Skip to main content

Retinoic Acid cannot be the Morphogen in Reaction-Diffusion Models for the Formation of the Chick Wing Bud

  • Chapter
Experimental and Theoretical Advances in Biological Pattern Formation

Part of the book series: NATO ASI Series ((NSSA,volume 259))

  • 121 Accesses

Abstract

In 1968 Saunders & Gasseling discovered that a group of cells at the posterior margin of the chick wing bud has a remarkable morphogenetic potency: if transplanted to the anterior site of a host limb bud, a mirror image duplication of the normal pattern of digits develops (cf. Figure 3.1). This group of cells was labeled the ‘zone of polarizing activity’ (ZPA) and ever since extensive studies have established many interesting features of the digit pattern formation. A simple model was put forward by Tickle et al. (1975) which could describe the experimental facts of pattern duplications. This model was based on the assumption that the ZPA is the source of a morphogen which diffuses along the anteroposterior axis. At the same time the morphogen is supposed to decompose via first order kinetics. Asymptotically, a stable morphogen gradient is established which, by appropriate threshold concentrations, can separate the morphogenetic field into bounded areas for digits 4, 3 and 2 of the wing bud (Tickle et al. 1975) (cf. Figures 3.2 and 3.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bryant, S. V., Hayamizu, T., Wanek, N., & Gardiner, D. M. 1991. Position dependent properties of limb cells. In Developmental Patterning of the Vertebrate Limb, J. M. Hurle, J. R. Hinchliffe & D. Summerbell (ed). pp. 133–142, New York: Plenum Press.

    Chapter  Google Scholar 

  • Dolle, P., Rubelte, E., Leroy, P., Morriss-Kay, G., & Chambon, P. 1990. Retinolc acid receptors and cellular retinoid binding proteins: I. A systematic study of their different pattern of transcription during mouse organogenesis. Development, 110, 1133–1151.

    PubMed  CAS  Google Scholar 

  • Eichele, G., Tickle, C., & Alberts, B. M. 1985. Studies on the mechanism of retinoid-induced pattern duplications in the early chick limb bud: Temporal and spatial aspects. J. Cell. Biol., 101, 1913–1920.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, L. G. 1987. What is the status of reaction-diffusion theory thirty-four years after Turing? J. Theor. Biol., 125, 369–384.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J. D. 1982. Parameter space for Turing instability in reaction-diffusion mechanisms: a comparison of models. J. Theor. Biol., 98, 143–163.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J. D. 1989. Mathematical Biology. New York: Springer-Verlag.

    Google Scholar 

  • Papageorgiou, S., & Almirantis, Y. 1982. Diffusion or autocatalysis of retinoic acid cannot explain pattern formation in the chick wing bud. Dev. Dynam, 194, 282–288.

    Article  Google Scholar 

  • Saunders, Jr., J. W., & Gasseling, M. T. 1968. Ectodermal-mesenchymal interactions in the origin of limb symmetry. In Epithelial-Mesenchymal Interactions, Billingham, R. Fleischmajer & R. E. (ed). pp. 78–97, Baltimore: Williams & Wilkins Co.

    Google Scholar 

  • Thaller, C., & Eichele, G. 1987. Identification and spatial distribution of retinoids in the developing chick bud. Nature, 327, 625–628.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C., Summerbell, D., & Wolpert, L. 1975. Positional signaling and specification of digits in limb morphogenesis. Nature, 254, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C., Alberts, B., Wolpert, L., & Lee, J. 1982. Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature, 296, 564–565.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C., Lee, J., & Eichele, G. 1985. A quantitative analysis of the effect of all-trans-retinoic acid on the pattern of chick wing development. Dev. Biol., 109, 82–95.

    Article  PubMed  CAS  Google Scholar 

  • Wanek, N., Gardiner, D. M., Muneoka, K., & Bryant, S. V. 1991. Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature, 350, 81–83.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. 1989. Positional information revisited. Dev. Biol., 107, 3–12. (Supplement).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Almirantis, Y., Papageorgiou, S. (1993). Retinoic Acid cannot be the Morphogen in Reaction-Diffusion Models for the Formation of the Chick Wing Bud. In: Othmer, H.G., Maini, P.K., Murray, J.D. (eds) Experimental and Theoretical Advances in Biological Pattern Formation. NATO ASI Series, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2433-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2433-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6033-9

  • Online ISBN: 978-1-4615-2433-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics