Skip to main content

The role of growth factors in angiogenesis

  • Chapter
Growth Factors and the Cardiovascular System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 147))

  • 37 Accesses

Abstract

Although a role for growth factors in angiogenesis was first recognized in 1971 an explosion in growth factor identification and characterization has occurred over the last 5 years. Widespread use of recombinant DNA technology has led to the identification of new peptide growth factors (and in many cases their receptors) which are capable of stimulating angiogenesis. For example, the family of Heparin Binding Growth Factors (HBGF’s), which includes Fibroblast Growth Factor (FGF), has had five new members identified since 1987, bringing the total in 1992 to seven. There are currently four receptors for the HBGF family which have been identified and partially characterized. Despite cloning and in vitro characterization of growth factors, their contribution to developmental, physiologic or pathologic angiogenesis remains largely speculative [1]. Growth factors are considered angiogenic on the basis of in vitro or biologic assays, but the in vivo activity of any particular growth factor appears to be contextual, i.e. modulated by the presence of other growth factors, as well as the extracellular milieu and participating cell types [2]. Angiogenesis is a complex process shaped by the interplay of stimulatory and inhibitory factors, the choreography of which is an important subject for angiogenesis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J, Klagsbrun M. Angiogenic Factors. Science 1987; 235: 442–447.

    Article  PubMed  CAS  Google Scholar 

  2. Sporn M, Roberts A. Autocrine growth factors and cancer. Nature 1985; 313: 745–747.

    Article  PubMed  CAS  Google Scholar 

  3. Schott R, Morrow L. Growth Factors and Angiogenesis. Cardiovascular Research, in press.

    Google Scholar 

  4. Gilbert SF. Developmental Biology. (3rd ed.) Sunderland, MA: Sinauer Associates, 1991: 891.

    Google Scholar 

  5. de Pable F, Roth J. Endocrinization of the early embryo: an emerging role for hormones and hormone-like factors. Trend Biochem Sci 1990; 15: 339–342

    Article  Google Scholar 

  6. Folkman J, Klagsbrun M. A family of angiogenic peptides. Nature 1987; 329: 671–672.

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J, Haudenschild C. Angiogenesis in vitro. Nature 1980; 288: 551–556.

    Article  PubMed  CAS  Google Scholar 

  8. Antonelli-Orlidge A, Smith S, D’Amore P. Influence of pericytes on capillary endothelial cell growth. Annu Rev Respir Dis 1989; 140: 1129–1131.

    CAS  Google Scholar 

  9. Schaper W. Angiogenesis in the adult heart. Bas Res Cardiol 1991; 86(suppl 2): 51–56.

    Google Scholar 

  10. Schaper W, Sharma H, Quinkler W, Markert T, Wünsch M, Schaper J. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol 1990; 15: 513–8.

    Article  PubMed  CAS  Google Scholar 

  11. Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation 1992; 85: 1197–1204

    Article  PubMed  CAS  Google Scholar 

  12. Barger A, Beeuwkes R, Lainey L, Silverman K. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. N Engl J Med 1984; 310: 175–177.

    Article  PubMed  CAS  Google Scholar 

  13. Eisenstein R. Angiogenesis in arteries: review. Pharmac Ther 1991; 49: 1–19.

    Article  Google Scholar 

  14. Tomanek R. Response of the coronary vasculature to myocardial hypertrophy. J Am Coll Cardiol 1990; 15: 528–533.

    Article  PubMed  CAS  Google Scholar 

  15. Flanagan M, Fujii A, Colan S, Flanagan R, Lock J. Myocardial angiogenesis and coronary perfusion in left ventricular pressure-overload hypertrophyin the young lamb. Circ Res 1991; 68: 1458–1470.

    Article  PubMed  CAS  Google Scholar 

  16. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–288.

    Article  PubMed  CAS  Google Scholar 

  17. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biologic functions of fibroblast growth factor. Endocrine Rev 1987; 8: 95–114.

    Article  CAS  Google Scholar 

  18. Marics I, Adelaide J, Raybaud F, et al. Characterization of the HST-related FGF.6 gene, a new member of the fibroblast growth factor gene family. Oncogene 1989; 4: 335–340.

    PubMed  CAS  Google Scholar 

  19. Holtrich U, Bräuninger A, Strebhardt K, Riibsamen-Waigmann H. Two additional protein-tryosine kinases expressed in human lung: fourth member of the fibroblast growth factor receptor family and an intracellular protein-tyrosine kinase. Proc Natl Acad Sci USA 1991; 88: 10411–10415.

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt M, Sharma HS, Schott, RJ, Schaper, W. Amplification and sequencing of mRNA encoding acidic fibroblast growth factor aFGF from porcine heart. Biochem Biophys Res Comm 1991; 180: 853–859.

    Article  PubMed  CAS  Google Scholar 

  21. Conn G, Bayne M, Soderman D, et al. Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor. Proc Natl Acad Sci USA 1990; 87: 2628–2632.

    Article  PubMed  CAS  Google Scholar 

  22. Lee P, Johnson D, Cousens L, Fried V, Williams L. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 1989; 245: 57–60.

    Article  PubMed  CAS  Google Scholar 

  23. Burgess W, Shaheen A, Ravera M, Jaye M, Donohue P, Winkles J. Possible dissociation of the heparin-binding and mitogenic activities of Heparin-binding (Acidic Fibroblast) Growth Factor-1 from its receptor-binding activities by site-directed mutagenesis of a single lysine residue. J Cell Biol 1990; 111: 2129–2138.

    Article  PubMed  CAS  Google Scholar 

  24. Daopin S, Piez K, Ogawa Y, Davies D. Crystal structure Transforming Growth Factor-ß2: an unusual fold for the superfamily. Science 1992; 257: 369–373

    Article  PubMed  CAS  Google Scholar 

  25. Auerbach R, Auerbach W, Polakowski I. Assays for angiogenesis: a review. Pharmac Ther 1991; 51: 1–11.

    Article  Google Scholar 

  26. Thompson J, Anderson K, DiPietro J, et al. Site-directed neovessel formation in vivo. Science 1988; 241: 1349–1352.

    Article  PubMed  CAS  Google Scholar 

  27. Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R, Epstein SE, Unger EF. Effects of acidic fibroblast growth factor on normal and ischemie myocardium. Circ Research 1991; 69(1): 76–85.

    Article  CAS  Google Scholar 

  28. Gospodarowicz D, Neufeld G, Schweigerer L. Fibroblast growth factor. Mol Cell Endocrinol 1986; 46: 187–204.

    Article  PubMed  Google Scholar 

  29. Yoshida T, Miyagawa K, Odagiri H, et al. Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2-encoded protein. Proc Natl Acad Sci USA 1987; 84: 7305–7309.

    Article  PubMed  CAS  Google Scholar 

  30. Moore R, Casey G, Brookes S, Dixon M, Peters G, Dickson C. Sequence, topography and protein coding potential of mouse int-2: a putative oncogene activated by mouse mammary tumour virus. EMBO 1986; 5: 919–924.

    CAS  Google Scholar 

  31. Zhan X, Bates B, Hu X, Goldfarb M. The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors. Mol Cell Biol 1988; 8: 3487–3495.

    PubMed  CAS  Google Scholar 

  32. Delli Bovi P, Curatola A, Kern F, Greco A, Ittmann M, Basilico C. An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 1987; 50: 729–737.

    Article  PubMed  CAS  Google Scholar 

  33. Esch F, Baird A, Ling N, et al. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 1985; 82: 6507–6511.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson D, Lee P, Lu J, Williams L. Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol 1990; 10: 4728–4736.

    PubMed  CAS  Google Scholar 

  35. Keegan K, Johnson D, Williams L, Hayman M. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Natl Acad Sci USA 1991; 88: 1095–1099.

    Article  PubMed  CAS  Google Scholar 

  36. Yayon A, Klagsbrun M, Esko J, Leder P, Ornitz D. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–848.

    Article  PubMed  CAS  Google Scholar 

  37. Unger E, Sheffield C, Epstein SE. Creation of an anastomoses betweenan extracardiac artery and the coronary circulation. Circulation. 1990; 82: 1449–1466.

    Article  PubMed  CAS  Google Scholar 

  38. Vlodavsky I, Folkman J, Sullivan R, et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 1987; 84: 2292–2296.

    Article  PubMed  CAS  Google Scholar 

  39. Winkles J, Friesel R, Burgess W, et al. Human vascular smooth muscle cell both express and respond to heparin-binding growth factor I (endothelial cell growth factor). Proc Natl Acad Sci USA 1987; 84: 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  40. Quinkler W, Maasberg M, Bernotat-Danielowski S, Lüthe N, Sharma H, Schaper W. Isolation of heparin binding growth factors from bovine, porcine, and canine hearts. Eur J Biochem 1989; 181: 67–73.

    Article  PubMed  CAS  Google Scholar 

  41. Casscells W, Speir E, Sasse J, et al. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest 1990; 85: 433–441.

    Article  PubMed  CAS  Google Scholar 

  42. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein — basic fibroblast growth factor — is stored within basement membrane. Am J Pathol 1988; 130: 393–400.

    PubMed  CAS  Google Scholar 

  43. Baird A, Ling N. Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophy Res Comm 1987; 142: 428–435.

    Article  CAS  Google Scholar 

  44. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991; 64: 867–869.

    Article  PubMed  CAS  Google Scholar 

  45. Mignatti P, Morimoto T, Rifkin D. Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner. Proc Natl Acad Sci USA 1991; 88: 11007–11011.

    Article  PubMed  CAS  Google Scholar 

  46. Slack J, Darlington B, Heath J, Godsave S. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 1987; 326: 197–200.

    Article  PubMed  CAS  Google Scholar 

  47. Kimelman D, Kirschner M. Synergistic induction of mesoderm by FGF and TGF-ß and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 1987; 51: 869–877.

    Article  PubMed  CAS  Google Scholar 

  48. Rogelj S, Weinberg R, Fanning P, Klagsbrun M. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 1988; 331: 173–175.

    Article  PubMed  CAS  Google Scholar 

  49. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  50. Montesano R, Vassalli J-D, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 1986; 83: 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  51. Thomas K, Rios-Candelore M, Gimenez-Gallego, et al. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci USA 1985; 82: 6409–6413.

    Article  PubMed  CAS  Google Scholar 

  52. Gross J, Moscatelli D, Rifkin D. Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci USA 1983; 80: 2623–2627.

    Article  PubMed  CAS  Google Scholar 

  53. Saksela O, Moscatelli D, Rifkin D. The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells. J Cell Biol 1987; 105: 957–963.

    Article  PubMed  CAS  Google Scholar 

  54. Folkman J, Weisz P, Joullié M, Li W, Ewing W. Control of angiogenesis with synthetic heparin substitutes. Science 1989; 243: 1490–1493.

    Article  PubMed  CAS  Google Scholar 

  55. Anzano M, Roberts A, Smith J, Sporn M, DeLarco J. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors. Proc Natl Acad Sci USA 1983; 80: 6264–6268.

    Article  PubMed  CAS  Google Scholar 

  56. Derynck R, Jarrett J, Chen E, et al. Human transforming growth factor-ß complementary DNA sequence and expression in normal and transformed cells. Nature 1985; 316: 701–705.

    Article  PubMed  CAS  Google Scholar 

  57. Roberts A, Kim S, Noma T, et al. Multiple forms of TGF-beta: distinct promoters and differential expression. Ciba Found Symp 1991; 157: 7–15.

    PubMed  CAS  Google Scholar 

  58. Sporn M, Roberts A, Wakefield L, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 1987; 105: 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  59. Lin HY, Wang XF, Ng-Eaton E, Weinberg RA, Lodish HF. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell 1992;68:775–785.

    Article  PubMed  CAS  Google Scholar 

  60. López-Cassillas F, Cheifetz S, Doody J, Andres J, Lane W, Massaguó J. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-ß receptor system. Cell 1991; 67: 785–795.

    Article  Google Scholar 

  61. Wang X-F, Lin H, Ng-Eaton E, Downward J, Lodish H, Weinberg R. Expression cloning and characterization of the TGF-ß type III receptor. Cell 1991; 67: 797–805.

    Article  PubMed  CAS  Google Scholar 

  62. Miyazono K, Heldin C. Latent forms of TGF-beta: molecular structure and mechanisms of activation. Ciba Found Symp 1991; 157: 81–89.

    PubMed  CAS  Google Scholar 

  63. Dennis PA, Rifkin DB. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose beta-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci USA 1991; 88: 580–584.

    Article  PubMed  CAS  Google Scholar 

  64. Gaffen JD. Interaction between the cell surface and the extracellular matrix. Br J Rheum 1992; 31: 74–76.

    Article  CAS  Google Scholar 

  65. Wakefield L, Smith D, Masui T, Harris C, Sporn M. Distribution and modulation of the cellular receptor for transforming growth factor-beta. J Cell Biol 1987; 105: 965–975.

    Article  PubMed  CAS  Google Scholar 

  66. Boyd F, Cheifetz S, Andres J, Laiho M, Massaguó J. Transforming growth factor-beta receptors and binding proteoglycans. J Cell Sci(suppl) 1990; 13: 131–138.

    CAS  Google Scholar 

  67. Eghbali M, Tomek R, Woods C, Bhambi B. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: specific effect of transforming growth factor ß. Proc Natl Acad Sci USA 1991; 88: 795–799.

    Article  PubMed  CAS  Google Scholar 

  68. Lynch S, Colvin R, Antoniades H. Growth factors in wound healing. J Clin Invest 1989; 84: 640–646.

    Article  PubMed  CAS  Google Scholar 

  69. Heimark R, Twardzik D, Schwartz S. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 1986; 233: 1078–1080.

    Article  PubMed  CAS  Google Scholar 

  70. Kehrl J. Transforming growth factor-beta: an important mediator of immunoregulation. Int J Cell Cloning 1991; 9: 438–50.

    Article  PubMed  CAS  Google Scholar 

  71. Roberts A, Sporn M, Assoian R, et al. Transforming growth factor type ß: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167–171.

    Article  PubMed  CAS  Google Scholar 

  72. Wiseman D, Polverini P, Kamp D, Leibovich S. Transforming growth factor-beta (TGFß) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Comm 1988; 157: 793–800.

    Article  PubMed  CAS  Google Scholar 

  73. McCartney F, Mizel D, Wong H, Wahl L, Wahl S. TGF-beta regulates production of growth factors and TGF-beta by human peripheral blood monocytes. Growth Factors 1990;4:27–35.

    Article  Google Scholar 

  74. Pepper M, Belin D, Montesano R, Orci L, Vassalli J-D. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 1990; 111: 743–755.

    Article  PubMed  CAS  Google Scholar 

  75. Rifkin D, Moscatelli D, Bizik J, et al. Growth factor control of extracellular proteolysis. Cell Differ Dev 1990; 323: 313–318.

    Article  Google Scholar 

  76. Ignotz R, Massagué J. Transforming growth factor-ß stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 1986; 261: 4337–345.

    PubMed  CAS  Google Scholar 

  77. Madri J, Pratt B, Tucker A. Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 1988; 10: 1375–1384.

    Article  Google Scholar 

  78. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990; 265: 7709–7712.

    PubMed  CAS  Google Scholar 

  79. Carpenter G, Wahl M. The epidermal growth factor family. In: Sporn MB Roberts A, ed. Peptide Growth Factors and Their Receptors I. 1 ed. Berlin: Springer-Verlag, 1990: 69–171. vol 95

    Chapter  Google Scholar 

  80. Schreiber A, Winkler M, Derynck R. Transforming growth factor-a: a more potent angiogenic mediator than epidermal growth factor. Science 1986; 232: 1250–1252.

    Article  PubMed  CAS  Google Scholar 

  81. Ross R. The pathogenesis of atherosclerosis — an update. N Engl J Med 1986; 314: 488–500.

    Article  PubMed  CAS  Google Scholar 

  82. Sato N, Nariuchi H, Tsuruoka N, et al. Actions of TNF and IFN-γ on angiogenesis in vitro. J Invest Dermatol 1990; 95: 85S–89S.

    Article  PubMed  CAS  Google Scholar 

  83. Heldin C-H, Westermark B. Platelet-derived growth factor: three isoforms and two receptor types. Trends Genet 1989; 5: 108–111.

    Article  PubMed  CAS  Google Scholar 

  84. Gospodarowicz D, Abraham J, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci USA 1989; 86: 7311–7315.

    Article  PubMed  CAS  Google Scholar 

  85. Tischer E, Gospodarowicz D, Mitchell R, et al. Vascular endothelial growth factor: an new member of the platelet-derived growth factor gene family. Biochem Biophys Res Comm 1989; 165: 1198–1206.

    Article  PubMed  CAS  Google Scholar 

  86. Leung D, Cachianes G, Kuang W-J, Goeddel D, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  87. Keck P, Hauser S, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246: 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  88. Conn G, Soderman D, Schaeffer M-T, Wile M, Hatcher V, Thomas K. Purification of a glycoprotein vascular endothelial cell mitogen from a rat glioma-derived cell line. Proc Natl Acad Sci USA 1990; 87: 1323–1327.

    Article  PubMed  CAS  Google Scholar 

  89. Berse B, Brown L, Sioussat T, Senger D, Dvorak H. Vascular permeability factor (vascular endothelial growth factor) expression in normal tissues and in tumors. J Cell Biol 1991; 115(3 Part 2): 2443, abstract.

    Google Scholar 

  90. Connolly D, Heuvelman DM, Nelson R et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989; 84: 1470–1478.

    Article  PubMed  CAS  Google Scholar 

  91. Vaisman N, Gospodarowicz D, Neufeld G. Characterization of the receptors for vascular endothelial growth factor. J Biol Chem 1990; 265: 19461–19466.

    PubMed  CAS  Google Scholar 

  92. Jakeman LB, Winer J, Bennett GL, Altar CA, Ferrara. Binding sites for Vascular Endothelial Growth Factor are localized on endothelial cells in adult rat tissues. J Clin Invest 1992; 89: 244–53

    Article  PubMed  CAS  Google Scholar 

  93. De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fins-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989–991

    Article  PubMed  Google Scholar 

  94. Koos R, Olson C. Hypoxia stimulates expression of the gene for vascular endothelial growth factor (VEGF), a putative angiogenic factor, by granulosa cells of the ovarian follicle, a site of angiogenesis. J Cell Biol 1991; 115(3 Part 2): 2444.

    Google Scholar 

  95. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G. The binding of Vascular Endothelial Growth Factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem. 1992; 267(9): 6093–6098.

    PubMed  CAS  Google Scholar 

  96. Fett J, Strydom D, Lobb R, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochem 1985; 24: 5480–5486.

    Article  CAS  Google Scholar 

  97. Strydom D, Fett J, Lobb R, et al. Amino acid sequence of human tumor derived angiogenin. Biochem 1985; 24: 5486–5494.

    Article  CAS  Google Scholar 

  98. Kurachi K, Davie E, Strydom D, Riordan J, Vallee B. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochem 1985; 24: 5494–5499.

    Article  CAS  Google Scholar 

  99. Weiner H, Weiner L, Swain J. Tissue distribution and developmental expression of the messenger RNA encoding angiogenin. Science 1987; 237: 280–282.

    Article  PubMed  CAS  Google Scholar 

  100. Hu G-F, Chang S-I, Riordan J, Vallee B. An angiogenin-binding protein from endothelial cells. Proc Natl Acad Sci USA 1991; 88: 2227–2231.

    Article  PubMed  CAS  Google Scholar 

  101. Höckel M, Sasse J, Wissler J. Purified monocyte-derived angiogenic substance (angiotropin) stimulates migration, phenotypic changes, and ″tube formation″ but not proliferation of capillary endothelial cells in vitro. J Cell Physiol 1987; 133: 1–13.

    Article  PubMed  Google Scholar 

  102. Miyazono K, Okabe T, Urabe A, Takaku F, Heldin C-H. Purification and properties of an endothelial cell growth factor from human platelets. J Biol Chem 1987; 262: 4098–4103.

    PubMed  CAS  Google Scholar 

  103. Ishikawa F, Miyazono K, Hellman U, et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 1989; 338: 557–562.

    Article  PubMed  CAS  Google Scholar 

  104. Usuki K, Heldin N-E, Miyazono K, et al. Production of platelet-derived endothelial cell growth factor by normal and transformed human cells in culture. Proc Natl Acad Sci USA 1989; 86: 7427–7431.

    Article  PubMed  CAS  Google Scholar 

  105. Fràter-Schròder M, Risau W, Hallmann R, Gautschi P, Böhlen P. Tumor necrosis factor type a, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 1987; 84: 5277–5281.

    Article  PubMed  Google Scholar 

  106. Knighton D, Hunt T, Scheuenstuhl H, Halliday B. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 1983; 221: 1283–1285.

    Article  PubMed  CAS  Google Scholar 

  107. Leibovich S, Polverini P, Shepard H, Wiseman D, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumor necrosis factor-alpha. Nature 1987; 329: 630–632.

    Article  PubMed  CAS  Google Scholar 

  108. Klagsbrun M, D’Amore P. Regulators of angiogenesis. Annu Rev Physiol 1991; 53: 217–239.

    Article  PubMed  CAS  Google Scholar 

  109. Odedra R, Weiss J. Low molecular weight angiogenesis factors. PharmacTher 1991; 49: 111–124.

    CAS  Google Scholar 

  110. Kull F, Brent K, Parikh I, Cuatrecasas P. Chemical identification of a tumor-derived angiogenic factor. Science 1987; 236: 843–845.

    Article  PubMed  CAS  Google Scholar 

  111. Morris P, Ellis M, Swain J. Angiogenic potency of nucleotide metabolites: potential role in ischemia-induced vascular growth. J Mol Cell Cardiol 1989; 21: 351–358.

    Article  PubMed  CAS  Google Scholar 

  112. Dusseau J, Hutchins P, Malbasa D. Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 1986; 59:163–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schott, R.J., Morrow, L.A. (1993). The role of growth factors in angiogenesis. In: Cummins, P. (eds) Growth Factors and the Cardiovascular System. Developments in Cardiovascular Medicine, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3098-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3098-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6354-5

  • Online ISBN: 978-1-4615-3098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics