Boguski MS: Is apolipoprotein D a mammalian bilin binding protein? The New Biologist 2: 197–206, 1990

    PubMed  CAS  Google Scholar 

  62. Brooks DE, Means AR, Wright EJ, Singh SP, Tiver KK: Molecular cloning of the cDNA for two major androgen-dependent secretory proteins of 18.5 kilodaltons synthesized by the rat epididymis. J Biol Chem 261: 4956–4961, 1986

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sacchettini, J.C., Banaszak, L.J., Gordon, J.I. (1990). Expression of rat intestinal fatty acid binding protein in E. coli and its subsequent structural analysis: a model system for studying the molecular details of fatty acid-protein interaction. In: Glatz, J.F.C., Van Der Vusse, G.J. (eds) Cellular Fatty Acid-binding Proteins. Developments in Molecular and Cellular Biochemistry, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3936-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3936-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6756-7

  • Online ISBN: 978-1-4615-3936-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics