Skip to main content

Neural Transplantation and Recovery of Function: Animal Studies

  • Chapter
Recovery from Brain Damage

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 325))

Abstract

Experiments on the transplantation of brain tissue in mammalian species began as early as the end of the nineteenth century133. In spite of a long scientific past and some excellent demonstrations prior to 1940 that grafted neonatal30 and embryonic82 central nervous system (CNS) tissue could under certain circumstances survive and differentiate in the host brain, little scientific interest in neural transplantation arose for several decades. The modern era commenced only in the mid-seventies, when two critical observations created a new zeitgeist by showing that neural transplants possessed the potential for a greater understanding of development and plasticity within the CNS, functional interrelationships between neural systems and, of most importance to this review, the capacity to repair damaged neuronal circuits and functional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, T.G., Mitchell, S.J., Aggleton, J.P., Delong, M.R, Struble, R.G., Price, D.L., Wenk, G.L., Pettigrew, K.L., and Mishkin, M., 1991, Transient impairment of recognition memory following ibotenic-acid lesions of the basal forebrain in macaques, Exp. Brain Res., 86, 18–26.

    Google Scholar 

  2. Alheid, G.F., and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata, NeuroSci., 27, 1–39.

    Google Scholar 

  3. Annett, L.E., Dunnett, S.B., Torres, E.M., Ridley, R.M., Baker, H.F., and Marsden, C.D., 1991, Behavioural assessment of embryonic nigral grafts placed in the caudate nucleus and/or putamen of 6-OHDA lesioned marmosets, Eur. J. NeuroSci., Suppl 4, 248–248.

    Google Scholar 

  4. Arendash, G.W., Millard, W.J., Dunn, A.J., and Meyer, E.M., 1987, Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat, Science, 23, 952–956.

    Google Scholar 

  5. Arendt, T., Allen, Y., Marchbanks, R., Schugens, M.M., Sinden, J., Lantos, P.L., and Gray, J.A., 1989, Cholinergic system and memory in the rat: effects of chronic ethanol, embryonic basal forebrain transplants and excitotoxic lesions of cholinergic basal forebrain projection systems, NeuroSci., 33, 435–462.

    Google Scholar 

  6. Arendt, T., Allen, Y., Sinden, J., Schugens, M.M., Marchbanks, R.M., Lantos, P.L., and Gray, J.A, 1988, Cholinergic-rich brain transplants reverse alcohol-induced memory deficits, Nature, 332, 448–450.

    Google Scholar 

  7. Arendt, T., Bigl, V., Arendt, A., and Tennstedt, A., 1983, Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoffs disease, Acta Neuropathol., 61, 101–108.

    Google Scholar 

  8. Augusti-Tocco, G., and Sato, G., 1969, Establishment of functional clonal lines of neurons from mouse neuroblastoma, Proc. Nat. Acad. Sci. USA, 64, 311–315.

    Google Scholar 

  9. Backlund, E.O., Granberg, P.O., Hamberger, B., Knutsson, E., Martensson, A, Sedvall, G., Seiger, A, and Olson, L., 1985, Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials, J. Neurosurg., 62, 169–173.

    Google Scholar 

  10. Barone Jr., S., Tandon, P., McGinty, J.F., and Tilson, H.A, 1991, The effects of NGF and fetal cell transplants on spatial learning after intradentate administration of colchicine, Exper. Neurol., 114, 351–363.

    Google Scholar 

  11. Bartus, R.T., Dean, R.L., Beer, B., and Lippa, AS., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science, 217, 408–417.

    Google Scholar 

  12. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid, Nature, 321, 168–171.

    Google Scholar 

  13. Bjürklund, A, Gage, F.H., Stenevi, U., and Dunnett, S.B., 1983, Intracerebral grafting of neuronal cell suspensions. IV. Survival and growth of intrahippocampal implants of septal cell suspensions, Acta Physiol. Scand., Suppl. 522, 49–58.

    Google Scholar 

  14. Björklund, A, Schmidt, R.H., and Stenevi, U., 1980, Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra, Cell Tiss. Res., 212, 39–45.

    Google Scholar 

  15. Björklund, A, and Stenevi, U., 1984, Intracerebral neural transplants: neuronal replacement and reconstruction of damaged circuitries, Ann. Rev. NeuroSci., 7, 279–308.

    Google Scholar 

  16. Björklund, A, Stenevi, U., Schmidt, R.H., Dunnett, S.B., and Gage, F.H., 1983, Intracerebral grafting of neuronal cell suspensions. 1. Introduction and general methods of preparation, Acta PhysioL Scand., Suppl. 522, 1–7.

    Google Scholar 

  17. Bohn, M.C, Cupit, L., Marciano, F., and Gash, D.M., 1987, Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers, Science, 237, 913–916.

    Google Scholar 

  18. Bolam, J.P., Freund, T.F., Björklund, A, Dunnett, S.B., and Smith, A.D., 1987, Synaptic input and local output of dopaminergic neurons in grafts that functionally reinnervate the host neostriatum, Exp. Brain Res., 68, 131–146.

    Google Scholar 

  19. Bowen, D.M., Smith, C.B., White, P., and Davison, AN., 1976, Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies, Brain, 99, 459–496.

    Google Scholar 

  20. Bragin, A.G., Bohne, A., Kitchigina, V.F., and Vinogradova, O.S., 1990, Functional integration of neurons in homotopic and heterotopic intracortical grafts with the host brain, Prog. Brain Res., 82, 287–300.

    Google Scholar 

  21. Brion, J.P. 1990, Molecular pathology of Alzheimer amyloid and neurofibrillary tangles, Sem NeuroSci., 2, 89–100.

    Google Scholar 

  22. Carder, R.K., Snyder-Keller, A.M., and Lund, R.D., 1988, Behavioral and anatomical correlates of immunologically induced rejection of nigral xenografts, J. Compo Neurol., 277, 391–402.

    Google Scholar 

  23. Clarke, D.J., Gage, F.H., and Björklund, A., 1986, Formation of cholinergic synapses by intrahippocampal septal grafts as revealed by cholineacetyltransferase immunocytochemistry, Brain Res., 369, 151–162.

    Google Scholar 

  24. Clarke, D.J., Nilsson, O.G., Brundin, P., and Björklund, A, 1990, Synaptic connections formed by grafts of different types of cholinergic neurons in the host hippocampus, Exp. Neurol., 107, 11–22.

    Google Scholar 

  25. Collerton, D., 1986, Cholinergic function and intellectual decline in Alzheimer’s disease, NeuroSci., 9, 1–28.

    Google Scholar 

  26. Dalrymple-Alford, J.C., Kelche, C., Cassel, J.C., Toniolo, G., Pallage, V., and Will, B.E., 1988, Behavioral deficits after intrahippocampal fetal septal grafts in rats with selective fimbria-fornix lesions, Exp. Brain Res., 69, 545–558.

    Google Scholar 

  27. Deckel, A.W., Moran, T.H., Coyle, J.T., Sanberg, P.R, and Robinson, R.G., 1986, Anatomical predictors of behavioral recovery following fetal striatal transplants, Brain Res., 365, 249–258.

    Google Scholar 

  28. Dekker, A.J.A.M., Connor, D.J., and Thal, L.J., 1991, The role of cholinergic projections from the nucleus basalis in memory, Neurosci. Biobehav. Rev., 15, 299–317.

    Google Scholar 

  29. Drachman, D.A., and Leavitt, J, 1974, Human memory and the cholinergic system, Arch. Neurol., 30, 113–121.

    Google Scholar 

  30. Dunn, E.H. 1917, Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat, J. Compo Neurol., 27, 565–582.

    Google Scholar 

  31. Dunnett, S.B., 1990, Neural transplantation in animal models of dementia, Eur. J. NeuroSci., 2, 567–587.

    Google Scholar 

  32. Dunnett, S.B., 1991, Transplantation of embryonic dopamine neurons-what we know from rats, J. Neurol., 238, 65–74.

    Google Scholar 

  33. Dunnett, S.B., Björklund, A, Stenevi, U., and Iversen, S.D., 1981, Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. J. Unilateral lesions, Brain Res., 215, 147–161.

    Google Scholar 

  34. Dunnett, S.B., Everitt, B.J., and Robbins, T.W., 1991, The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions, Trends NeuroSci., 14, 494–501.

    Google Scholar 

  35. Dunnett, S.B., Isacson, O., Sirinathsinghji, D.J.S., Clarke, D.J., and Björklund, A, 1988, Striatal grafts in rats with unilateral neostriatal lesions-III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching, NeuroSci., 24, 813–820.

    Google Scholar 

  36. Dunnett, S.B., Low, W.C., Iversen, S.D., Stenevi, U., and Björklund, A, 1982, Septal transplants restore maze learning in rats with fornix-fimbria lesions, Brain Res., 251, 335–348.

    Google Scholar 

  37. Dunnett, S.B., Ryan, C.N., Levin, P.D., Reynolds, M., and Bunch, S.T., 1987, Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions, Behav. NeuroSci., 101, 489–503.

    Google Scholar 

  38. Dunnett, S.B., Toniolo, G., Fine, A., Ryan, C.N., Björklund, A., and Iversen, S.D., 1985, Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis-II. Sensorimotor and learning impairments, NeuroSci., 16, 787–797.

    Google Scholar 

  39. Dunnett, S.B., Whishaw, I.Q., Rogers, D.C., and Jones, G.H., 1987, Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions, Brain Res., 415, 63–78.

    Google Scholar 

  40. Ernfors, P., Ebendal, T., Olson, L., Mouton, P., Stromberg, I., and Persson, H., 1989, A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons, Proc. Nat. Acad. Sci. USA, 86, 4756–4760.

    Google Scholar 

  41. Field, P.M., Seeley, P.J., Frotscher, M., and Raisman, G., 1991, Selective innervation of embryonic hippocampal transplants by adult host dentate granule cell axons, NeuroSci., 41, 713–727.

    Google Scholar 

  42. Fischer, W., Wictorin, K., Björklund, A., Williams, L.R, Varon, S., and Gage, F.H., 1987, Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor, Nature, 329, 65–68.

    Google Scholar 

  43. Fisher, L.J., Jinnah, H.A., Kale, L.C., Higgins, G.A., and Gage, F.H., 1991, Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa, Neuron, 6, 371–380.

    Google Scholar 

  44. Freed, W.J., 1983, Functional brain tissue transplantation: reversal of lesion-induced rotation by intraventricular substantia nigra and adrenal medulla grafts, with a note on intracranial retinal grafts, Biol. Psychiat., 18, 1205–1261.

    Google Scholar 

  45. Freed, W.J., Perlow, M.J., Karoum, F., Seiger, A., Olson, L., Hoffer, B.J., and Wyatt, R.J. 1980, Restoration of doparninergic function by grafting of fetal rat substantia nigra to the caudate nucleus: Long-term behavioral, biochemical and histochemical studies, Ann. Neural., 8, 510–519.

    Google Scholar 

  46. Freed, W.J., Poltorak, M., and Becker, J.B., 1990, Intracerebral adrenal medulla grafts: a review, Exp. Neural., 110, 139–166.

    Google Scholar 

  47. Freund, T.E., Bolam, J.P., Bjürklund, A., Dunnett, S.B., and Smith, A.D., 1985, Efferent synaptic connections of grafted doparninergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunohistochemical study, J. NeuroSci., 5, 603–616.

    Google Scholar 

  48. Gage, F.H., 1990, Intracerebral grafting of genetically modified cells acting as biological pumps, Trends Pharmacal. Sci., 11, 437–439.

    Google Scholar 

  49. Gage, F.H., and Björklund, A., 1986, Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine-sensitive mechanism, au]., 6, 2837–2847.

    Google Scholar 

  50. Gage, F.H., Björklund, A., Stenevi, U., Dunnett, S.B., and Kelly, P.A.T., 1984, Intrahippocampal septal grafts ameliorate learning impairments in aged rats, Science., 225, 533–536.

    Google Scholar 

  51. Gage, F.H., Dunnett, S.B., Stenevi, U., and Björklund, A., 1983, Aged rats: recovery of motor impairments by intrastriatal nigral grafts, Science., 221, 966–969.

    Google Scholar 

  52. Gage, F.H., and Fisher, L.J., 1991, Intracerebral grafting: a tool for the neurobiologist, Neuron, 6, 1–12.

    Google Scholar 

  53. Gash, D.M., Notter, M.F.D., Okawara, S.H., Kraus, A.L., and Joynt, R.J., 1986, Amitotic neuroblastoma cells used for neural implants in monkeys, Science., 233, 1420–1422.

    Google Scholar 

  54. Gibbs, R.B., Harris, E.W., and Cotman, C.W., 1985, Replacement of damaged cortical projections by homotypic transplants of entorhinal cortex, J. Camp. Neural., 237, 47–65.

    Google Scholar 

  55. Goedert, M., Fine, A., Hunt, S.P., and Ullrich, A., 1986, Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system. Lesion effects in the rat brain and levels in Alzheimer’s disease, Mol. Brain Res., 1, 85–92.

    Google Scholar 

  56. Gray, J.A, Feldon, J., Rawlins, J.N.P., Hemsley, D.R, and Smith, A.D., 1991, The neuropsychology of schizophrenia, Behav. Brain Sci., 14, 1–84.

    Google Scholar 

  57. Gray, J.A, Sinden, J., and Hodges, H., 1990, Cognitive function: neural degeneration and transplantation, Sem. NeuroSci., 2, 133–142.

    Google Scholar 

  58. Hansen, J.T., Notter, M.F.D., Okawara, S.H., and Gash, D.M., 1988, Organization, fine structure and viability of the human adrenal medulla: considerations for neural transplantation, Ann. Neurol., 24, 599–609.

    Google Scholar 

  59. Hodges, H., Allen, Y., Kershaw, T., Lantos, P.L., Gray, J.A, and Sinden, J., 1991, Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. 1. Amelioration of cognitive deficits by transplants into cortex and hippocampus but not into basal forebrain, NeuroSci., 45, 587–607.

    Google Scholar 

  60. Hodges, H., Allen, Y., Sinden, J., Lantos, P.L., and Gray, J.A., 1991, The effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. 2. Cholinergic drugs as probes to investigate lesion-induced deficits and transplant-induced functional recovery, NeuroSci., 45, 609–623.

    Google Scholar 

  61. Hodges, H., Allen, Y., Sinden, J., Mitchell, S.N., Lantos, P.L., and Gray, J.A., 1991, The effects of cholinergic drugs and cholinergic-rich foetal neural transplants on alcohol-induced deficits in radial-maze performance in rats, Behav. Brain Res., 43, 7–28.

    Google Scholar 

  62. Hodges, H., Sinden, J., Turner, J.J., Netto, C.A, Sowinski, P., and Gray, J.A., 1992, Nicotine as a tool to characterise the role of forebrain cholinergic projection system in cognition, in The Biology of Nicotine, P.M. Lipiello, A.C. Collins, J.A. Gray, and J.H. Robinson, eds., pp. 157–180, Raven Press, New York.

    Google Scholar 

  63. Horellou, P., Brundin, P., Kalen, P., Mallet, J., and Björklund, A., 1990, In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum, Neuron, 5, 393–402.

    Google Scholar 

  64. Horneykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Phannacol. Rev., 18, 925–964.

    Google Scholar 

  65. Hyman, C., Hofer, M., Barde, Y.A., Juhasz, M., Yancopoulos, G.D., Squinto, S.P., and Lindsay, R.M., 1991, BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra, Nature, 350, 230–232.

    Google Scholar 

  66. Kawabata, S., Higgins, G.A., and Gordon, J.W., 1991, Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein, Nature, 354, 476–478.

    Google Scholar 

  67. Kawaja, M.D., Fagan, A.M., Firestein, B.L., and Gage, F.H., 1991, Intracerebral grafting of cultured autologous skin fibroblasts into the rat striatum: assessment of graft size and ultrastructure, J. Camp. Neural., 307: 695–706.

    Google Scholar 

  68. Kawaja, M.D., and Gage, F.H., 1991, Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor, Neuron, 7, 1019–1030.

    Google Scholar 

  69. Kershaw, T.R., Sinden, J.D., Allen, Y.S., Gray, J.A, and Lantos, P.L., 1990, Behavioural recovery following transplantation of the neuroblastoma cell line IMR-32, Prog. Brain Res., 82, 47–53.

    Google Scholar 

  70. Kesslak, J.P., Nieto-Sampedro, M., Globus, J., and Cotman, C.W., 1986, Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation, Exper. Neurol., 92, 377–390.

    Google Scholar 

  71. Kesslak, J.P., Walencewicz, A., Calin, L., Nieto-Sampedro, M., and Cotman, C.W., 1988, Hippocampal but not astrocyte transplants enhance recovery on a forced choice alternation task after kainate lesions, Brain Res., 454, 347–354.

    Google Scholar 

  72. Kimble, D.P., 1990, Functional effects of neural grafting in the mammalian central nervous system, Psychol. Bull., 108, 462–479.

    Google Scholar 

  73. Kimble, D.P., Bremiller, R., and Stickrod, G., 1986, Fetal brain implants improve maze performance in hippocampallesioned rats, Brain Res., 363, 356–363.

    Google Scholar 

  74. Kirschner, N., 1975, Functional organisation of the adrenal chromaffin vesicles, Adv. Biochem. Psychopharmacol., 13, 95–107.

    Google Scholar 

  75. Knusel, B., Winslow, J.W., Rosenthal, A., Barton, L.E., Seid, D.P., Nikolics, K., and Hefti, F., 1991, Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin-3, Proc. Nat. Acad. Sci. USA, 88, 961–965.

    Google Scholar 

  76. Kolb, B., 1984, Functions of the frontal cortex of the rat: a comparative review, Brain Res. Rev., 8, 65–98.

    Google Scholar 

  77. Kolb, B., Reynolds, B., and Fantie, B., 1988, Frontal cortex grafts have opposite effects at different postoperative recovery times, Behav. Neural Biol., 50, 193–206.

    Google Scholar 

  78. Kordower, J.H., Notter, M.F.D., and Gash, D.M., 1987, Neuroblastoma cells in neural transplants: a neuroanatomical and behavioral analysis, Brain Res., 417, 85–98.

    Google Scholar 

  79. Labbe, R., Firl Jr., A., Mufson, E.J., and Stein, D.G., 1983, Fetal rat brain transplants: Reduction of cognitive deficits in rats with frontal cortex lesions, Science, 221, 470–472.

    Google Scholar 

  80. Lee, H.J., Hammond, D.N., Large, T.H., Roback, J.D., Sim, J.A, Brown, D.A., Otten, U.H., and Wainer, B.H., 1990, Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice, J. NeuroSci., 10, 1779–1787.

    Google Scholar 

  81. Lee, S.M., and Ebner, F.F., 1990, Response characteristics of neocortical graft neurons to host somatosensory input, Prog. Brain Res., 82, 301–308.

    Google Scholar 

  82. Le Gros Clark, W.E., 1940, Neuronal differentiation in implanted foetal cortical tissue, J. Neurol. Psychiat., 3, 263–272.

    Google Scholar 

  83. Le Roch, K., Riche, D., and Sara, S.J., 1987, Persistence of habituation deficits after neurological recovery from severe thiamine deprivation, Behav. Brain Res., 26, 37–46.

    Google Scholar 

  84. LeVere, T.E., and LeVere, N.D., 1985, Transplants to the central nervous system as a therapy for brain pathology, Neurobiol. Aging, 6, 151–152.

    Google Scholar 

  85. Lishman, W.A., 1986, Alcoholic dementia: a hypothesis, Lancet, 1, 1184–1186.

    Google Scholar 

  86. Low, W.C., Lewis, P.R, Bunch, S.T., Dunnett, S.B., Thomas, S.R, Iversen, S.D., Björklund, A., and Stenevi, U., 1982, Functional recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampallesions, Nature, 300, 260–262.

    Google Scholar 

  87. Lund, R.D., and Hauschka, S.D., 1976, Transplanted neural tissue develops connections with host rat brain, Science, 193, 582–584.

    Google Scholar 

  88. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., and Becerril, J.J., 1987, Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease, New Eng. J. Med., 316, 831–836.

    Google Scholar 

  89. Marsden, K.M., 1992, “Transplantation of neuroblastoma cell lines: a behavioural and histological analysis”, PhD Thesis, University of London.

    Google Scholar 

  90. Marsden, K.M., Kershaw, T.R, Sinden, J.D., and Lantos, P.L., 1991, Survival and distribution of transplanted human IMR-32 neuroblastoma cells, Brain Res., 568, 76–84.

    Google Scholar 

  91. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E.M., 1984, Clinical diagnosis of Alzheimer’s disease: report on the NINCDS-ADRA work group under the auspices of Department of Health and Human Services task force on Alzheimer’s disease, Neurology, 34, 939–944.

    Google Scholar 

  92. Montoya, C.P., Astell, S., and Dunnett, S.B., 1990, Effects of nigral and striatal grafts on skilled forelimb use in the rat, Prog. Brain Res., 82, 459–466.

    Google Scholar 

  93. Morris, R.G., and Kopelman, M.D., 1986, The memory deficits in Alzheimer-type dementia: a review, Q. J. Exper. Psychol., 38a, 575–602.

    Google Scholar 

  94. Mudrick, L.A., and Baimbridge, K.G., 1991, Hippocampal neurons transplanted into ischemically lesioned hippocampus: anatomical assessment of survival, maturation and integration, Exp. Brain Res., 86, 233–247.

    Google Scholar 

  95. Mufson, E.J., Labbe, R., and Stein, D.G., 1987, Morphological features of embryonic neocortex grafts in adult rats following frontal cortical ablation, Brain Res., 401, 162–167.

    Google Scholar 

  96. Muller, H.W., and Seifert, W., 1982, A neurotrophic factor released from primal glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons, J. Neurosci. Res., 8, 195–204.

    Google Scholar 

  97. Nicholas, M.K., and Amason, B.G.W., 1989, Immunological considerations in transplantation to the central nervous system, in Neural Regeneration and Transplantation, Seil, F.J., ed., pp. 239–284, Alan R. Liss, New York.

    Google Scholar 

  98. Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S., and Cotman, C.W., 1983, Injury-induced neuronotrophic activity in adult rat brain: correlation with survival of delayed implants in the wound cavity, J. NeuroSci., 3, 2219–2229.

    Google Scholar 

  99. Nilsson, O.G., Kalen, P., Rosengren, E., and Björklund, A., 1990, Acetylcholine release from intrahippocampal septal grafts is under control of the host brain, Proc. Nat. Acad. Sci. USA, 87, 2647–2651.

    Google Scholar 

  100. Olson, L.A., Seiger, A., Freedman, R., and Hoffer, B., 1980, Chromaffin cells can innervate brain tissue: Evidence from intraocular double grafts, Exper. Neurol., 70, 414–426.

    Google Scholar 

  101. Olton, D.S., Becker, J.T., and Handelman, G.E., 1979, Hippocampus, space and memory, Behav. Brain Sci., 2, 315–365.

    Google Scholar 

  102. Otto, D., and Unsicker, K., 1990, Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice, J. NeuroSci., 10, 1912–1921.

    Google Scholar 

  103. Pearlman, S.H., Levivier, M., Collier, T.J., Sladeck Jr., J.R, and Gash, D.M., 1991, Striatal implants protect the host striatum against quinolinic acid toxicity, Exp. Brain Res., 84, 303–310.

    Google Scholar 

  104. Perlow, M.F., Freed, W.F., Hoffer, B.J., Seiger, A., Olson, L., and Wyatt, R.J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science, 204, 643–647.

    Google Scholar 

  105. Perry, E.K., Perry, R.H., Blessed, G., and Tomlinson, B.E., 1977, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet, I, 189–189.

    Google Scholar 

  106. Plunkett, R.J., Bankiewicz, K.S., Cummins, A.C., Miletich, R.S., Schwartz, J.P., and Oldfield, E.H., 1990, Long-term evaluation of hemiparkinsonian monkeys after adrenal autografting or cavitation alone, J. Neurosurg., 73, 918–926.

    Google Scholar 

  107. Price, D.L., 1986, New perspectives on Alzheimer’s disease, Ann. Rev. NeuroSci., 9, 489–512.

    Google Scholar 

  108. Renfranz, P.J., Cunningham, M.G., and McKay, R.D.G., 1991, Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain, Cell, 66, 713–729.

    Google Scholar 

  109. Ridley, R.M., and Baker, H.F., 1991, Can fetal transplants restore function in monkeys with lesion-induced behavioural deficits?, Trends NeuroSci., 14, 366–370.

    Google Scholar 

  110. Ridley, R.M., Murray, T.K., Johnson, J.A., and Baker, H.F., 1986, Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: modification by cholinergic drugs, Brain Res., 376, 108–116.

    Google Scholar 

  111. Robbins, T.W., Everitt, B.J., Marston, H.M., Wilkinson, J., Jones, G.H., and Page, K.J., 1989, Comparative effects of ibotenic acid-and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes, Behav. Brain Res., 35, 221–241.

    Google Scholar 

  112. Robbins, T.W., Everitt, B.J., Ryan, C.N., Marston, H.M., Jones, G.H., and Page, K.J., 1989, Comparative effects of quisqualic and ibotenic acid-induced lesions of the substantia innominata and globus pallidus on the acquisition of a conditional visual discrimination: Differential effects on cholinergic mechanisms, Neuroscience, 28, 337–352.

    Google Scholar 

  113. Rosenberg, M.B., Friedmann, T., Robinson, R.C., Tuszynski, M., Wolff, J.A., Breakefield, X.O., and Gage, F.H., 1988, Grafting of genetically modified cells to the damaged brain: restorative effects of NGF expression, Science, 242, 1575–1578.

    Google Scholar 

  114. Rosvold, H.E., 1968, The prefrontal cortex and caudate nucleus. A system for effecting correction in response mechanisms, in Mind as a Tissue, C. Rupp, ed., pp. 21–38, Harper & Row, New York.

    Google Scholar 

  115. Schmidt-Kastner, R., and Freund, T.F., 1991, Selective vulnerability of the hippocampus in brain ischemia, Neuroscience, 40, 599–636.

    Google Scholar 

  116. Siman, R., Card, J.P., Nelson, R.B., and Davis, L.G., 1989, Expression of ß-amyloid precursor protein in reactive astrocytes following neuronal damage, Neuron, 3, 275–285.

    Google Scholar 

  117. Sinden, J.D., Allen, Y.S., Rawlins, J.N.P., and Gray, J.A, 1989, The effects of ibotenic acid lesions of the nucleus basalis and cholinergic-rich neural transplants on Win-stay /Lose-shift and Win-shift/Lose-stay performance in the rat, Behav. Brain Res., 36, 229–249.

    Google Scholar 

  118. Sloan, D.J., Baker, B.J., Puklavec, M., and Charlton, H.M., 1990, The effect of site of transplantation and histocompatability differences on the survival of neural tissue transplanted to the CNS of defined inbred rat strains, Prog. Brain Res., 82, 141–152.

    Google Scholar 

  119. Sloan, D.J., Wood, M.J., and Charlton, H.M., 1991, The immune response to intracerebral neural grafts, Trends NeuroSci., 14, 341–346.

    Google Scholar 

  120. Smith, G., 1988, Animal models of Alzheimer’s disease: experimental cholinergic denervation, Brain Res. Rev., 13, 103–118.

    Google Scholar 

  121. Snyder, E.Y., Deitcher, D.L., Walsh, C., Arnold-Aldea, S., Hartwieg, E.A, and Cepko, C.L., 1992, Multipotent neural cell lines can engraft and participate in development of mouse cerebellum, Cell, 68, 33–51.

    Google Scholar 

  122. Sofreniew, M.V., Dunnett, S.B., and Isacson, O., 1990, Remodelling of intrinsic and afferent systems in neocortex with cortical transplants, Prog. Brain Res., 82, 313–320.

    Google Scholar 

  123. Sorenson, J.C., Wanner-Olsen, H., Tonder, N., Danielsen, E., Castro, A.J., and Zimmer, J., 1990, Axotomized, adult basal forebrain neurons can innervate fetal frontal cortex grafts: a double fluorescent tracer study in the rat, Exp. Brain Res., 81, 545–551.

    Google Scholar 

  124. Sotelo, C., and Alvarado-Mallart, R.M., 1987, Reconstruction of the defective cerebellar circuitry in adult purkinje cell degeneration mutant mice by purkinje cell replacement through transplantation of solid embryonic implants, NeuroSci., 20, 1–22.

    Google Scholar 

  125. Sotelo, C., and Alvarado-Mallart, R.M., 1991, The reconstruction of cerebellar circuits, Trends NeuroSci., 14, 350–355.

    Google Scholar 

  126. Sprick, U., 1991, Transient and long-lasting beneficial behavioral effects of grafts in the damaged hippocampus of rat, Behav. Brain Res., 42, 187–199.

    Google Scholar 

  127. Stein, D.G., Labbe, R., Attella, M.J., and Rakowsky, H.A., 1985, Fetal brain tissue transplants reduce visual deficits in adult rats with bilateral lesions of the occipital cortex, Behav. Neural Biol., 44, 266–277.

    Google Scholar 

  128. Stenevi, U., Björklund, A., and Svengaard, N.A, 1976, Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival, Brain Res., 114, 1–20.

    Google Scholar 

  129. Stromberg, I., Hultgardh-Nilsson, A., Hedin, U., and Ebendal, T., 1988, Fate of intraocular chromaffin cell suspensions: Role of initial nerve growth factor support, Cell Tiss. Res., 254, 487–497.

    Google Scholar 

  130. Stromberg, I., Van Horne, C., Bygdeman, M., Weiner, N., and Gerhardt, G.A., 1991, Function of intraventricular human mesencephalic xenografts in immunosuppressed rats: an electrophysiological and neurochemical analysis, Exper. Neurol., 112, 140–152.

    Google Scholar 

  131. Thal, L.J., Mandel, R.J., Terry, R.D., Buzsaki, G., and Gage, F.H., 1990, Nucleus basalis lesions fail to induce senile plaques in the rat, Exper. Neurol., 108, 88–90.

    Google Scholar 

  132. Thoenen, H., 1991, The changing scene of neurotrophic factors, Trends NeuroSci., 14, 165–170.

    Google Scholar 

  133. Thompson, W.G., 1980, Successful brain grafting, N.Y. Med. J., 51, 701–702.

    Google Scholar 

  134. Tomlinson, B.E., Blessed, G., and Roth, M., 1970, Observations on the brains of demented old people, J. NeuroL Sci., 11, 205–242.

    Google Scholar 

  135. Tonder, N., Sorensen, T., and Zimmer, J., 1989, Enhanced host perforant path innervation of neonatal dentate tissue after grafting to axon sparing, ibotenic acid lesions in adult rats, Exp. Brain Res., 75, 483–496.

    Google Scholar 

  136. Ungerstedt, U., 1971, Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand., Suppl 367, 95–122.

    Google Scholar 

  137. Ungerstedt, U., 1971, Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand., Suppl 367, 69–93.

    Google Scholar 

  138. Ungerstedt, U., 1971, Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour, Acta Physiol. Scand., Suppl 367, 49–68.

    Google Scholar 

  139. Varon, S., Hagg, T., and Manthorpe, M., 1989, Neuronal growth factors, in: Neural Regeneration and Transplantation, F.J. Seil, ed., pp. 101–121, Alan R. Liss, New York.

    Google Scholar 

  140. Victor, M., Adams, R.D., and Collins, G.H., 1971, The Wemicke-Korsakoff Syndrome, F.A. Davis, Philadelphia.

    Google Scholar 

  141. Wets, K.M., Sinden, J., Hodges, H., Allen, Y., and Marchbanks, R.M., 1991, Specific brain protein changes correlated with behaviourally effective brain transplants, J. Neurochem., 57, 1661–1670.

    Google Scholar 

  142. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., and DeLong, M.R., 1982, Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 215, 1237–1239.

    Google Scholar 

  143. Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O., and Bjürklund, A., 1990, Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts, Nature, 347, 556–558.

    Google Scholar 

  144. Wictorin, K., Clarke, D.J., Bolam, J.P., and Björklund, A., 1989, Host corticostriatal fibres establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum, Eur. J. NeuroSci., 1, 189–195.

    Google Scholar 

  145. Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M., and Björklund, A, 1988, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. I. Subcortical afferents, NeuroSci., 27, 547–562.

    Google Scholar 

  146. Wictorin, K., Simerly, R.B., Isacson, O., Swanson, L.W., and Björklund, A., 1989, Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. III. Efferent projecting graft neurons and their relation to host afferents within the grafts, NeuroSci., 30, 313–330.

    Google Scholar 

  147. Widner, H., and Brundin, P., 1988, Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis, Brain Res. Rev., 13,287–324.

    Google Scholar 

  148. Will, B., Cassel, J.C., and Kelche, C., 1989, Deleterious and “overshoot” effects of intracerebral transplants, in: Neuronal Grafting and Alzheimer’s Disease, F. Gage, A. Privat, and Y. Christen, eds., pp. 189–198, Springer-Verlag, Berlin.

    Google Scholar 

  149. Woodruff, M.L., Baisden, R.H., and Nonneman, A.J., 1990, Transplantation of fetal hippocampus may prevent or produce behavioral recovery from hippocampal ablation and recovery persists after removal of the transplant, Prog. Brain Res., 82, 367–376.

    Google Scholar 

  150. Woodruff, M.L., Baisden, R.H., Whittington, D.L., and Benson, A.E., 1987, Embryonic hippocampal grafts ameliorate the deficit in DRL acquisition produced by hippocampectomy, Brain Res., 408, 7–117.

    Google Scholar 

  151. Xavier, G.F., Kershaw, T.R, Gray, J.A, and Sinden, J.D., 1991, Foetal dentate and CAl subfield transplants and spatial orientation following colchicine lesions of the dentate gyrus, Eur. J. NeuroSci., 4, 103–103.

    Google Scholar 

  152. Yamaguchi, F., Richards, S.J., Beyreuther, K, Salbaum, M., Carlson, G.A., and Dunnett, S.B., 1991, Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory, Neuroreporl, 2, 781–784.

    Google Scholar 

  153. Yoshida, K., and Gage, F.H., 1991, Fibroblast growth factors stimulate nerve growth factor synthesis and secretion by astrocytes, Brain Res., 538, 118–126.

    Google Scholar 

  154. Zhou, C.F., Li, Y., and Raisman, G., 1989, Embryonic entorhinal transplants project selectively to the deafferented entorhinal zone of adult mouse hippocampi, as demonstrated by the use of Thy-1 allelic immunohistochemistry. Effect of timing of transplantation in relation to deafferentation, NeuroSci., 32, 349–362.

    Google Scholar 

  155. Zhou, F.C., Raisman, G., and Morris, R.J., 1985, Specific patterns of fibre outgrowth from transplants to host mice hippocampi, shown immunohistochemically by the use of allelic forms of THY-1, NeuroSci., 16, 819–833.

    Google Scholar 

  156. Zola-Morgan, S., Squire, L.R., and Amaral, D.G., 1986, Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CAl of the hippocampus, J. NeuroSci., 6, 2950–2967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sinden, J.D., Marsden, K.M., Hodges, H. (1992). Neural Transplantation and Recovery of Function: Animal Studies. In: Rose, F.D., Johnson, D.A. (eds) Recovery from Brain Damage. Advances in Experimental Medicine and Biology, vol 325. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3420-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3420-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6512-9

  • Online ISBN: 978-1-4615-3420-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics