Skip to main content

Modulation of Glutamate Release From Hippocampal Mossy Fiber Nerve Endings By Arachidonic Acid And Eicosanoids

  • Chapter
Neurobiology of Essential Fatty Acids

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 318))

Abstract

Arachidonic acid has been implicated in normal synaptic transmission processes, including those related to the development of hippocampal long-term synaptic potentiation. Hippocampal mossy fiber (MF) synaptosomes were used to investigate the role of arachidonate in the evoked accumulation of presynaptic Ca2+ and the release of endogenous glutamate, since these nerve terminals express long-term potentiation and selectively release glutamate as the excitatory transmitter. It was demonstrated that membrane depolarization evoked the accumulation of Ca2+, the release of glutamate, and the production of unesterified arachidonic acid. These events may be functionally related, since exogenous arachidonate and phospholipase A2 activation mimicked the effects of depolarization on Ca2+ availability and glutamate release, while secretion processes were attenuated in the presence of phospholipase A2 inhibitors. In addition, pretreatment of the nerve terminals with arachidonate or melittin allowed for the facilitated release of glutamate in response to a subsequent depolarizing stimulus. Inhibition of cyclooxygenase or lipoxygenase activities also potentiated presynaptic responses to membrane depolarization. In contrast, 12-lipoxygenase products attenuated the depolarization-evoked accumulation of intraterminal free Ca2+ and glutamate release. It is suggested that arachidonic acid acts as a positive modulator of mossy fiber secretion processes, including those involved in the increased glutamate release required for the induction of long-term potentiation, while 12-lipoxygenase metabolites provide negative feedback signals designed to limit neurotransmitter secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asakura T and Matsuda M (1984) Efflux of gamma-aminobutyric acid from and appearance of free arachidonic acid inside synaptosomes. Biochim Biophys Acta 773: 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Barrionuevo G, Kelso SR, Johnston D, Brown TH (1986) Conductance mechanism responsible for long-term potentiation in monosynaptic and isolated excitatory synaptic inputs to hippocampus. J Neurophysiol 55: 540–550.

    PubMed  CAS  Google Scholar 

  • Bazan NG (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Belardetti F, Campbell WB, Falck JR, Demontis G, Rosolowsky M (1989) Products of heme-catalyzed transformation of the arachidonate derived 12-HPETE open S-type K+ channels in Aplysia. Neuron 3: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Billah MM, Bryant RW, Siegel MI (1985) Lipoxygenase products of arachidonic acid modulate biosynthesis of platelet-activating factor (1-O-alkyl-2-acetyl-sn-3-phosphocholine) by human neutrophils via phospholipase A2. J Biol Chem 260: 6899–6906

    PubMed  CAS  Google Scholar 

  • Birkle DL and Bazan NG (1987) Effect of bicuculline-induced status epilepticus on prostaglandins and hydroxyeicosatetraenoic acids in rat brain subcellular fractions. J Neurochem 48: 1768–1778.

    Article  PubMed  CAS  Google Scholar 

  • Bradford PG and Marinetti GV (1983) Stimulation of phospholipase A2 and secretion of catecholamines from brain synaptosomes by potassium and A23187. J Neurochem 41: 1684–1693.

    Article  PubMed  CAS  Google Scholar 

  • Buchan AM (1990) Do NMDA antagonists protect against cerebral ischemia: Are clinical trials warranted? Cerebrovasc Brain Metab Rev 2: 1–26.

    PubMed  CAS  Google Scholar 

  • Chan PH, Kerlan R, Fishman RA (1983) Reductions of gamma-aminobutyric acid and glutamate uptake and (Na+-K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J Neurochem 40: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Conricode KM and Ochs RS (1989) Mechanism for the inhibition and stimulatory actions of proteins on the activity of phospholipase A2. Biochim Biophys Acta 1003: 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Damron DS and Dorman RV (1989) Calcium mobilization in hippocampal mossy fiber terminals. Trans Am Soc Neurochem 20: 134.

    Google Scholar 

  • Damron DS, Freeman EJ, Terrian DM, Dorman RV (1990) Arachidonic acid-induced calcium mobilization in hippocampal mossy fiber synaptosomes. Neurosci Abst 16: 166.

    Google Scholar 

  • Dorman RV, Damron DS, Hamm TFR (1990) Description and manipulation of ischemia-induced alterations of cerebral arachidonic acid metabolism. In: Lipid mediators in ischemic brain damage and experimental epilepsy. (Bazan NG,ed) pp 36–66. Basel: Karger.

    Google Scholar 

  • Dorman RV, Schwartz MA, Terrian DM (1986) Prostaglandin involvement in the evoked release of D-aspartate from cerebellar mossy fiber terminals. Brain Res Bull 17: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Dorman RV, Schwartz MA, Terrian DM (1988) Depolarization-induced [3H]arachi-donic acid accumulation: Effects of external Ca2+ and phospholipase inhibitors. Brain Res Bull 21: 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Drapeau C, Pellerin L, Wolfe LS, Avoli M (1990) Long-term changes of synaptic transmission induced by arachidonic acid in the CA1 subfield of the rat hippocampus. Neurosci Lett 115: 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509.

    PubMed  CAS  Google Scholar 

  • Freeman CP and West D (1966) Complete separation of lipid classes on a single thin-layer plate. J Lipid Res 7: 324–327.

    PubMed  CAS  Google Scholar 

  • Freeman EJ, Damron DS, Terrian DM, Dorman RV (1991) 12-Lipoxygenase products attenuate the glutamate release and Ca2+ accumulation evoked by depolarization of hippocampal mossy fiber nerve endings. J Neurochem 56:1079–1082.

    Article  PubMed  CAS  Google Scholar 

  • Freeman EJ, Terrian DM, Dorman RV (1990) Presynaptic facilitation of glutamate release from isolated hippocampal mossy fiber endings by arachidonic acid. Neurochem Res 15: 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Frye RA and Holz RW (1984) The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells. J Neurochem 43: 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Graham LT and Aprison MH (1966) Fluorometric determination of aspartate, glutamate and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien Y (1985) A new generation of calcium indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  • Harris EW and Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci Lett 70: 132–137.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AL and Zamir N (1984) Localization and quantitation of dynorphin B in the rat hippocampus. Brain Res 324: 353–357.

    Article  Google Scholar 

  • Lazarewicz JW, Leu V, Sun GY, Sun AY (1983) Arachidonic acid release from K+-evoked depolarization of brain synaptosomes. Neurochem Int 5: 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with Folin phenol reagent. J Biol Chem 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Lynch MA (1989) Mechanisms underlying induction and maintenance of long-term potentiation in the hippocampus. Bioessays 10: 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA and Voss KL (1990) Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J Neurochem 55: 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Errington ML, Bliss TVP (1989) Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in release of glutamate and arachidonate: An in vivostudy in the dentate gyrus of the rat. Neuroscience 30: 693–701.

    Article  PubMed  CAS  Google Scholar 

  • Neuman RS, Cherubini E, Ben-Ari Y (1989) Endogenous and network bursts induced by N-methyl-D-aspartate and magnesium-free medium in the CA3 region of the hippocampal slice. Neuroscience 28: 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D, Feinmark SJ, Shapiro E, Schwartz JH (1988) Formation and biological activity of 12-ketoeicosatetraenoic acid in the nervous system of Aplysia.J Biol Chem 263:16591–16596.

    PubMed  CAS  Google Scholar 

  • Piomelli D, Volterra ND, Siegelbaum SA, Kandel ER, Schwartz JH, Belardetti F (1987) Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysiasensory cells. Nature 328: 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads DE, Osburn LD, Peterson NA, Raghupathy E (1983) Release of neurotransmitter amino acids from synaptosomes: Enhancement of calcium-independent efflux by oleic and arachidonic acids. J Neurochem 41: 531–537.

    Article  PubMed  CAS  Google Scholar 

  • Robison TW, Sevanian A, Forman HJ (1990) Inhibition of arachidonic acid release by nordihydroguaiaretic acid and its antioxidant action in rat alveolar macrophages and Chinese hamster lung fibroblasts. Toxicol Applied Pharmacol 105: 113–122.

    Article  CAS  Google Scholar 

  • Scott ID, Akerman KEO, Nicolls DG (1980) Calcium-ion transport by intact synaptosomes. Biochem J 192: 873–880.

    PubMed  CAS  Google Scholar 

  • Staubli U, Larson J, Lynch G (1990) Mossy fiber potentiation and long-term potentiation involve different expression mechanisms. Synapse 5: 333–335.

    Article  PubMed  CAS  Google Scholar 

  • Terrian DM, Damron DS, Dorman RV, Gannon RL (1989) Effects of calcium antagonists on the evoked release of dynorphin A(l-8) and the availability of intraterminal calcium in rat hippocampal mossy fiber synaptosomes. Neurosci Lett 106: 322–327.

    Article  PubMed  CAS  Google Scholar 

  • Terrian DM, Dorman RV, Gannon RL (1990b) Characterization of the presynaptic calcium channels involved in glutamate exocytosis from rat hippocampal mossy fiber synaptosomes. Neurosci Lett 119: 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Terrian DM, Gannon RL, Rea MA (1990a) Glutamate is the endogenous amino acid selectively released by rat hippocampal mossy fiber synaptosomes concomitantly with prodynorphin-derived peptides. Neurochem Res 15: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Terrian DM, Johnston D, Claiborne BJ, Ansah-Yiadom R, Strittmatter WJ, Rea MA (1988) Glutamate and dynorphin release from a subcellular fraction enriched in hippocampal mossy fiber synaptosomes. Brain Res Bull 21: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Volterra A and Siegelbaum SA (1989) Antagonistic modulation of S-K+ channel activity by cyclic AMP and arachidonic acid metabolites. Ann NY Acad Sci 559: 219–236.

    Article  PubMed  CAS  Google Scholar 

  • Williams JH and Bliss TVP (1988) Induction but not maintenance of calcium-induced long-term potentiation in dentate gyrus and area CA1 of the hippocampal slice is blocked by nordihydroguaiaretic acid. Neurosci Lett 88: 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Williams JH, Errington ML, Lynch MA, Bliss TVP (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341: 739–742.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto C (1987) Modulation of synaptic transmission in the hippocampus—A quantal analysis study. Neurosci Abst 22: S581.

    Google Scholar 

  • Zalutsky RA and Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248: 1619–1624.

    Article  PubMed  CAS  Google Scholar 

  • Zoltay G and Cooper JR (1990) Ionic basis of inhibitory presynaptic modulation in rat cortical synaptosomes. J Neurochem 55: 1008–1012.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, R.V., Hamm, T.F.R., Damron, D.S., Freeman, E.J. (1992). Modulation of Glutamate Release From Hippocampal Mossy Fiber Nerve Endings By Arachidonic Acid And Eicosanoids. In: Bazan, N.G., Murphy, M.G., Toffano, G. (eds) Neurobiology of Essential Fatty Acids. Advances in Experimental Medicine and Biology, vol 318. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3426-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3426-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6515-0

  • Online ISBN: 978-1-4615-3426-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics