Skip to main content

Genetic Regulation of Lignin Biosynthesis and the Potential Modification of Wood by Genetic Engineering in Loblolly Pine

  • Chapter

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 28))

Abstract

Lignin, a highly polymeric product of phenylpropanoid metabolism in plants, is one of the most abundant organic materials on the surface of the earth. The evolution of lignin was a key factor in the appearance and radiation of land plants, and lignin still plays important physiological and developmental roles in terrestrial vascular plants.1 Hemicelluloses and lignin form the embedding matrix of both primary and secondary plant cell walls, reinforcing the cellulose microfibrils and imparting rigidity to the wall.2,3 Lignin provides strength, flexibility and impermeability to the cell walls. Thus, lignification is an important step in the terminal differentiation of vascular elements into functional water-conducting tissue.4,5 Lignin is needed to support the weight of the plant and to prevent the compression of vascular tissue that would collapse the cell walls. Lignification is also induced by environmental effects such as pathogen attack or mechanical stress6,7 and thus plays an important role in resistance to disease and other adverse environmental stresses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CORNER, E.J.H. 1964. The life of plants (Carrington, R., Matthews,L.H., Young, J.Z., eds.) The World Publishing Company, 315 pp.

    Google Scholar 

  2. HIGUCHI, T. 1985. The biosynthesis of lignin. In “ Biosynthesis and degradation of wood components”. (T. Higuchi. ed.)Academic Press, Orlando FL: pp141–160.

    Google Scholar 

  3. CHEN, C.-L. 1991. Lignin: occurrence in woody tissues, isolation,reactions, and structure. In“Wood Structure and Composition”.(Lewin, M. and Goldstein, I.S., eds.). New York: Marcel Dekker, Inc., pp. 183–261.

    Google Scholar 

  4. WARDROP, A.B. 1981. Lignification and xylogenesis. In “Xylem Cell Development” (J.R. Barnett ed.) Castle House, Turnbridge Wells, Kent, England. pp. 115–152.

    Google Scholar 

  5. SMART, C.C., AMRHEIN, N. 1985. The influence of lignification on the developmet of vascular tissue in Vigna radiata L. Protoplasma 124: 87–95.

    Article  CAS  Google Scholar 

  6. VANCE, C.P., KIRK, T.K., SHERWOOD, R.T. 1980 Lignification as a mechanism of disease resistance. Ann. Rev. Phytopathol. 18: 259–288.

    Article  CAS  Google Scholar 

  7. TIMELL, T.E. 1973. Studies on the opposite wood in conifers. Part I. Chemical composition. Wood Sci. Technol. 7: 1–5

    CAS  Google Scholar 

  8. CHERNEY, J.H., AXTELL, J.D., HASSEN, M.M., ANLIKER, K.S.1988. Forage quality characterization of a chemically induced brown midrib mutant in pearl millet. Crop Sci. 28:783–787.

    Article  Google Scholar 

  9. JUNG, H-J.G., RALPH, L, HATFIELD, R.D. 1991. Degradability of phenolic acid-hemicellulose esters: A model system. J. Sci. Food Agric. 56: 469–478.

    Article  CAS  Google Scholar 

  10. BROWN, A. 1985. Review of lignin in biomass. J. Appl. Biochem.7:371–387.

    CAS  Google Scholar 

  11. HARRY, D.E., SEDEROFF, R.R. 1989. Biotechnology in biomass crop production: the relationship of biomass production and plant genetic engineering. Oak Ridge National Laboratory Environmental Science Division Publication 3411:47pp

    Google Scholar 

  12. ZOBEL, B.J. van BUIJTENEN, J.P. 1989. Wood variation: Its causes and control. Springer Verlag Series in Wood Science, Springer, New York. 363pp.

    Book  Google Scholar 

  13. SONDHEIMER, E., SIMPSON, W.G. 1962. Lignin abnormalities in rubbery apple wood. Can. J. Biochem. Physiol. 40:841–846.

    Article  PubMed  CAS  Google Scholar 

  14. SEDEROFF, R., CHANG, H-M. 1991. Lignin biosynthesis. In “Wood Structure and Composition” edited by M. Lewin &I. Goldstein. Marcel Dekker, Inc. New York. p.263-285.

    Google Scholar 

  15. AMRHEIN, N., FRANK,G., LEMM, G., LUHMANN, H.-B. 1983.Inhibition of lignin formation by L-alpha-amino-beta-phenylproprionic acid-an inhibitor of phenylalanine ammonia-lyase. Eur. J. Cell Biology 29: 139–144.

    CAS  Google Scholar 

  16. GRAND, C., SARNI, F., BOUDET, A.M. 1985. Inhibition of cinnamyl alcohol dehydrogenase activity and lignin synthesis in poplar (Populus x euramericana ,Dode) tissues by two organic compounds. Planta 163: 232–237.

    Article  CAS  Google Scholar 

  17. GRAND, C., BOUDET, A.M., RANJEVA, R. 1982. Natural variation and controlled changes in the lignification process. Holzforschung 36: 217–223.

    Article  CAS  Google Scholar 

  18. WHETTEN, R., SEDEROFF, R.R. 1991. Genetic engineering of wood. Journal of Forest Ecology and Management 43:301–316.

    Article  Google Scholar 

  19. LEWIS, N.G., YAMAMOTO, E. 1990. Lignin: occurrence, biogenesis and biodegradation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41:455–496.

    Article  CAS  Google Scholar 

  20. DEAN, J.F.D., ERIKSSON, K.-E.L. 1992. Biotechnological modification of lignin structure and composition in forest trees. Holzforschung 46:135–147.

    CAS  Google Scholar 

  21. FREUDENBERG, K. 1965. Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols. Science 148:595–600.

    Article  PubMed  CAS  Google Scholar 

  22. FREUDENBERG, K. 1968. The constitution and biosynthesis of lignin. In “Constitution and Biosynthesis of Lignin” (A.C. Neish and K. Freudenberg, eds.), Springer-Verlag, New York, pp.47–116.

    Chapter  Google Scholar 

  23. FREUDENBERG, K., NEISH, A.C. 1968. “Constitution and Biosynthesis of Lignin.” Springer-Verlag, New York.

    Book  Google Scholar 

  24. TIEMANN, F., MENDELSOHN, B. 1875. Zur Kenntiniss der Bestandteile des Holztheerkreosots. Ber. Dtsch. Chem. Ges. (Chem. Ber.) 8:1136–1139.

    Article  Google Scholar 

  25. TERASHIMA, N. 1989. Higher order structure of protolignin in the cell wall of tree xylem. TAPPI Proceedings: International Symposium on Wood and Pulping Chemistry. Raleigh, NC May 22-25, 1989. TAPPI Press, Atlanta. p. 359–364.

    Google Scholar 

  26. ATTALA, R.H., AGARWALL, U.P. 1984. Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science 227:636–638.

    Article  Google Scholar 

  27. FUKUSHIMA, K., TERASHIMA, N. 1991. Heterogeneity in lignin formation XIV. Formation and structure of lignin in differentiating xylem of Ginko biloba. Holzforschung 45:87–94.

    Article  CAS  Google Scholar 

  28. LEWIS, N.G., YAMAMOTO, E., WOOTEN, J.B., JUST, G.,OHASHI, H., TOWERS, G.H.N. 1987. Monitoring biosynthesis of wheat cell-wall phenylpropanoids in situ. Science 237:1344–1336.

    Article  PubMed  CAS  Google Scholar 

  29. LEWIS, N.G., RAZAL, R.A., YAMAMOTO, E., BOKELMAN,G.H., WOOTEN, J.B. 1989. 13C specific labelling of lignin in intact plants. In Plant cell wall polymers: Biogenesis and biodegradation. ACS Symposium Series. 399, Ch 12, pp.169–181.

    Article  Google Scholar 

  30. CARPITA, N.C., GIBEAUT, D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3:1–30.

    Article  PubMed  CAS  Google Scholar 

  31. FREUDENBERG, K., HARKIN, J.M., REICHERT, M.,FUKUZUMI, T. 1958. Die an der Verholzung beteiligten Enzyme. Die Dehydrierung des Sinapinalkohols. Chemische Berichte 91:581–590.

    Article  CAS  Google Scholar 

  32. LUDERITZ, T., GRISEBACH, H. 1981. Enzymatic sysnthesis of lignin precursors-comparison of cinnamoyl-CoA reductase and cinnamyl alcohol: NADP+ dehydrogenase from spruce (Picea abies L) and soybean (Glycine max L.) Eur. J. Biochem. 119:115–124.

    Article  PubMed  CAS  Google Scholar 

  33. BOLWELL, G.P., BELL, J.N., CRAMER, C.L., SCHUCH, W.,LAMB, C.L., DIXON, R. A. 1985. L-phenylalanine ammonia-lyase from Phaseolus vulgaris-characterization and differential induction of multiple forms from elicitor-treated suspension cultures. Eur. J. Biochem. 149: 411–419.

    Article  PubMed  CAS  Google Scholar 

  34. LIANG , X., DRON, M., CRAMER, C.L., DIXON, R.A., LAMB,C.J. 1989. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J. Biol. Chem. 264:14486–14492.

    PubMed  CAS  Google Scholar 

  35. LOIS, R., DIETRICHET, A., HAHLBROCK, K., SCHULZ, W.1989. A phenylalanine ammonia-lyase gene from parsley: structure, regulation, and identification of elicitor and light responsive cis acting elements. EMBO. J. 8:1641–1648.

    PubMed  CAS  Google Scholar 

  36. SHUFFLEBOTTOM, D., EDWARDS, K., SCHUCH, W., BEVAN,M. 1993. Transcription of two members of a gene family encoding phenylalanine ammonia-lyase leads to remarkably different cell specificities and induction patterns. Plant J. 3:835–845.

    Article  PubMed  CAS  Google Scholar 

  37. CRAMER, C.L., EDWARDS, K., DRON, M., LIANG, X.,DILDINE, S.L., BOLWELL, G.P., DIXON, R.A., LAMB, C.J., SCHUCH, W. 1989. Phenylalanine ammonia-lyase gene organization and structure. Plant Mol. Biol. 12:367–383.

    Article  CAS  Google Scholar 

  38. MINAMI, E., OZEKI, Y., MATSUOKA, M., KOIZUKA, N.,TANAKA, Y. 1989. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur. J. Biochem. 185:19–25.

    Article  PubMed  CAS  Google Scholar 

  39. OHL, S., HEDRICK, S.A., CHORY, J., LAMB, C.J. 1990.Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell 2:837–848.

    PubMed  CAS  Google Scholar 

  40. JOOS, H.-J., HAHLBROCK, K. 1992. Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Eur.J. Biochem. 204:621–629.

    Article  PubMed  CAS  Google Scholar 

  41. SUBRAMANIAM, R., REINHOLD, S., MOLITOR, E.K.,DOUGLAS, C.J. 1993. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes. Plant Physiol. 102: 71–83.

    Article  PubMed  CAS  Google Scholar 

  42. WHETTEN, R.W., SEDEROFF, R.R. 1992. Phenylalanine ammonia-lyase from loblolly pine. Plant Physiol. 98:380–386.

    Article  PubMed  CAS  Google Scholar 

  43. CAMPBELL, M., ELLIS, B. 1992. Fungal elicitor-mediated responses in pine cell cultures. I. Induction of phenylpropanoid metabolism. Planta 186:409–417.

    Article  CAS  Google Scholar 

  44. CAMPBELL, M., ELLIS, B. 1992. Fungal elicitor-mediated responses in pine cell cultures. III. Purification and characterization of phenylalanine ammonia-lyase. Plant Physiol. 98:62–70.

    Article  PubMed  CAS  Google Scholar 

  45. CAMPBELL, M., ELLIS, B. 1992. Fungal elicitor-mediated responses in pine cell cultures. II. Cell wall-bound phenolics. Phytochemistry 31:737–742.

    CAS  Google Scholar 

  46. KUTSUKI, H., SHIMADA, M., HIGUCHI, T. 1982. Distribution and roles of p-hydroxycinnamate:CoA ligase in lignin biosynthesis. Phytochemistry 21: 267–271.

    Article  CAS  Google Scholar 

  47. KNOBLOCH, K.H., HAHLBROCK, K. 1975. Isozymes of p-coumarate: CoA ligase from cell suspension culture of Glycine max. Eur. J. Biochem. 52:311–320.

    Article  PubMed  CAS  Google Scholar 

  48. LUDERITZ, T., SCHATZ, G., GRISEBACH, H. 1982. Enzyme synthesis of lignin precursors. Purification and properties of 4-coumarate:CoA ligase from cambium sap of spruce (Picea abies L.). Eur. J. Biochem. 123:583–586.

    Article  PubMed  CAS  Google Scholar 

  49. LOZOYA, E., HOFFMANN, H., DOUGLAS, C., SCHULZ, W.,SCHEEL, D., HALBROCK, K. 1988. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley. Eur. J. Biochem. 176:661–667.

    Article  PubMed  CAS  Google Scholar 

  50. VOO, K.S., WHETTEN, R.W., O’MALLEY, D.M., SEDEROFF,R.R. 1993. 4-Coumarate Co-A ligase from loblolly pine xylem: Isolation, characterization and complementary DNA cloning. Poster 12, Phytochemical Society of North America: Newsletter 33:23.

    Google Scholar 

  51. GRAND, C., BOUDET, A., BOUDET, A.M. 1983. Isozymes of hydroxycinnamate: CoA ligase from poplar stems and tissue distribution. Planta 158:225–229.

    Article  CAS  Google Scholar 

  52. ALLINA, S., LEE, D., DOUGLAS, C. 1993. Cloning and characterization of 4-coumarate: coenzyme A ligase (4CL) from poplar and Arabidopsis. Poster 27, Phytochemical Society of North America: Newsletter 33:26.

    Google Scholar 

  53. KUTSUKI, H., HIGUCHI, T. 1981. Activities of some enzymes of lignin formation in reaction wood of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia. Planta 152:365–368.

    Article  CAS  Google Scholar 

  54. TIMMEL, T.E. 1986. Compression wood in gymnosperms. Springer,Heidelberg, pp.2150.

    Google Scholar 

  55. O’MALLEY, D.M., PORTER, S., SEDEROFF, R.R. 1992.Purification, characterization and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiol. 98:1364–1371.

    Article  PubMed  Google Scholar 

  56. LIU, W.W. 1993. Cloning and characterization of cinnamyl alcohol dehydrogenase cDNA from loblolly pine. M. Sc., North Carolina State University. Raleigh, N.C.

    Google Scholar 

  57. HALPIN, C., KNIGHT, M.E., GRIMA-PETTENATI, J., GOFFNER, D., BOUDET, A., SCHUCH, W. 1992. Purification and characterization of cinnamyl alcohol dehydrogenase from tobacco stems. Plant Physiol. 98:12–16.

    Article  PubMed  CAS  Google Scholar 

  58. CONKLE, M.T. 1981. Isozyme variation and linkage in six conifer species, “Proceedings of the symposium on isozymes of North American forest trees and forest insects” M.T. Conkle, ed. Pacific Southwest Forest and Range Experiment Station, Berkeley CA. USDA Forest Service Gen. Tech. Rep. PSW-48.p.11–17.

    Google Scholar 

  59. MANSELL, R.B., BABBEL, G.R., ZENK, M.H. 1976. Multiple forms and specificity of coniferyl alcohol dehydrogenase from cambial regions of higher plants. Phytochemistry 15:1849–1853.

    Article  CAS  Google Scholar 

  60. GOFFNER, D., JOFFROY, I., GRIMA-PETTANATI, J., HALPIN,C., KNIGHT, M.E., SCHUCH, W., BOUDET, A.M. 1992. Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188:48–53.

    Article  CAS  Google Scholar 

  61. HAWKINS, S.W., BOUDET, A.M. 1993. Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from the periderm of Eucalyptus gunnii Hook, (in press).

    Google Scholar 

  62. GRIMA-PETTENATI, J., FEUILLET, C., GOFFNER, D.,BORDERIES, G., BOUDET, A.M. 1993. Molecular cloning and expression of a Eucalyptus gunni cDNA clone encoding cinnamyl alcohol dehydrogenase (in press).

    Google Scholar 

  63. WYRAMBIK, D., GRISEBACH, H. 1975. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean cell cultures. Eur. J.Biochem. 59:9–15.

    Article  PubMed  CAS  Google Scholar 

  64. WYRAMBIK, D., GRISEBACH, H. 1979. Enzymic synthesis of lignin precursors. Further studies on cinnamyl-alcohol dehydrogenase from soybean suspension cultures. Eur. J. Biochem. 97:503–509.

    Article  PubMed  CAS  Google Scholar 

  65. PILLONEL, C., HUNZIKER, P., BINDER, A. 1992. Multiple forms of the constitutive wheat cinnamyl alcohol dehydrogenase. J.Exp. Bot. 43:299– 305.

    Article  CAS  Google Scholar 

  66. BAO, W., O’MALLEY, D.M., WHETTEN, R., SEDEROFF, R.R.1993. A laccase associated with lignification in loblolly pine xylem. Science 260:672–674.

    Article  PubMed  CAS  Google Scholar 

  67. BUTT, V.S. 1980. Direct oxidases and related enzymes. In “The Biochemistry of Plants,” Vol. 2, (D.D. Davies, ed.), Academic Press, New York, pp.81–123.

    Google Scholar 

  68. LIN, L.-S., VARNER, J.E. 1991. Expression of ascorbic acid oxidase in zucchini squash (Curcurbita pepo L.). Plant Physiol. 96:159–165.

    Article  PubMed  CAS  Google Scholar 

  69. FREUDENBERG, K., RICHTZENHAIN, H. 1943. Enzymatische Versuche zur Enstehung des Lignins. Ber. Dtsch. Chem. Ges. (Chem. Ber.), 76:997–1006.

    Article  Google Scholar 

  70. FREUDENBERG, K. 1959. Biosynthesis and constitution of lignin. Nature 183:1152–1155.

    Article  PubMed  CAS  Google Scholar 

  71. SIEGEL, S.M., ROSEN, L.A., REWICK, G. 1962. Effects of reduced oxygen tension on vascular plants. Growth and composition of red kidney bean plants in 5% O2. Physiol. Plant. 15:304–314.

    Article  CAS  Google Scholar 

  72. LESNEY, M.S. 1990. Effect of ‘elicitors’ on extracellular peroxidase activity in suspension-cultured slash pine (Pinus elliottii Engelm.). Plant Cell Tissue and Organ Culture 20: 173–175.

    Google Scholar 

  73. HIGUCHI, T. 1990. Lignin biochemistry: Biosynthesis and Biodegradation. Wood Sci. Technol. 24: 23–63.

    Article  CAS  Google Scholar 

  74. HIGUCHI, T. 1959. Studies on the biosynthesis of lignin. In “Biochemistry of Wood” (Kratzl, K., Billek, G., eds.) New York:Pergamon Press, pp.161–188.

    Google Scholar 

  75. NAKAMURA, W. 1967. Studies on the biosynthesis of lignin 1. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J. Biochem (Japan) 62:54–60.

    CAS  Google Scholar 

  76. HARKIN, J.M., OBST, T.R. 1973. Lignification in trees: indication of exclusive peroxidase participation. Science 180:296–297.

    Article  PubMed  CAS  Google Scholar 

  77. BLIGNY, R., DOUCE, R. 1983. Excretion of laccase by sycamore (Acer psuedoplantanus L.) cells. Biochem. J. 209: 489–496.

    PubMed  CAS  Google Scholar 

  78. STERJIADES, R., DEAN, J.F.D., ERIKSSON,. K.-E. L. 1992. Laccase from sycamore maple (Acer psuedoplantanus) polymerizes monolignols. Plant Physiol. 99:1162–1168.

    Article  PubMed  CAS  Google Scholar 

  79. STERJIADES, R., DEAN, J.F.D., GAMBLE, G., HIMMELSBACH, D.S., ERIKSSON, K.-E. 1993. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplantanus) cell suspension cultures. Reactions with monolignols and lignin model compounds. Planta 190:75–87.

    Article  CAS  Google Scholar 

  80. DRIOUICH, A., LAINE, A-C., VIAN, B., FAYE, L. 1992.Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J. 2:13–24.

    Article  CAS  Google Scholar 

  81. SAVIDGE, R., UDAGAMA-RANDENIYA, P. 1992. Cell wall-bound coniferyl alcohol oxidase associated with lignification in conifers. Phytochemistry 31:2959–2966.

    Article  CAS  Google Scholar 

  82. DAVIN, L.B., BEDGAR, D.L., KATAYAMA, T., LEWIS, N.G.1992. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 31: 3869–3874.

    Article  PubMed  CAS  Google Scholar 

  83. DAVIN, L.B., PARE, P.W., LEWIS, N.G. 1993. Phenylpropanoid coupling enzymes in lignan/lignin synthesis: non-stereoselective coupling. Phytochemical Society of North America Newsletter 33 (1) Program and Abstracts for Genetic Engineering of Plant Secondary Metabolism, Asilomar, California, June 27-July 31, Oral Paper Abstract 30.

    Google Scholar 

  84. DEAN, J.F.D., ERIKSSON, K.-E.L. 1993. Laccase and the evolution of lignin in vascular plants. Holzforschung (in press)

    Google Scholar 

  85. GERTULLA, S., KINLAW, C.S. 1993. Complex gene families of pines. Proceedings of the Southern Forest Tree Improvement Conference, Atlanta, Ga. abstracts, p.47.

    Google Scholar 

  86. KRIEBLE, H.B. 1993 Molecular structure of forest trees. In Clonal Forestry I, Genetics and Biotechnology, ed by M.R. Ahuja and W.J. Libby. Springer Verlag, Berlin, Heidelberg: pp.224–240.

    Chapter  Google Scholar 

  87. LOOPSTRA, C.A. 1992. Xylem specific gene expression in loblolly pine. PhD Dissertation. North Carolina State University, Raleigh, NC, 27695 USA.

    Google Scholar 

  88. LAIDLAW, R.A., SMITH, G.A. 1965. The proteins of the timber of scots pine (Pinus sylvestris). Holzforschung 19:129–134.

    Article  Google Scholar 

  89. COWLING, E.B., MERRILL, W. 1966. Nitrogen in wood and its role in wood deterioration. Can. J. Bot. 44: 1539–1554.

    Article  CAS  Google Scholar 

  90. WESTERMARK, U., HARDELL, H.L., IVERSON, T. 1986. Thecontent of protein and pectin in the lignified middle lamella/primary wall from spruce fibers. Holzforschung 40:65–68.

    Article  CAS  Google Scholar 

  91. VARNER, J.E., LIN, L.-S. 1989. Plant cell wall architecture. Cell 56:231–239.

    Article  PubMed  CAS  Google Scholar 

  92. STEBBINS, G.L. 1992. Comparative aspects of plant morphogenesis: a cellular, molecular and evolutionary approach. Am. J. Bot. 79: 589–598.

    Article  CAS  Google Scholar 

  93. BAO, W., O’MALLEY, D.M., SEDEROFF, R.R. 1992. Wood contains a cell-wall structural protein. Proc. Natl. Acad. Sci. USA 89:6604–6608.

    Article  PubMed  CAS  Google Scholar 

  94. TIERNEY, M.L., VARNER, J.E. 1987. The extensins. Plant Physiol. 84:1–2.

    Article  PubMed  CAS  Google Scholar 

  95. CASSAB, G.I., VARNER, J.E. 1988. Cell wall proteins. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 39: 321–353.

    Article  CAS  Google Scholar 

  96. KIELISZEWSKI, M., de ZACKS, R., LEYKAM, J.F., LAMPORT, D.T.A. 1992. A repetitive proline-rich protein from the gymnosperm Douglas fir is a hydroxyproline-rich glycoprotein. Plant Physiol. 98:919–926.

    Article  PubMed  CAS  Google Scholar 

  97. STICH, K., EBERMAN, R. 1988. Investigation of the substrate specificity of peroxidase isozymes occuring in wood of different species. Holzforschung 42:221–224.

    Article  CAS  Google Scholar 

  98. WHITMORE, F.W. 1976. Binding of ferulic acid to cell walls by peroxidases of Pinus elliottii. Phytochemistry 15:375–378.

    Article  CAS  Google Scholar 

  99. WHITMORE, F.W. 1978. Lignin carbohydrate complex formed in isolated cell walls of callus. Phytochemistry 17:421–425.

    Article  CAS  Google Scholar 

  100. BRADLEY, D.J., KJELLBOM, P., LAMB, C.J. 1992. Elicitor and wound induced oxidative crosslinking of a proline-rich plant cell wall protein: a novel rapid defense response. Cell 70:21–30.

    Article  PubMed  CAS  Google Scholar 

  101. KLEIS-SAN FRANSISCO, S.M., TIERNEY, M.L. 1990. Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol. 94:1897–1902.

    Article  Google Scholar 

  102. GLEESON, P.A., McNAMARA, M., WHETTENHALL, R.E.H.,STONE, B.A., FINCHER, G.B. 1989. Characterization of the hydroxyproline-rich protein core of an arabinogalactan-protein secreted from suspension-cultured Lolium multiflorum (Italian ryegrass) endosperm cells. Biochem. J. 264:857–862.

    PubMed  CAS  Google Scholar 

  103. SEDEROFF, R.R., STOMP, A-M., CHILTON, W.S., MOORE, L.W. 1986. Gene transfer into loblolly pine by Agrobacterium tumefaciens. Bio/Technology, 4:647–649.

    Article  CAS  Google Scholar 

  104. STOMP, A-M., LOOPSTRA, C., CHILTON, W.S., SEDEROFF, R.R., MOORE, L.W. 1990. Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol. 92:1226–1232.

    Article  PubMed  CAS  Google Scholar 

  105. STOMP, A-M., WEISSINGER, A.K., SEDEROFF, R.R. 1991. Transient expression from microprojectile-mediated DNA transfer in Pinus taeda.. Plant Cell Rep.10:187–190.

    Article  Google Scholar 

  106. LOOPSTRA, C.A., STOMP, A-M., SEDEROFF, R.R. 1990.Agrobacterium mediated DNA transfer in sugar pine. Plant Mol. Biol. 15:1–9.

    Article  PubMed  CAS  Google Scholar 

  107. LOOPSTRA, C.A., WEISSINGER, A.K., SEDEROFF, R.R. 1992.Transient expression in differentiating wood. Can. J. For.Res. 22:993–996.

    Article  CAS  Google Scholar 

  108. HUANG, Y., DINER, A.M., KARNOSKY, D.F. 1991.Agrobacterium rhizogenes-mtdiatcd genetic transformation and regeneration of a conifer: Larix decidua. Vitro Cell. Dev. Biol. 4:201–207.

    Google Scholar 

  109. HUANG, Y., KARNOSKY, D.F. 1991. A system for gymnosperm transformation and plant regeneration: Agrobacterium rhizogenes and Larix deadly-European larch hairy root culture and propagation. In Vitro 27:153A.

    Article  Google Scholar 

  110. ELLIS, D.D., McCABE, D., McINNIS, S., RAMACHANDRAN, R.,McCOWN, B. 1992. Transformation of Picea glauca-gene expression and the regeneration of stably transformed embryogenic callus and plants. International Conifer Biotechnology Working Group. abstract.

    Google Scholar 

  111. ELLIS, D.D., McCABE, D.E., McINNIS, S., RAMACHANDRAN,R., RUSSELL, D.R., WALLACE, K.M., MARTINELL, B.J., ROBERTS, D.R., RAFFA, K.F., McCOWN, B.H. 1993. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11:84–89.

    Article  CAS  Google Scholar 

  112. ROBERTSON, D., WEISSINGER, A.K., ACKLEY, R.,GLOVER,S., SEDEROFF, R.R. 1992. Genetic Transformation of Norway spruce (Picea abies (L.) Karst) using somatic embryo explants by microprojectile bombardment. Plant Mol. Biol. 19:925–935.

    Article  PubMed  CAS  Google Scholar 

  113. VAN BUIJTENEN, J.P., ZOBEL, B.J., JORANSEN, P.N. 1961.Variation in some wood and pulp properties in an evenly aged loblolly pine stand. TAPPI J. 44:141–144.

    CAS  Google Scholar 

  114. EINSPAHR, D.W., GODDARD, R.E., GARDNER, H.S. 1964.Slash pine wood and fiber property heritability study, Silvae Genetica 13:103–109.

    Google Scholar 

  115. McMILLIN, C.W. 1968. Chemical composition of loblolly pine wood. Wood Sci. Technol. 2:233–240.

    Article  CAS  Google Scholar 

  116. SCHUTT, P. 1958. Schwankungen in Zellulose-und Ligningehalt bei einigen in Westdeutchland angebauten Pinus contorta Herkunften. Silvae Genetica 7:65–69.

    CAS  Google Scholar 

  117. KIM, W.J., CAMPBELL, A.G., and KOCH, P. 1989. Chemical variation in lodgepole pine with latitude, elevation and diameter class. For. Prod. J. 39:7–12.

    CAS  Google Scholar 

  118. SARKENEN, K.V., HERGERT, H.L. 1971. Definition and nomenclature. In K.V. Sarkanen, C.H. Ludwig, eds. Lignins: occurence, formation, structure and reactions. Wiley, Intersciences, New York, pp.43–94.

    Google Scholar 

  119. GRATTAPAGLIA, D., CHAPARRO, J., WILCOX, P., McCORD,S., WERNER, D., AMERSON, H., McKEAND, S., BRIDGWATER, F., WHETTEN, R., O’MALLEY, D.M., SEDEROFF, R.R. 1992. Mapping in woody plants with RAPD markers: Application to breeding and horticulture. Proceedings of the symposium; applications of RAPD technology to plant breeding. Minneapolis MN Joint Plant Breeding Symposium: Crop Science, Horticultural Science, American Genetic Association. p.37–40.

    Google Scholar 

  120. GRATTAPAGLIA, D., CHAPARRO, J., WILCOX, P., McCORD,S., CRANE, B., AMERSON, H., WERNER, D., LIU, B.-H., O’MALLEY, D.M., WHETTEN,R., McKEAND, S., GOLDFARB, B., GREENWOOD, M., KUHLMAN, G., BRIDGWATER, F., SEDEROFF, R.R. 1993. Application of genetic markers to tree breeding. Proceedings of the Southern Forest Tree Improvement Conference, (SFTIC) Atlanta GA. vol. 26. in press.

    Google Scholar 

  121. MULLER, L.D., BARNES, R.F., BAUMAN, L.F.,COLENBRANDER, V.F. 1971. Variations in lignin and other structural components of brown midrib mutants of maize. Crop Sci. 11:413–415.

    Article  CAS  Google Scholar 

  122. WELLER, R.F., PHIPPS, R.H. 1981. The effect of brown midrib mutation on the in vivo digestibility of maize silage. 6th Silage Conference, 1981 pp.73–74.

    Google Scholar 

  123. BITTINGER, T.S., CANTRELL, R.P., AXTELL, J.D. 1981.Allelism tests of the brown midrib mutants of sorghum. J. Heredity 72:147–148.

    Google Scholar 

  124. AKIN, D.E., HANNA, W.W., RIGSBY, L.L. 1986. Normal-12 and brown midrib-12 in sorghum. I. Variations in tissue digestibility. Agronomy J. 78: 827–832.

    Article  Google Scholar 

  125. LAPIERRE, C., TOLLIER, M.T., MONTIES, B. 1988. Occurrence of additional monomeric units in the lignins from internodes of a brown midrib mutant of maize bm3. Compte Rendu de l’Academie des Sciences III 307:723–728.

    CAS  Google Scholar 

  126. GRAND, C, PARMENTIER, P., BOUDET, A., BOUDET, A.M.1985. Comparison of lignin and of enzymes involved in lignification in normal and brown midrib (bm3) mutant corn seedlings., Physiol. Veg. 23:905–911.

    CAS  Google Scholar 

  127. PILLONEL, C., MULDER, M.M., BOON, J.J., FORSTER, B.,BINDER, A. 1991. Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Planta 185:538–544.

    CAS  Google Scholar 

  128. SATO, T., KIUCHI, F., SANKAWA, U. 1982. Inhibition of phenylalanine ammonia-lyase by cinnamic acid derivatives and related compounds. Phytochemistry 21:845–850.

    Article  CAS  Google Scholar 

  129. BOLWELL, G.P., CRAMER, C.L., LAMB, C.J., SCHUCH, W.,DIXON, R.A. 1986. L-phenylalanine ammonia-lyase from Phaseolus vulgaris: Modulation of the levels of active enzyme by trans-cinnamic acid. Planta 169: 97–107.

    Article  CAS  Google Scholar 

  130. ELKIND, Y., EDWARDS, R., MAVANDAD, M., HEDRICK, S.A.,RIBAK, O., DIXON, R.A., LAMB, C.J. 1990. Abnormal plant development and down regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc. Natl. Acad. Sci. USA 87:9057–9061.

    Article  PubMed  CAS  Google Scholar 

  131. NAPOLI, C., LEMIEUX, C., JORGENSEN, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289.

    PubMed  CAS  Google Scholar 

  132. CHAPPLE, C.C.S., VOGT, T., ELLIS, B.E., SUMMERVELLE, C.R. 1992. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424.

    PubMed  CAS  Google Scholar 

  133. GRAND, C. 1984. Ferulic acid 5-hydroxylase: a new cytochrome P-450-dependent enzyme from higher plant microsomes involved in lignin synthesis. FEBS Lett. 169:7–11.

    Article  CAS  Google Scholar 

  134. SAVIDGE, R.A. 1985 Prospects for genetic manipulation of wood quality. In New ways in forest genetics Proceedings of the 20th meeting of the Canadian Tree Improvement Association: 159–165.

    Google Scholar 

  135. LAGRIMINI, L.M., BRADFORD, S., ROTHSTEIN, S. 1990.Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2:7–18.

    PubMed  CAS  Google Scholar 

  136. LAGRIMINI, L.M. 1991a. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 96:577–583.

    Article  PubMed  CAS  Google Scholar 

  137. LAGRIMINI, L.M. 1991b. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes. In: Molecular and physiological aspects of plant peroxidases, Eds: Penel C, Gaspar T and Lobarowski J, University of Geneva Press, pp. 128–140.

    Google Scholar 

  138. HALPIN, C., KNIGHT, M.E., SCHUCH, W., CAMPBELL, M.M.,FOXON, G.A. 1993. Manipulation of lignin biosynthesis in transgenic plants expressing cinnamyl alcohol dehydrogenase. J. Cellular Biochem. Supplement 17A, Abstract A310, p.28.

    Google Scholar 

  139. CHIANG, V., CHEN, Z.-Z., PODILA, G.K., WANG, W.-Y.,BUGOS, R.C., CAMPBELL, W.H., DWIVEDI, U.N., YU, J., TSAI, C.-J., TSAY, J.-Y., YANG, J.-C. 1993. Genetic manipulation of lignification in Liquidambar stryraciflua (sweetgum) by introduction of a chimeric sense or antisense O-methyltransferase gene cloned from Populus tremuloides (aspen). Proceedings of the International Conference on Emerging Technologies for Pulp and Paper Industry. Taipei, Taiwan. p.26–29.

    Google Scholar 

  140. BUGOS, R.C., CHIANG, V.L., CAMPBELL, VWH. 1991. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5hydroxyferulic acid O-methyltransferase of aspen. Plant Mol. Biol. 17:1203–1215.

    Article  PubMed  CAS  Google Scholar 

  141. DUMAS, B., van DOORSSELAERE, J., GIELEN, J., LEGRAND,M., FRITIG, B., van MONTAGU, M., INZE, D. 1992. Nucleotide sequence of a complementary DNA encoding O-methyl transferase from poplar. Plant Physiol. 98:796–797.

    Article  PubMed  CAS  Google Scholar 

  142. GOWRI, G., BUGOS, R.C., CAMPBELL, W.H., MAXWELL, C.A.,DIXON, R. 1991. Stress responses in alfalfa (Medicago sativa L.) X. Molecular cloning and expression of S-adenosyl-L-methioninexaffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol. 97:7–14.

    Article  PubMed  CAS  Google Scholar 

  143. COLLAZO, P., MONTOLIU, L., PUIGDOMENECH, P, RIGAU, J.1992. Structure and expression of the lignin O-methyltransferase gene from Zea mays L. Plant Mol. Biol. 20:857–867.

    Article  PubMed  CAS  Google Scholar 

  144. JAECK, E., DUMAS, B., GEOFFROY, P., FACET, N., INZE, D.,van MONTAGU, M., FRITIG, B., LEGRAND, M. 1992. Regulation of enzymes involved in lignin biosynthesis: induction of O-methyltransferase mRNAs during the hypersensitive reaction of tobacco to Tobacco Mosaic Virus. Mol. Plant-Microbe Interact. 4:294–300.

    Article  Google Scholar 

  145. KUTSUKI, H., SHIMADA, M., HIGUCHI, T. 1982b. Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochemistry 21:19–23.

    Article  CAS  Google Scholar 

  146. CAMPBELL, M. M., BOUDET, A.M. 1933. Hydroxycinnamoyl-CoA reductase from Eucalyptus: molecular analysis of a key control point of lignification. Abstract 305 Keystone Symposium The Extracellular Matrix of Plants: Molecular Cellular and Developmental Biology. The Journal of Cellular Biochemistry Supplement 17A:p26.

    Google Scholar 

  147. UMEZAWA, T., DAVIN, L.B., LEWIS, N.G. 1991. Formation of lignans (-)-secoisolariciresinol and matairesinol with Forsythia intermedia cell-free extracts. J. Biol. Chem. 266:10210–10217

    PubMed  CAS  Google Scholar 

  148. RAO, C.B.S. 1978. The chemistry of lignans. Audhra University Press, Audhra, India.

    Google Scholar 

  149. LYNN, D.G., CHEN, R.H., MANNING, K.S., WOOD, H.N. 1987.The structural characterization of endogenous factors from Vinca rosea crown gall tumors that promote cell division of tobacco cells. Proc. Natl. Acad. Science USA 84: 615–619

    Article  CAS  Google Scholar 

  150. BINNS, A.N., CHEN, R.H., WOOD, H.N., LYNN, D.G. 1987. Cell division promoting activity of naturally occurring dehydroconiferyl glucosides: Do cell wall components control cell division? Proc. Natl. Acad. Sci. USA 84:980–984.

    Article  PubMed  CAS  Google Scholar 

  151. ORR, J.D., LYNN, D.G. 1992. Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol. 98: 343–352

    Article  PubMed  CAS  Google Scholar 

  152. TEUTONICO, R.A., DUDLEY, M.W., ORR, J.D., LYNN, D.G.,BINNS, A.N. 1991. Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures. Plant Physiol. 97: 288–297

    Article  PubMed  CAS  Google Scholar 

  153. SHERF, B.A., BAJAR, A.M., KOLATTUKUDY, P.E. 1993.Abolition of an inducible highly anionic peroxidase activity in transgenic tomato. Plant Physiol. 101:201–208.

    PubMed  CAS  Google Scholar 

  154. STURM, A., von SCHAEWEN, A., CRISPEELS, M.J. 1993.Identification of a mutant Arabidopsis thaliana blocked in the conversion of high mannose to complex asparagine linked glycans. J. Cellular Biochem. Supplement 17A, Abstract A322, p.31.

    Google Scholar 

  155. LLOYD, A.M., WALBOT, V., DAVIS, R.W. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775.

    Article  PubMed  CAS  Google Scholar 

  156. FRANK, R.L., VODKIN, L.O. 1991. Sequence and structure of a phenylalanine ammonia-lyase gene from Glycine max. DNA Seq. 1: 335–346.

    PubMed  CAS  Google Scholar 

  157. ESTABROOK, E.M., SENGUPTA-GOPALAN, C. 1991.Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3: 299–308

    PubMed  CAS  Google Scholar 

  158. TANAKA, Y., MATSUOKA, M., YAMAMOTO, N., OHASHI, Y.,KANO-MURAKAMI, Y. 1989. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiol. 90: 1403–1407.

    Article  PubMed  CAS  Google Scholar 

  159. BLOKSBERG, L.N. 1991. Studies on the biology of phenylalanine ammonia lyase and plant pathogen interaction. Thesis. Plant Pathology, University of California, Davis.

    Google Scholar 

  160. LEE, S.-W., ROBB, J., NAZAR, R.N. 1992. Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicon esculentum). J. Biol. Chem. 267: 11824–11830.

    PubMed  CAS  Google Scholar 

  161. GOWRI, G., PAIVA, N.L., DIXON, R.A. 1991. Stress responses in alfalfa (Medicago sativa L.) XII. Sequence analysis of phenylalanine ammonia lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor treated cell cultures and developing plants. Plant Mol. Biol. 17: 415–429.

    Article  PubMed  CAS  Google Scholar 

  162. BREDERODE, F., LINTHORST, H.J.M., BOL, J.F. 1991.Differential induction of acquired resistance in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol. Biol. 17: 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  163. MINAMI, E. TANAKA , Y. 1993. Nucleotide sequence of the gene for phenylalanine ammonia-lyase of rice and its deduced amino acid sequence. Biochim. Biophys. Acta 1171: 321–322.

    Article  PubMed  CAS  Google Scholar 

  164. SCHULZ, W., EIBEN, H.G., HAHLBROOK, K. 1989. Expression in Escherichia coli of catalytically active phenylalanine ammonia lyase from parsley. FEBS Lett. 258: 335–338.

    Article  PubMed  CAS  Google Scholar 

  165. EDWARDS, K., CRAMER, C.L., BOLWELL, G.P., DIXON, R.A.,SCHUCH, W., LAMB, C.J. 1985. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor treated bean cells. Proc. Natl. Acad. Sci. USA. 82:6731–6735.

    Article  PubMed  CAS  Google Scholar 

  166. KAWATAMA, S., YAMADA, T., TANAKA, Y.,SRIPRASERTSAK, P., KATO, H., ICHINOSE, Y., KATO, H., SHIRAISHI, T., OKU, H. 1992. Molecular cloning of phenylalanine ammonia-lyase from Pisum sativum. Plant Mol. Biol. 20: 167–170.

    Article  Google Scholar 

  167. YAMADA, T., TANAKA, Y., SRIPRASERTSAK, P., KATO, H.,HASHIMOTO, T., KAWAMATA, S., ICHINOSE, Y., KATO, H., SHIRAISHI, T., OKU, H. 1992. Phenylalanine ammonia-lyase genes from Pisum sativum: Structure, organ specific expression and regulation by fungal elicitor and suppressor. Plant Cell Physiol. 33: 715–725.

    CAS  Google Scholar 

  168. MIZUTANI, M., WARD, E.R., DiMAIO, RYALS, J., SATO, R.1993. Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroxylase activity. Biochem. Biophys. Res. Commun. 190: 875–880.

    Article  PubMed  CAS  Google Scholar 

  169. TEUTSCH, H.G., HASSENFRATZ, M., LESOT, A., STOLTZ,C.,GARNIER, J., JELTSCH, J., DURST, F., WERCK-REICHHART, D. 1993. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamic acid 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl. Acad. Sci. USA 90: 4102–4106.

    Article  PubMed  CAS  Google Scholar 

  170. FARENDORF, T., DIXON, R.A. 1993. Stress responses in alfalfa (Medicago sativa L.). XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome p450. Arch. Biochem. Biophys. 305: 509–515.

    Article  Google Scholar 

  171. UHLMANN, A., EBEL, J. 1993. Molecular cloning and expression of 4-coumarate: CoA ligase. Plant Physiol. 102: 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  172. HAHLBROCK, K., SCHULZE-LEFERT, P., BECKER-ANDRE, M.1991. Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate-CoA ligase genes in potato. J. Biol. Chem. 266: 8551–8559.

    PubMed  Google Scholar 

  173. DOUGLAS, C, HOFFMANN, H., SCHULZ, W., HAHLBROCK, K.1987. Structure and elicitor or U.V. light-stimulated expression of two 4-coumarate: CoA ligase genes in parsley. EMBO J. 6: 1189–1195.

    PubMed  CAS  Google Scholar 

  174. ZHAO, Y., KUNG, S.D., DUBE, S.K. 1990. Nucleotide sequence of rice 4-coumarate:CoA ligase gene, 4-CL.1. Nucleic Acids Res. 18: 6144–6144.

    Article  PubMed  CAS  Google Scholar 

  175. KNIGHT, M.E., HALPIN, C., SCHUCH, W. 1992. Identification and characterization of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco. Plant Mol. Biol. 19: 793–801.

    Article  PubMed  CAS  Google Scholar 

  176. GALLIANO, H., CABANE, M., EKERSKOM, C., LOTTSPEICH,F., SANDERMANN, H., ERNST, D. 1993. Molecular cloning, sequence analysis and elicitor/ozone induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol. Biol. 23: 145–156.

    Article  PubMed  CAS  Google Scholar 

  177. HIBINO, T., SHIBATA, D., CHEN,J-Q., HIGUCHI, T. 1993.Cinnamyl alcohol dehydrogenase from Aralia cordata: Cloning of the cDNA and expression of the gene in lignified tissues. Plant Cell Physiol. 34: 659–665.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sederoff, R., Campbell, M., O’Malley, D., Whetten, R. (1994). Genetic Regulation of Lignin Biosynthesis and the Potential Modification of Wood by Genetic Engineering in Loblolly Pine. In: Ellis, B.E., Kuroki, G.W., Stafford, H.A. (eds) Genetic Engineering of Plant Secondary Metabolism. Recent Advances in Phytochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2544-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2544-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6085-8

  • Online ISBN: 978-1-4615-2544-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics