Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

While the last 15 years have not yielded substantial improvements in the diagnosis and treatment of lung cancer, this same period has experienced an extraordinary expansion of our understanding of cancer initiation and progression. These investigations have provided strong support for a multistep mechanism of tumor induction and progression [1,2] that previously could only be inferred from experimental animal models and from epidemiologic analyses. This recent work has also revealed that, in many cases, the structural alterations of the same gene products (for example, myc and ras or p53 and Rb genes) might be critical steps in the genesis of a wide range of adult tumors of differing histologie origins. These observations blur the distinction for investigators focusing on specific cancer models, while at the same time offer the hope that advances in the understanding and treatment of any particular tumor type will have far broader implications. In addition, now that the genetic basis for lung cancer has been well established, we are witnessing a resurgence of interest in mechanisms of specific environmental carcinogens as tools for a new generation of cancer prevention strategies [3]. There is currently no doubt that the use of tobacco products is the single most important (although not the only) causative factor in the development of lung cancer [4,5], and as these patterns of abuse spread there will be a projected worldwide increase in the incidence of lung malignancies paralleling that seen in North America and Europe over the last 50 years. Therefore, the challenge in the immediate future will be to apply the molecular clues obtained from the laboratory into effective preventive and therapeutic applications. The purpose of this chapter is to review some of the more important experiments concerning the molecular genetics of lung cancer, focusing on the identification (and implications) of somatic mutations in a limited number of cellular genes referred to as either dominant or recessive oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowell PC: The clonal evolution of tumor cell populations. Science 194:23–28, 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Land H, Parada L, Weinberg R: Cellular oncogenes and multistep carcinogenesis. Science 222:771–778, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Shields PG, Harris CC: Molecular epidemiology and the genetics of environmental cancer. JAMA 266:681–687, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Doll R, Peto R: The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308, 1981.

    PubMed  CAS  Google Scholar 

  5. United States Department of Health and Human Services: The health consequences of smoking: Cancer. A report of the Surgeon General, Office on Smoking and Health, Department of Health and Human Services, Rockville, MD, USA, 1982.

    Google Scholar 

  6. American Cancer Society: Cancer Facts and Figures. American Cancer Society, 1599 Clifton Road, NE, Atlanta, GA 30329, USA, 1989, p 9.

    Google Scholar 

  7. Matthews MJ, Gazdar AF: Pathology of small cell carcinoma of the lung and its subtypes. A clinico-pathologic correlation. In: Livingston RB (ed): Lung Cancer 1, Martinus Nijhoff, Boston, 1981, pp 283–306.

    Google Scholar 

  8. Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW, Zweig MH, Minna JD: Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45:2913–2923, 1985.

    PubMed  CAS  Google Scholar 

  9. Gazdar AF, Carney DN, Nau MM, Minna JD: Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res 45:2924–2930, 1985.

    PubMed  CAS  Google Scholar 

  10. Kaye FJ, McBride OW, Battey J, Sausville EA: Human creatine kinase-B complementary DNA: Nucleotide sequence, gene expression in lung cancer, and chromosomal assignment to two distinct loci. J Clin Invest 79:1412–1420, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Sausville EA, Spindel E, Battey J, Sausville E: Expression of the gastrin-releasing peptide gene in human small cell lung cancer. Evidence for alternative processing resulting in three distinct mRNAs. J Biol Chem 261:2451–2457, 1986.

    PubMed  CAS  Google Scholar 

  12. Said JW, Vimadala S, Nash G, Shinataky IP, Heusser RC, Sassoon AF, Lloyd RV: Immunoreactive neuron-specific enolase, bombesin, and chromogranin as markers for neuroendocrine lung tumors. Hum Pathol 16:236–240, 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Bliss DP, Battey JF, Linnoila RI, Birrer MJ, Gazdar AF, Johnson BE: Expression of the atrial natriuretic factor gene in small cell lung cancer tumors and tumor cell lines. J Natl Cancer Inst 82:305–310, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Cuttitta F, Carney DN, Mulshine J, Moody TW, Minna JD: Bombesin-like peptides can function as autocrine growth factors in human small cell lung cancer. Nature 316:823–826, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Linoilla RI, Mulshine J, Steinberg S, Funa K, Matthews M, Cotelingham J, Gazdar A: Neuroendocrine differentiation in endocrine and nonendocrine lung carcinomas. Am J Clin Pathol 90:641–652, 1988.

    Google Scholar 

  16. Baylin SB, Gazdar AF: Endocrine biochemistry in the spectrum of human lung cancer: Implications for the cellular origin of small cell carcinoma. In: Greco F (ed): Small Cell Lung Cancer. New York, Grune and Stratton, 1981, pp 123–145.

    Google Scholar 

  17. Whang-Peng J, Bunn PA, Kao-Shan CS, Lee EC, Carney DN, Gazdar AF, Minna JD: A non-random chromosomal abnormality, del 3p(14-23). in human small cell lung cancer (SCLC). Cancer Genet Cytogenet 6:119–124, 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Whang-Peng J, Kao-Shan CS, Lee EC, Bunn PA, Carney DN, Gazdar AF, Minna JD: Specific chromosome defect associated with human small cell lung cancer; deletion 3p(14-23). Science 215:181–182, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Brauch H, Johnson BE, Hovis J, Yano T, Gazdar A, Pettengill O, Graziano S, Sorenson G, Poiesz, Minna J, Linehan M, Zbar B: Molecular analysis of the short arm of chromosome 3 in small cell and non-small cell carcinoma of the lung. N Engl J Med 317:1109–1113, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Naylor SL, Johnson B, Minna J, Sakaguchi T: Loss of heterozygosity of chromosome 3p markers in small cell lung cancer. Nature 329:451–454, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T: Loss of heterozygosity on chromosomes 3, 13, and 17 in small cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci USA 84:9252–9256, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Kok K, Osinga J, Carritt B, Davis MB, van der Hout AH, van der Veen AY, Landsvater RM, de Leij LF, Berendsen HH, Postmus PE, Poppema S, Buys CHC: Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature 330:578–581, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson BE, Sakaguchi AY, Gazdar AF, Minna JD, Burch D, Marshall A, Naylor SL: Restriction fragment length polymorphism studies show consistent loss of chromosome 3p alleles in small cell lung cancer patients’ tumors. J Clin Invest 82:502–507, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Drabkin H, Kao FT, Hartz J, Hart I, Gazdar A, Weinberger C, Evans R, Gerber M: Localization of human erbA-2 to the 3p22-3p24 region of chromosome 3 and variable deletion in small cell lung cancer. Proc Natl Acad Sci USA 85:9258–9262, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Leduc F, Brauch H, Hajj C, Dobrovic A, Kaye F, Gazdar A, Harbour J, Pettengill OS, Sorenson GD, van der Berg A, Kok K, Campling B, Paquin F, Bradley WEC, Zbar B, Minna J, Buys C, Ayoub J: Loss of heterozygosity in a gene coding for a thyroid hormone receptor in lung cancers. Am J Hum Genet 44:282–287, 1989.

    PubMed  CAS  Google Scholar 

  26. Mattei MG, de The H, Mattei JF, Marchio A, Tiollais P, DeJean A: Assignment of the human hap retinoic acid receptor RAR-beta gene to the p24 band of chromosome 3. Human Genet 80:189–190, 1988.

    Article  CAS  Google Scholar 

  27. Gebert JF, Moghal N, Frangioni JV, Sugarbaker DJ, Neel BG: High frequency of retinoic acid receptor beta abnormalities in human lung cancer. Oncogene 6:1859–1868, 1991.

    PubMed  CAS  Google Scholar 

  28. Harbour JW, Lai S-L, Gazdar AF, Minna JD, Kaye FJ: Expression in lung cancer of a transcribed sequence at the DNF15S2 locus at chromosome 3p21. Anticancer Res 10: 23–28, 1990.

    PubMed  CAS  Google Scholar 

  29. Naylor SL, Marshall A, Hensel C, Martinez PF, Holley B, Sakaguchi AY: The DNF15S2 locus at 3p21 is transcribed in normal lung and small cell lung cancer. Genomics 4: 355–361, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. LaForgia S, Morse B, Levy J, Barnea G, Cannizzaro LA, Li F, Nowell PC, Boghosian-Sell L, Glick J, Weston A, Harris CC, Drabkin H, Patterson D, Croce CM, Schlessinger J, Huebner K: Proc Natl Acad Sci USA 88:5036–5040, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Dunn JM, Phillips RA, Becker AJ, Gallie BL: Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 241:1797–800, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Riordan JR, Rommens J, Kerem B, Alon N, Rozmahel R, Grzelczak J, Lok S, Plavsik N, Chou J, et al.: Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245:1066–1073, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Cawthorne RM, Weiss R, Xu GF, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R, O’Connell P et al.: A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62:193–201, 1990.

    Article  Google Scholar 

  34. Sellers TA, Bailey-Wilson JE, Elston RC, Wilson AF, Elston GZ, Ooi WL, Rothschild H: Evidence for Mendelian inheritance in the pathogenesis of lung cancer. J Natl Cancer Inst 82:1272–1279, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Drabkin H, Bradley C, Patterson D: Translocation of c-myc in the hereditary renal cell carcinoma associated with a t(3;8) (pl4.2;q24;13) chromosomal translocation. Proc Natl Acad Sci USA 82:6980–6984, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Teyssier J, Henry I, Dozier C, Ferre D, Adnet JJ, Pluot M: Recurrent deletion of the short arm of chromosome 3 in human renal cell carcinoma: Shift of the c-raf locus. J Natl Cancer Inst 77:1187–1191, 1986.

    PubMed  CAS  Google Scholar 

  37. Zbar B, Brauch H, Talmadge C, Linehan M: Loss of alleles on the short arm of chromosome 3 in renal cell carcinoma. Nature 327:721–724, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Seizenger BR, Rouleou GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JWM, Collins D, Mahjoor-Krakauer D, Bonner T, Matthew C, Rubenstein A, Halperin J, McConkie-Rosell A, Green JS, Trofatter JA, Ponder BA, Eirman L, Bowmer MI, Schimke R, Oostro B, Aronin N, Smith DI, Drabkin H, Waziri MH, Hobbs WJ, Martuza RL, Conneally PM, Hsia YE, Gusella JF: Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332:268–269, 1988.

    Article  Google Scholar 

  39. Shimizu M, Yokota J, Mori N, Shuin T, Shinoda M, Terada M, Oshimura M: Introduction of normal chromosome 3p modulates the tumorigenicity of a human renal cell carcinoma cell line YCR. Oncogene 5:185–194, 1990.

    PubMed  CAS  Google Scholar 

  40. Kao-Shan CS, Fine RL, Whang-Peng J, Lee EC, Chabner BA: Increased fragile sites and sister chromatid exchanges in bone marrow and peripheral blood of young cigarette smokers. Cancer Res 47:6278–6282, 1987.

    PubMed  CAS  Google Scholar 

  41. Yokota J, Tsukada Y, Nakajima T, Gotoh M, Shimosato Y, Mori N, Tsunokawa Y, Sugimura T, Terada M: Loss of heterozygosity of the short arm of chromosome 3 in carcinoma of the uterine cervix. Cancer Res 49:3598–3601, 1989.

    PubMed  CAS  Google Scholar 

  42. AH IU, Lidereau R, Callahan R: Presence of two members of c-erbA receptor gene family (c-erbA beta and c-erbA2) in smallest region of somatic homozygosity on chromosome 3p21-p25 in human breast carcinoma. J Natl Cancer Inst 81:1815–1820, 1989.

    Article  Google Scholar 

  43. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–645, 1986.

    Article  PubMed  CAS  Google Scholar 

  44. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY: Human retinoblastoma susceptibility gene: Cloning, identification, and sequence. Science 235:1394–1396, 1987.

    Article  PubMed  CAS  Google Scholar 

  45. Fung Y, Murphree A, T’Ang A, Qian J, Hinrichs SH, Benedict W: Structural evidence for the authenticity of the human retinoblastoma gene. Science 236:1657–1659, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Knudson AG, Jr.: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823, 1971.

    Article  PubMed  Google Scholar 

  47. Yunis JJ, Ramsay N: Retinoblastoma and subband deletion of chromosome 13. Am J Dis Childh 132:161, 1978.

    CAS  Google Scholar 

  48. Cavanee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784, 1983.

    Article  Google Scholar 

  49. Huang H, Yee JK, Shew JY, Chen PL, Bookstein R, Friedman T, Lee EY, Lee W-H: Suppression of the neoplastic phenotype by replacement of the rb gene in human cancer cells. Science 242:1563–1565, 1988.

    Article  PubMed  CAS  Google Scholar 

  50. Sumegi J, Uzvolgyi E, Klein G: Expression of the Rb gene under the control of MuLV-LTR suppresses tumorigenicity of WERI-Rb-27 retinoblastoma cells in immunodeficient mice. Cell Growth Differ 1:247–250, 1990.

    PubMed  CAS  Google Scholar 

  51. Lee W-H, Shew J-Y, Hong FD, Sery TW, Donoso LA, Young L-J, Bookstein R, Lee EY-HP: The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329:642–645, 1987.

    Article  PubMed  CAS  Google Scholar 

  52. Buchovich K, Duffy LA, Harlow E: The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105, 1989.

    Article  Google Scholar 

  53. Chen P-L, Scully P, Shew J-Y, Wang JYJ, Lee WH: Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58:1193–1198, 1989.

    Article  PubMed  CAS  Google Scholar 

  54. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwinica-Worms H, Huang C-M, Livingston DM: The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085–1095, 1989.

    Article  PubMed  CAS  Google Scholar 

  55. Ludlow JW, Shon J, Pipas JM, Livingston DM, DeCaprio JA: The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell 60:387–396, 1990.

    Article  PubMed  CAS  Google Scholar 

  56. Mihara K, Cao X-R, Yen A, Chandler S, Driscoll B, Murphree AL, T’Ang A, Fung Y-KT: Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246:1300–1303, 1989.

    Article  PubMed  CAS  Google Scholar 

  57. Xu H-J, Xu S-X, Hashimoto T, Takahashi R, Benedict WF: The retinoblastoma susceptibility gene product: A characteristic pattern in normal cells and abnormal expression in malignant cells. Oncogene 4:807–812, 1989.

    PubMed  CAS  Google Scholar 

  58. Shenoy S, Choi J-K, Bagrodia S, Copeland TD, Mailer JL, Shalloway D: Purified maturation promoting factor phosphorylates pp60c-src at the sites phosphorylated during fibroblast mitosis. Cell 57:763–774, 1989.

    Article  PubMed  CAS  Google Scholar 

  59. Lin BT, Gruenwald S, Morla AO, Lee W-H, Wang JY: Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator of cdc2 kinase. EMBO J 10:857–864, 1991.

    PubMed  CAS  Google Scholar 

  60. Whyte P, Buchovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an antioncogene: The adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334:124–129, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. DeCaprio JA, Ludlow JW, Figge J, Shew J, Huang C, Lee W, Marsilio E, Paucha E, Livingston DM: SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283, 1988.

    Article  PubMed  CAS  Google Scholar 

  62. Dyson N, Howley PM, Munger K, Harlow E: The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937, 1989.

    Article  PubMed  CAS  Google Scholar 

  63. Kaelin WG, Pallas DC, DeCaprio JA, Kaye FJ, Livingston DM: Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64:521–532, 1991.

    Article  PubMed  CAS  Google Scholar 

  64. Huang S, Lee W-H, Lee EY: A cellular protein that competes with SV40 T antigen for binding to the retinoblastoma gene product. Nature 350:160–162, 1991.

    Article  PubMed  CAS  Google Scholar 

  65. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR: The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061, 1991.

    Article  PubMed  CAS  Google Scholar 

  66. Rustgi AK, Dyson N, Bernards R: Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature 352:541–544, 1991.

    Article  PubMed  CAS  Google Scholar 

  67. Defeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, Hanobik MG, Huber HE, Oliff A: Cloning of cDNAs for cellular proteins that bind to the retinoblastoma product. Nature 352:251–254, 1991.

    Article  PubMed  CAS  Google Scholar 

  68. Ludlow JW, DeCaprio JA, Huang C-M, Lee W-H, Paucha E, Livingston DM: SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56:57–65, 1989.

    Article  PubMed  CAS  Google Scholar 

  69. Harbour JW, Lai S-L, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ: Abnormalities in structure and expression of the retinoblastoma gene in SCLC. Science 241:353–357, 1988.

    Article  PubMed  CAS  Google Scholar 

  70. Lee WH, Murphree AL, Benedict WF: Expression and amplification of the N-myc gene in primary retinoblastoma. Nature 309:458–460, 1984.

    Article  PubMed  CAS  Google Scholar 

  71. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196, 1983.

    Article  PubMed  CAS  Google Scholar 

  72. Nau MM, Brooks BJ Jr., Carney DN, Gazdar AF, Battey JF, Sausville EA, Minna JD: Human small cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci USA 83:1092–1096, 1986.

    Article  PubMed  CAS  Google Scholar 

  73. Nau MM, Brooks BJ Jr., Battey J, Sausville E, Gazdar A, Kirsch I, McBride O, Bertness V, Hollis G, Minna J: L-myc: A new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318:69–73, 1985.

    Article  PubMed  CAS  Google Scholar 

  74. Horowitz JM, Park S-H, Bogenmann E, Cheng J-C, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA: Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87:2775–2779, 1990.

    Article  PubMed  CAS  Google Scholar 

  75. Yokota J, Akiyama T, Fung Y-KT, Benedict WF, Namba Y, Hanaoka M, Wada M, Terasaki T, Shimosato Y, Sugimura T, Terada M: Altered expression of the retinoblastoma (RB) gene in small cell carcinoma of the lung. Oncogene 3:471–475, 1988.

    PubMed  CAS  Google Scholar 

  76. Shew JY, Chen PL, Bookstein R, Lee EY, Lee WH: Deletion of a splice donor site ablates expression of the following exon and produces an unphosphorylated RB protein unable to bind SV40 T antigen. Cell Growth Differ 1:17–25, 1990.

    PubMed  CAS  Google Scholar 

  77. Horowitz JM, Yandell DW, Park S-H, Canning S, Whyte P, Buchovich K, Harlow E, Weinberg RA, Dryja TP: Point mutational inactivation of the retinoblastoma antioncogene. Science 243:937–940, 1989.

    Article  PubMed  CAS  Google Scholar 

  78. Bookstein R, Shew J-Y, Chen P-L, Scully P, Lee W-H: Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247:712–715, 1990.

    Article  PubMed  CAS  Google Scholar 

  79. Kratzke R, Shimizu E, Kaye FJ, unpublished.

    Google Scholar 

  80. Kaye FJ, Kratzke RA, Gerster JL, Horowitz JM: A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc Natl Acad Sci USA 87:6922–6926, 1990.

    Article  PubMed  CAS  Google Scholar 

  81. Hu Q, Dyson N, Harlow E: The region of the retinoblastoma protein needed for binding to adenovirus el A or SV40 large T antigen are common sites for mutations. EMBO J 9:1147–1155, 1990.

    PubMed  CAS  Google Scholar 

  82. Huang H-JS, Wang N-P, Tseng BY, Lee W-H Lee EY-HP: Two distinct and frequently mutated regions of retinoblastoma protein are required for binding to SV40 T antigen. EMBO J 9:1815–1822, 1990.

    PubMed  CAS  Google Scholar 

  83. Kaelin WG Jr., Ewen ME, Livingston DM: Definition of the minimal simian virus large T antigen-and adenovirus ElA-binding domain in the retinoblastoma gene product. Mol Cell Biol 10:3761–3769, 1990.

    PubMed  CAS  Google Scholar 

  84. Hamel PA, Cohen BL, Sorce LM, Gallie BL, Phillips RA: Hyperphosphorylation of the retinoblastoma gene product is determined by domains outside the simian virus 40 large T antigen binding domain. Mol Cell Biol 10:6586–6595, 1990.

    PubMed  CAS  Google Scholar 

  85. Reissmann PT, Koga H, Takahashi R, Benedict WF, Figlin R, Holmes EC, Slamon DJ, and the Lung Cancer Study Group: Inactivation of the retinoblastoma gene in non-small cell lung cancer. Proc Am Assoc Cancer Res 31:318, 1990.

    Google Scholar 

  86. Lee EY, To H, Shew JY, Bookstein R, Scully P, Lee WH: Inactivation of the retinoblastoma susceptibility gene in human breast cancer. Science 241:218–221, 1988.

    Article  PubMed  CAS  Google Scholar 

  87. Ginsberg AM, Raffeld M, Cossman J: Inactivation of the retinoblastoma gene in human lymphoid neoplasms. Blood 77:833–840, 1991.

    PubMed  CAS  Google Scholar 

  88. Sanders BM, Jay M, Draper GJ, Roberts EM: Non-ocular cancer in relatives of retinoblastoma patients. Br J Cancer 60:358–365, 1989.

    Article  PubMed  CAS  Google Scholar 

  89. Takahashi R, Hashimoto T, Xu HJ, Hu SX, Matsui T, Miki T, Bigo-Marshall H, Aaronson SA, Benedict WF: Proc Natl Acad Sci USA 88:5257–5261, 1991.

    Article  PubMed  CAS  Google Scholar 

  90. Muncaster MM, Cohen BL, Phillips RA, Gallie BL: Failure of RBI to reverse the malignant phenotype of human tumor cell lines. Cancer Res 1:654–661, 1992.

    Google Scholar 

  91. Cance WG, Brennan MF, Dudas ME, Huang CM, Cordon-Cardo C: Altered expression of the retinoblastoma gene product in human sarcomas. N Engl J Med 323:1457–1462, 1990.

    Article  PubMed  CAS  Google Scholar 

  92. Xu HJ, Hu SX, Cagle PT, Moore GE, Benedict WF: Absence of retinoblastoma protein expression in primary non-small cell lung carcinomas. Cancer Res 51:2735–2739, 1991.

    PubMed  CAS  Google Scholar 

  93. Lane DP, Crawford LV: T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263, 1979.

    Article  PubMed  CAS  Google Scholar 

  94. Linzer DIH, Levine AJ: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal cells. Cell 17:43–52, 1979.

    Article  PubMed  CAS  Google Scholar 

  95. DeLeo A, Jay G, Appella E, Dubois G, Law L, Old L: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424, 1979.

    Article  PubMed  CAS  Google Scholar 

  96. Jenkins JR, Rudge K, Currie GA: Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312:651–654, 1984.

    Article  PubMed  CAS  Google Scholar 

  97. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V: Cooperation between a gene encoding the p53 tumor antigen and ras in cellular transformation. Nature 312:649–651, 1984.

    Article  PubMed  CAS  Google Scholar 

  98. Eliyahu D, Raz A, Gruss P, Givol D, Oren M: Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 312:646–649, 1984.

    Article  PubMed  CAS  Google Scholar 

  99. Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 253:49–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  100. Finlay C, Hinds P, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093, 1989.

    Article  PubMed  CAS  Google Scholar 

  101. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M: Wildtype p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 86:8763–8767, 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Raycroft L, Wu HY, Lozano G: Transcriptional activation by wild-type but not transforming mutants of the p53 antioncogene. Science 249:1049–1051, 1990.

    Article  PubMed  CAS  Google Scholar 

  103. Fields S, Jang SK: Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049, 1990.

    Article  PubMed  CAS  Google Scholar 

  104. Donehower LA, Harvey M, Slagle BL, McArthur ML, Montgomery CA, Butel JS, Bradley A: Mice deificient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221, 1992.

    Article  PubMed  CAS  Google Scholar 

  105. Malkin D, Li FP, Strong LC, Fraumeni JF Jr., Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH: Germline p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238, 1990.

    Article  PubMed  CAS  Google Scholar 

  106. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL: Genetic alterations during colorectal tumor development. N Engl J Med 319:525–532, 1988.

    Article  PubMed  CAS  Google Scholar 

  107. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, van Tuinen DH, Barker DF, Nakamura Y, Vogelstein B: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221, 1989.

    Article  PubMed  CAS  Google Scholar 

  108. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B: Mutations in the p53 gene occur in diverse human tumor types. Nature 342:705–708, 1989.

    Article  PubMed  CAS  Google Scholar 

  109. Takahashi T, Nau MM, Chiba I, Birrer M, Rosenberg R, Vinocur M, Levitt M, Pass H, Gazdar A, Minna J: p53: A frequent target for genetic abnormalities in lung cancer. Science 246:491–494, 1989.

    Article  PubMed  CAS  Google Scholar 

  110. Chiba I, Takahashi T, Nau MM, D’Amico D, Curiel DT, Mitsudomi T, Buchhagen DL, Carbone D, Piantadosi S, Koga H, Reissman PT, Slamon DJ, Holmes EC, Minna JD: Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Oncogene 5:1603–1610, 1990.

    PubMed  CAS  Google Scholar 

  111. Iggo R, Gatter K, Bartek J, Lane D, Harris AL: Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335:675–679, 1990.

    Article  PubMed  CAS  Google Scholar 

  112. Takahashi T, Takahashi T, Suzuki H, Hida T, Sekido Y, Ariyoshi Y, Ueda R: The p53 gene is very frequently mutated in small cell lung cancer with a distinct nucleotide substitution pattern. Oncogene 6:1775–1778, 1991.

    PubMed  CAS  Google Scholar 

  113. Suzuki H, Takahashi T, Kuroishi T, Suyama M, Ariyoshi Y, Takahashi T, Ueda R: p53 mutations in non-small cell lung cancer in Japan: Association between mutations and smoking. Cancer Res 52:734–736, 1992.

    PubMed  CAS  Google Scholar 

  114. Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 61:759–767, 1990.

    Article  PubMed  CAS  Google Scholar 

  115. Sidransky D, Frost P, Von Eschenbach A, Oyasu R, Presisinger AC, Vogelstein B: Clonal origin of bladder cancer. N Engl J Med 326:737–740, 1992.

    Article  PubMed  CAS  Google Scholar 

  116. Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B: Clonal expansion of p53 mutant cells is associated with brain tumor progression. Nature 355:846–847, 1992.

    Article  PubMed  CAS  Google Scholar 

  117. Casson AG, Mukhopadhyay T, Leary KR, Ro JY, Levin B, Roth JA: p53 mutations in Barrett’s epithelium and esophageal cancer. Cancer Res 51:4495–4499, 1991.

    PubMed  CAS  Google Scholar 

  118. Puisieux A, Lim S, Groopman J, Ozturk M: Selective targeting of p53 gene mutational hotspots in human lung cancers by etiologically defined carcinogens. Cancer Res 51:6185–6189, 1991.

    PubMed  CAS  Google Scholar 

  119. Vogelstein B, Kinzler KW: Carcinogens leave fingerprints [news]. Nature 355:209–210, 1992.

    Article  PubMed  CAS  Google Scholar 

  120. Morstyn G, Brown J, Novak U, Gardner J, Bishop J, Garson M: Heterogeneous cytogenetic abnormalities in small cell lung cancer cell lines. Cancer Res 47:3322–3327, 1987.

    PubMed  CAS  Google Scholar 

  121. Miura I, Graziano S, Cheng J, Doyle A, Testa J: Chromosome alterations in human small cell lung cancer: Frequent involvement of 5q. Cancer Res 52:1322–1328, 1992.

    PubMed  CAS  Google Scholar 

  122. Lukeis R, Irving L, Garson M, Hasthorpe S: Cytogenetics of non-small cell lung cancer: Analysis of consistent non-random abnormalities. Genes Chrom Cancer 2:116–124, 1990.

    Article  PubMed  CAS  Google Scholar 

  123. Whang-Peng J, Knutsen T, Gazdar A, Steinberg S, Oie H, Linnoila RI, Mulshine J, Nau M, Minna J: Nonrandom structural and numerical chromosome changes in non-small cell lung cancer. Genes Chromosomes Cancer 3:168–188, 1991.

    Article  PubMed  CAS  Google Scholar 

  124. Johnson BE, Battey J, Linoila RI, Becker KL, Makuch RW, Snider RH, Carney DN, Minna JD: Changes in the phenotype of human small cell lung cancer cell lines after transfection and expression of the c-myc proto-oncogene. J Clin Invest 78::525–532, 1986.

    Article  PubMed  CAS  Google Scholar 

  125. Wong A, Ruppert J, Eggleston J, Hamilton SR, Baylin SB, Vogelstein B: Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science 233:461–464, 1986.

    Article  PubMed  CAS  Google Scholar 

  126. Johnson BE, Ihde DC, Makuch RW, Gazdar A, Carney D, Oie H, Russell E, Nau M, Minna J: myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 79:1629–34, 1987.

    Article  PubMed  CAS  Google Scholar 

  127. Johnson BE, Makuch RW, Simmons AD, Gazdar AF, Burch D, Cashell AW: myc family DNA amplification in small cell lung cancer patients’ tumors and corresponding cell lines. Cancer Res 48:5163–5166, 1988.

    PubMed  CAS  Google Scholar 

  128. Brennan J, O’Connor T, Makuch RW, Simmons AW, Russell E, Linnoila RI, Phelps RM, Gazdar AF, Ihde DC, Johnson BE: myc family DNA amplification in 107 tumors and tumor cell lines from patient with small cell lung cancer treated with different combination chemotherapy regimens. Cancer Res 51:1708–1712, 1991.

    PubMed  CAS  Google Scholar 

  129. Makela TP, Saksela K, Evan G, Alitalo K: A fusion protein formed by L-myc and a novel gene in SCLC, EMBO J 10:1331–1335, 1991.

    PubMed  CAS  Google Scholar 

  130. Makela TP, Kere J, Winqvist R, Alitalo K: Intrachromosomal rearrangements fusing L-myc and rlf in small cell lung cancer Mol Cell Biol 11:4015–4021, 1991.

    CAS  Google Scholar 

  131. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastoma correlates with advanced disease state. Science 224:1121–1124, 1984, 1984.

    Article  PubMed  CAS  Google Scholar 

  132. Funa K, Steinholtz L, Nou E, Bergh J: Increased expression of N-myc in human small cell lung cancer biopsies predicts lack of response to chemotherapy and poor prognosis. Am J Clin Pathol 88:216–220, 1987.

    PubMed  CAS  Google Scholar 

  133. Sklar MD: The ras oncogene increases the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 237:645–647, 1988.

    Article  Google Scholar 

  134. McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML, Muschel RJ: Synergistic effect of the v-myc oncogene with H-ras on radioresistance. Cancer Res 50:97–102, 1990.

    PubMed  CAS  Google Scholar 

  135. Rygaard K, Slebos RJ, Spang-Thomsen M: Radiosensitivity of small cell lung cancer xenografts compared with activity of c-myc, N-myc, c-raf-1, and K-ras proto-oncogenes. Int J Cancer 49:279–284, 1991.

    Article  PubMed  CAS  Google Scholar 

  136. Kaye FJ, Battey J, Nau M, Brooks B, Seifter E, DeGreve J, Birrer M, Sausville E, Minna J: Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing. Mol Cell Biol 8:186–195, 1988.

    PubMed  CAS  Google Scholar 

  137. Blackwood EM, Eisenman RN: Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217.

    Google Scholar 

  138. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H: Sequence-specific DNA binding by the c-MYC protein. Science 250:1149–51, 1990.

    Article  PubMed  CAS  Google Scholar 

  139. Robbins PD, Horowitz JM, Mulligan RC: Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature 346:668–671, 1990.

    Article  PubMed  CAS  Google Scholar 

  140. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Munger K, Howley PM, Moses HL: TGF-B1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–85, 1990.

    Article  PubMed  CAS  Google Scholar 

  141. Zimmerman K, Yancopolous GD, Collum RG, Smith RK, Kohl NE, Denis KA, Nau MM, Witte O, Toran-Allerand D, Gee CE, Minna JD, Alt F: Differential expression of myc family genes during murine development. Nature 319:780–783, 1986.

    Article  PubMed  CAS  Google Scholar 

  142. Birrer MJ, Segal S, DeGreve JS, Kaye F, Sauseville EA, Minna JD: L-myc cooperates with ras to transform primary rat embryo fibroblasts. Mol Cell Biol 8:2668–2673, 1988.

    PubMed  CAS  Google Scholar 

  143. Kawashima K, Shikama H, Imoto K, Izawa M, Naruke T, Okabayashi K, Nishimura S: Close correlation between restriction fragment length polymorphism of the L-myc gene and metastasis of human lung cancer to the lymph nodes and other organs. Proc Natl Acad Sci USA 85:2353–2356, 1988.

    Article  PubMed  CAS  Google Scholar 

  144. Tefre T, B:rrsesn AL, Aamdal S, Br:gger A: Studies of the L-myc DNA polymorphism and relation to metastasis in Norwegian lung cancer patients. Br J Cancer 61:809–812, 1990.

    Article  PubMed  CAS  Google Scholar 

  145. Tamai S, Sugimura H, Caporaso NE, Resau JH, Trump BF, Weston A, Harris CC: Restriction fragment length polymorphism analysis of the L-myc gene locus in a case-control study of lung cancer. Int J Cancer 46:411–415, 1990.

    Article  PubMed  CAS  Google Scholar 

  146. Barbacid M: ras genes. Ann Rev Biochem 56:779–827, 1987.

    Article  PubMed  CAS  Google Scholar 

  147. Rodenhuis S, van de Wetering M, Mooi W, Evers S, van Zandwijk N, Bos J: Mutational activation of the K-ras oncogene: A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med 317:929–935, 1987.

    Article  PubMed  CAS  Google Scholar 

  148. Rodenhuis S, Slebos RJC, Boot AJM, Evers S, Mooi W, Wagenaar S, Van Bodegom P, Bos J: K-ras oncogene activation in adenocarcinoma of the lung: Incidence and possible clinical significance. Cancer Res 48:5738–5741, 1988.

    PubMed  CAS  Google Scholar 

  149. Suzuki Y, Orita M, Shiraishi M, Hayashi K, Sekiya T: Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 5:1037–1043, 1990.

    PubMed  CAS  Google Scholar 

  150. Mitsudomi T, Viallet J, Mulshine J, Linoila RI, Minna J: Mutations of ras genes distinguish a subset of non-small cell lung cancer cell lines from small cell lung cell lines. 6:1353–1362, 1991.

    CAS  Google Scholar 

  151. You H, Candrian U, Maronpot RR, Stoner GD, Anderson MW: Activation of the Ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci USA 86:3070–3074, 1989.

    Article  PubMed  CAS  Google Scholar 

  152. Quintinilla M, Brown K, Ramsden M, Balmain A: Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322:78–80, 1986.

    Article  Google Scholar 

  153. Slebos RJC, Kibbelaar RE, Daleiso O, Kooistra A, Stam J, Meijer CJLM, Wagenaar SS, Vanderschueren RG, van Zandwijk N, Mooi WJ, Bos JL, Rodenhuis S: K-ras activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 323:561–565, 1990.

    Article  PubMed  CAS  Google Scholar 

  154. Mitsudomi T, Steinberg S, Oie H, Mulshine J, Phelps R, Viallet J, Pass H, Minna J, Gazdar A: ras gene mutations in non-small cell lung cancers are associateed with shortened survival irrespective of treatment intent. Cancer Res 51:4999–5002, 1991.

    PubMed  CAS  Google Scholar 

  155. Cline M, Battifora H: Abnormalities of proto-oncogenes in non-small cell lung cancer. Correlation with tumor types and clinical characteristics. Cancer 60:2669–2674, 1987.

    Article  PubMed  CAS  Google Scholar 

  156. Griffin CA, Baylin SB: Expression of c-myb oncogene in human small cell lung cancer. Cancer Res 45:272–275, 1985.

    PubMed  CAS  Google Scholar 

  157. Kiefer PE, Bepler G, Kubasch M, Havemann K: Amplification and expression of proto-oncogenes in human small cell lung cancer cell lines. Cancer Res 47:6236–6242, 1987.

    PubMed  CAS  Google Scholar 

  158. Sekido Y, Obata Y, Ueda R, Hida T, Suyama M, Shimokata K, Ariyoshi Y, Takahashi T: Preferential expression of c-kit protooncogene transcripts in small cell lung cancer. Cancer Res 51:2416–2419, 1991.

    PubMed  CAS  Google Scholar 

  159. Kaye F: Lung cancer. In: Cossman J (ed): Molecular Genetics in Cancer Diagnosis. Elsevier Science, New York, 1990, pp 431–442.

    Google Scholar 

  160. Rosenfeld MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Paakko PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M, Jallet S, Pavirani A, Lecocq J-P, Crystal RG: Adenovirus-mediated transfer of a recombinant alpha-1-antitrypsin gene to the lung epithelium in vivo. Science 252:431–434, 1991.

    Article  PubMed  CAS  Google Scholar 

  161. Rosenfeld MA, Yoshimura K, Trapnell B, Yoneyama K, Rosenthal ER, Dalemans W, Fukuyama M, Bargon J, Stier LE, Stratford-Perricaudet L, Perricaudet M, Guggino WB, Pavirani A, Lecocq J-P, Crystal RG: In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kratzke, R.A., Shimizu, E., Kaye, F.J. (1993). Oncogenes in human lung cancer. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics