Skip to main content

On the Regulation of β2 Integrins

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 323))

Abstract

β2 integrins (Leu-CAMs, CD11/CD18) are three heterodimeric surface membrane glycoprotein receptors which mediate a large number of divalentcation- dependent cell-cell and cell-matrix adhesion functions in leukocytes.1 Each heterodimer (Figure 1) consists of a distinct ex subunit (CD11a, CD11b or CD11c) noncovalently associated with a single β subunit (CD18). CD11a/CD18 is expressed on all leukocytes. CD11b and CD11c expression is restricted to myelomonocytic cells and NK cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Arnaout, Structure and function of the leukocyte adhesion molecules CD11/CD18, Blood 75:1037 (1990).

    Google Scholar 

  2. N. Kieffer and D.R Phillips, Platelet membrane glycoproteins: Functions in cellular interactions, Ann. Rev. Cell Biol. 6:329 (1990).

    Google Scholar 

  3. M.V. Nermut, N.M. Green, P. Eason, S.S. Yamada and K.M. Yamada, Electron microscopy and structural model of human fibronectin receptor, EMBO J. 7:4093 (1988).

    Google Scholar 

  4. J.J. Calvete, A. Henschen and J. Gonzalez-Rodriguez, Assignment of disulphide bonds in human platelet GPIIIa: A disulphide pattern for the β-subunits of the integrin family, Biochem. J. 274:63 (1991).

    Google Scholar 

  5. C.E. Nelson, H. Rabb and M.A. Arnaout, Genetic cause of leukocyte adhesion molecule deficiency: Abnormal splicing and a missense mutation in a conserved region of CD18 impair surface expression of β2 integrins. J. Biol. Chem. In press (1992).

    Google Scholar 

  6. R.O. Hynes, Integrins: a family of cell surface receptors, Cell 48:549 (1987).

    Google Scholar 

  7. M.A. Arnaout, Leukocyte adhesion molecules deficiency: Its structural basis, pathophysiology and implications for modulating the inflammatory response, Immunol. Rev. 114:145 (1990).

    Google Scholar 

  8. M.A. Arnaout, H. Spits, C. Terhorst, J. Pitt and R.F. Todd III, Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mo1 deficiency: Effects of cell activation on Mo1/LFA-1 surface expression in normal and deficient leukocytes, J. Clin. Invest. 74:1291 (1984).

    Google Scholar 

  9. L.M. Stoolman, Adhesion molecules controlling lymphocyte migration, Cell 56:907 (1989).

    Google Scholar 

  10. R.F. Todd III, M.A. Arnaout, R.E. Rosin, C.A Crowley, W.A. Peters, J.T. Curnuttee, et al., Subcellular localization of the a subunit of Mo1 (Mo1 alpha; formerly gp110), a surface glycoprotein associated with neutrophil adhesion, J. Clin. Invest. 74:1280 (1984).

    Google Scholar 

  11. P.J. Sims, M.H. Ginsberg, E.F. Plow and S.J. Shattil, Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex, J. Biol. Chem. 266:7345 (1991).

    Google Scholar 

  12. D.C. Altieri, Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion, J. Immunol. 147:1891 (1991).

    Google Scholar 

  13. A. Hermanowski-Vosatka, J.A.G. Van Strip, W.J. Swiggard and S.D. Wright, Integrin modulation factor-1: A lipid that alters the function of leukocyte integrins, Cell 68:341 (1992).

    Google Scholar 

  14. I. Dransfield, C. Cabanas, A. Craig and N. Hogg, Divalent cation regulation of the function of the leukocyte integrin LFA-1, J. Cell Biol. 116:219 (1992).

    Google Scholar 

  15. Y. van Kooyk, P. Weder, F. Hogervorst, A.J. Verhoeven, G. van Seventer, A.A. te Velde, et al., Activation of LFA-1 through a Ca2+dependent epitope stimulates lymphocyte adhesion, J. Cell Biol. 112:345 (1991).

    Google Scholar 

  16. D.C. Altieri, R. Bader, P.M. Mannucci and T.S. Edgington, Oligospecificity of the cellular adhesion receptor MAC-1 encompasses an inducible recognition specificity for fibrinogen, J. Cell Biol. 107:1893 (1988).

    Google Scholar 

  17. J.W. Tamkun, D.W. DeSimone, D. Fonda, R.S. Pateb, C. Buck, A.R. Horwitz, et al., Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin, Cell 46:271 (1986).

    Google Scholar 

  18. T. Chatila, R.S. Geha and M.A. Arnaout, Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules, J. Cell Biol. 109:3435 (1989).

    Google Scholar 

  19. Y. Hayashi, B. Haimovich, A. Reszka, O. Boettiger and A. Horwitz, Expression and function of chicken integrin β1 subunit and its cytoplasmic domain mutants in mouse NIH 3T3 cells, J. Cell Biol. 110:175 (1990).

    Google Scholar 

  20. M.L. Hibbs, S. Jakes, S.A. Stacker, R.W. Wallace and T.A. Springer, The cytoplasmic domain of the integrin lymphocyte-function-associated antigen 1 β subunit: Sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site, J. Exp. Med. 174:1227 (1991).

    Google Scholar 

  21. T.E. O’Toole, O. Mandelman, J. Forsyth, S.J. Shattil, E.F. Plow and M.H. Ginsberg, Modulation of the affinity of integrin ∝llbβ3 (GPIIb-IIIa) by the cytoplasmic domain of ∝IIb, Science 254:845 (1991).

    Google Scholar 

  22. Y. van Kooyk, P. van de Wiel-van Kemenade, P. Weder, T.W. Kuijpers and C.G. Figdor, Enhancement of LFA-1 mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes, Nature 342:811 (1989).

    Google Scholar 

  23. J.P. Buyon, S.G. Slade, J. Reibman, S.B. Abramson, M.R. Philips, G. Weismann, et al., Constitutive and induced phosphorylation of the ∝ and β-chains of the CD11/CD18 leukocyte integrin family: relationship to adhesion-dependent functions, J. Immunol. 144:191 (1990).

    Google Scholar 

  24. H. Rabb, C.P. Sharma, M. Michishita, O. Brown and M.A. Arnaout, Regulation of CD11b/CD18 function and endocytosis by the cytoplasmic tail of its β subunit, submitted. (1992).

    Google Scholar 

  25. J. Solowska, J.-L. Guan, E.E. Marcantonio, J.E. Trevithick, C.A. Buck and R.D. Hynes, Expression of normal and mutant avian integrin subunits in rodent cells, J. Cell Biol.. 109:853 (1989).

    Google Scholar 

  26. N. Dana, O.F. Fathallah and M.A. Arnaout, Expression of a soluble and functional form of the human β2 integrin CD11b/CD18, Proc. Natl. Acad. Sci. (USA). 88:3106 (1991).

    Google Scholar 

  27. W.-J. Chen, J.L. Goldstein and M.S. Brown, NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor, J. Biol. Chem. 265:3116 (1990).

    Google Scholar 

  28. J.F. Collawn, M. Stangel, L.A. Kuhn, V. Esekogwu, S. Jing, I.S. Trowbridge, J.A. Tainer., Transferrin receptor internalization sequence YXRF implicates a tight turn as a structural recognition motif for endocytosis, Cell 63:1061 (1990).

    Google Scholar 

  29. M.S. Bretscher, Endocytosis and recycling of the fibronectin receptor in CHO cells, EMBO J. 8:1341 (1989).

    Google Scholar 

  30. T.J. Raub, S.L. and Kuentzel, Kinetic and morphological evidence for endocytosis of mammalian cell integrin receptors by using an anti-fibronectin receptor β subunit monoclonal antibody, Exp. Cell Res. 184:407 (1989).

    Google Scholar 

  31. M.M. Sczekan and R.L. Juliano, Internalization of the fibronectin receptor is a constitutive process, J. Cell Physiol. 142:574 (1990).

    Google Scholar 

  32. M.M. Schwartz, C. Lechene and D.E. Ingbar, Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin ∝5β1, independent of cell shape, Proc. Natl. Acad. Sci. (USA). 88:7849 (1991).

    Google Scholar 

  33. C.A. Otey, F.M. Pavalko and K. Burridge, An interaction between ∝-actinin and the βI integrin subunit in vitro, J. Cell Biol. 111:721 (1990).

    Google Scholar 

  34. A. Kupfer and S.J. Singer, Molecular dynamics in the membranes of helper T cells, Proc. Natl. Acad. Sci. (USA). 85:8216 (1988).

    Google Scholar 

  35. C.P. Sharma, S. Magil and M.A. Arnaout, Microdomains in the cytoplasmic tail of CD18 involved in binding to cytoskeleton, Clin Res.. In press (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnaout, M.A., Michishita, M., Sharma, C.P. (1992). On the Regulation of β2 Integrins. In: Gupta, S., Waldmann, T.A. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation IV. Advances in Experimental Medicine and Biology, vol 323. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3396-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3396-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6500-6

  • Online ISBN: 978-1-4615-3396-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics