Skip to main content

Bioenergetics of Methanogenesis

  • Chapter
Methanogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

The bioenergetics of methanogens could be expected to have special features, given that they are members of the Archaea and utilize a number of unique reactions and coenzymes in the pathways of methanogenesis. This turns out to be so; however, it was not until 1980 that the elucidation of the biochemistry of methanogenesis attained a stage where the bioenergetics could be studied. Since then, progress has been made, reactions involved in energy conservation have been identified, and it became clear that at least some of these reactions proceed in or at the cytoplasmic membrane. For example, it now makes sense that only methylotrophic methanogens contain cytochromes that were first discovered in methanogens in 1979; likewise, the general sodium ion dependence of methanogenesis is now understood. Indeed, the bioenergetics of methanogenesis has unique features: ATP synthesis takes advantage of proton as well as of sodium gradients, both of which are generated by primary pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich, H. C., D. B. Beimborn, M. Bokranz, and P. Schönheit. 1987. Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicwn. Arch. Microbiol. 147:190–194.

    Article  CAS  Google Scholar 

  • Avetisyan, A. V., P. A. Dibrov, V. P. Skulachev, and M. V. Sokolov. 1989. The Na+-motive respiration in Escherichia coli. FEBS Lett. 254:17–21.

    Article  CAS  Google Scholar 

  • Balch, W. E., and R. S. Wolfe. 1979. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. J. Bacteriol. 137:264–273.

    PubMed  CAS  Google Scholar 

  • Banerjee, R. V., and R. G. Matthews. 1990. Cobalamin-dependent methionine synthase. FASEB J. 4:1450–1459.

    PubMed  CAS  Google Scholar 

  • Barber, M. J., L. M. Siegel, N. L. Schauer, H. D. May, and J. G. Ferry. 1983. Formate dehydrogenase from Methanobacterium formicicum. J. Biol. Chem. 258:10839–10845.

    PubMed  CAS  Google Scholar 

  • Baron, S. F., D. S. Williams, H. D. May, D. S. Patel, H. C. Aldrich, and J. G. Ferry. 1989. Immunogold localization of coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase from Methanobacterium formicicum. Arch. Microbiol. 151:307–313.

    Article  CAS  Google Scholar 

  • Baron, S. D., and J. G. Ferry. 1989. Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum. J. Bacteriol. 171:846–3853.

    Google Scholar 

  • Becher, B., V. Müller, and G. Gottschalk. 1992a. The methyl-tetrahydromethanopterin:-coenzyme M methyltransferase of Methanosarcina strain Göl is a primary sodium pump. FEMS Microbiol. Lett. 91:239–244.

    CAS  Google Scholar 

  • Becher, B., V. Müller, and G. Gottschalk. 1992b. N 5-methyl-tetrahydromethanopterin:-coenzyme M methyltransferase of Methanosarcina strain Göl is a Na+ translocating membrane protein. J. Bacteriol., 174:7656–7660.

    PubMed  CAS  Google Scholar 

  • Blaut, M., and G. Gottschalk. 1984a. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur. J. Biochem. 141: 217–222.

    Article  CAS  Google Scholar 

  • Blaut, M., and G. Gottschalk. 1984b. Protonmotive force-driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol. Lett. 24:103–107.

    Article  CAS  Google Scholar 

  • Blaut, M., V. Müller, K. Fiebig, and G. Gottschalk. 1985. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde. J. Bacteriol. 164:95–101.

    PubMed  CAS  Google Scholar 

  • Blaut, M., V. Müller, and G. Gottschalk. 1987. Proton translocation coupled to methano-genesis from methanol + hydrogen in Methanosarcina barkeri. FEBS Lett. 215:53–57.

    Article  CAS  Google Scholar 

  • Bobik, T. A., K. D. Olson, K. M. Noll, and R. S. Wolfe. 1987. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate is a product of the methylreductase reaction in Methanobacterium. Biochem. Biophys. Res. Commun. 149:455–460.

    Article  PubMed  CAS  Google Scholar 

  • Bobik, T. A., and R. S. Wolfe. 1989. Activation of formylmethanofuran synthesis in cell extracts of Methanobacterium thermoautotrophicum. J. Bacteriol. 171:1423–1427.

    PubMed  CAS  Google Scholar 

  • Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359–378.

    PubMed  CAS  Google Scholar 

  • Börner, G., M. Karrasch, and R. K. Thauer. 1989. Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett. 244:21–25.

    Article  Google Scholar 

  • Börner, G., M. Karrasch, and R. K. Thauer. 1991. Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg). FEBS Lett. 290:31–34.

    Article  PubMed  Google Scholar 

  • Bott, M., B. Eikmanns, and R. K. Thauer. 1986. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Bott, M., and R. K. Thauer. 1989. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Bacteriol. 179:469–472.

    CAS  Google Scholar 

  • Butsch, B. M., and R. Bachofen. 1984. The membrane potential in whole cells of Methanobacterium thermoautotrophicum. Arch. Microbiol. 138:293–298.

    Article  CAS  Google Scholar 

  • Carper, S. W., and J. R. Lancaster. 1986. An electrogenic sodium-translocating ATPase in Methanococcus voltae. FEBS Lett. 200:177–180.

    Article  CAS  Google Scholar 

  • Crider, B. P., S. W. Carper, and J. R. Lancaster. 1985. Electron transfer-driven ATP synthesis in Methanococcus voltae is not dependent on a proton electrochemical gradient. Proc. Natl. Acad. Sci. USA 82:6793–6796.

    Article  PubMed  CAS  Google Scholar 

  • Dangel, W., H. Schulz, G. Diekert, H. Konig, and G. Fuchs. 1987. Occurence of corrinoid-containing membrane proteins in anaerobic bacteria. Arch. Microbiol. 148:52–56.

    Article  CAS  Google Scholar 

  • Daniels, L., G. Fulton, R. W. Spencer, and W. H. Orme-Johnson. 1980. Origin of hydrogen in methane produced by Methanobacterium thermoautotrophicum. J. Bacteriol. 141:694–698.

    PubMed  CAS  Google Scholar 

  • Daniels, L., R. Sparling, and G. D. Sprott. 1984. The bioenergetics of methanogenesis. Biochim. Biophys. Acta. 768:113–163.

    Article  PubMed  CAS  Google Scholar 

  • Denda, K., J. Konishi, T. Oshima, T. Date, and M. Yoshida. 1988a. The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of its α-subunit. J. Biol. Chem. 263:6012–6015.

    CAS  Google Scholar 

  • Denda, K., J. Konishi, T. Oshima, T. Date, and M. Yoshida. 1988b. Molecular cloning of the β-subunit of a possible Non-F1F0 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J. Biol. Chem. 263:17251–17254

    CAS  Google Scholar 

  • Denda, K., J. Konishi, T. Oshima, T. Date, and M. Yoshida. 1989. A gene encoding the proteolipid subunit of Sulfolobus acidocaldarius ATPase complex. J. Biol. Chem. 264:7119–7121.

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, and G. Gottschalk. 1989. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors. Eur. J. Biochem. 186:317–323.

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, and G. Gottschalk. 1991. H2: heterodisulfide oxidoreductase, a second energy conserving system in the methanogenic strain Göl. Arch. Microbiol. 155:272–277.

    Article  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, A. Mahlmann, and G. Gottschalk. 1990a. Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Göl and Methanolobus tindarius. FEBS Lett. 261:199–203.

    Article  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, A. Mahlmann, and G. Gottschalk. 1990b. Reduced coenzyme F420 heterodisulfide oxidoreductase, a proton translocating redox system in methanogenic bacteria. Proc. Natl. Acad. Sci. USA 87:9449–9453.

    Article  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, B. Schmidt, and G. Gottschalk. 1992. Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain Göl. Arch. Microbiol. 157:505–511

    PubMed  CAS  Google Scholar 

  • Dharmavaram, R., P. Gillevet, and J. Konisky. 1991. Nucleotide sequence of the gene encoding the vanadate sensitive membrane-associated ATPase of Methanococcus voltae. J. Bacteriol. 173:2131–2133.

    PubMed  CAS  Google Scholar 

  • Dharmavaram, R. M., and J. Konisky. 1987. Identification of a vanadate-sensitive, membrane- bound ATPase in the archaebacterium Methanococcus voltae. J. Bacteriol. 169:3921–3925.

    PubMed  CAS  Google Scholar 

  • Dharmavaram, R. M., and J. Konisky. 1989. Characterization of a P-type ATPase of the archaebacterium Methanococcus voltae. J. Biol. Chem. 264:14085–14089.

    PubMed  CAS  Google Scholar 

  • Dimroth, P. 1987. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51:320–340.

    PubMed  CAS  Google Scholar 

  • Dimroth, P. 1991. Na+-coupled alternative to H+-coupled primary transport systems in bacteria. BioEssays 13:463–468.

    Article  PubMed  CAS  Google Scholar 

  • Doddema, H. J., T. J. Hütten, C. van der Drift, and G. D. Vogels. 1978. ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum. J. Bacteriol. 136:19–23.

    PubMed  CAS  Google Scholar 

  • Dybas, M., and J. Konisky. 1989. Transport of coenzyme M (2-mercaptoethanesulfonic acid) and methylcoenzyme M ((2-methylthio)ethanesulfonic acid) in Methanococcus voltae—identification of specific and general uptake systems. J. Bacteriol. 171:5866–5871.

    PubMed  CAS  Google Scholar 

  • Eikmanns, B., and R. K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch. Microbiol. 138:365–370.

    Article  CAS  Google Scholar 

  • Ekiel, I., K. F. Jarrell, and G. D. Sprott. 1985. Amino acid biosynthesis and sodiumdependent transport in Methanococcus voltae, as revealed by 13C NMR. Eur. J. Biochem. 149:437–444.

    Article  PubMed  CAS  Google Scholar 

  • Ellermann, J., S. Rospert, R. K. Thauer, M. Bokranz, A. Klein, and M. Voges. 1989. Methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum (strain Marburg)—Purity, activity and novel inhibitors. Eur. J. Biochem. 184:63–68.

    Article  PubMed  CAS  Google Scholar 

  • Fauque, G., M. Teixeira, I. Moura, P. A. Lespinat, and A. V. Xavier. 1984. Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 804). Eur. J. Biochem. 142:21–28.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1988. Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. FEBS Lett. 228:249–253.

    Article  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:459–465.

    Article  CAS  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1990a. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:3682–372.

    Article  Google Scholar 

  • Fischer, R., and R. K. Thauer. 1990b. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2. Arch. Microbiol. 153:156–162.

    Article  CAS  Google Scholar 

  • Fox, J. A., D. J. Livingston, W. M. Orme-Johnson, and C. T. Walsh. 1987. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. Biochemistry 26:4219–4227.

    Article  PubMed  CAS  Google Scholar 

  • a) Fox, J. A., D. J. Livingston, W. M. Orme-Johnson, and C. T. Walsh. 1987. Purification and characterization. Biochemistry 26:4219–4227

    Article  PubMed  CAS  Google Scholar 

  • b) Fox, J. A., D. J. Livingston, W. M. Orme-Johnson, and C. T. Walsh. 1987. kinetic and hydrogen transfer studies. Biochemistry 26:4219–4227.

    Article  PubMed  CAS  Google Scholar 

  • Gogarten, J. P., H. Kibak, P. Dittrich, L. Taiz, E. J. Bowman, B. J. Bowman, M. F. Manolson, R. J. Poole, T. Date, T. Oshima, J. Konishi, K. Denda, and M. Yoshida. 1989. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86:6661–6665.

    Article  PubMed  CAS  Google Scholar 

  • Gogarten, J. P., T. Rausch, P. Bernasconi, H. Kibak, and L. Taiz. 1989. Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eucaryotes and eubacteria. Z. Naturforsch. 44c: 641–650.

    Google Scholar 

  • Grahame, D. A. 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266:22227–22233.

    PubMed  CAS  Google Scholar 

  • Gunsalus, R. P., and R. S. Wolfe. 1977. Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts of Methanobacterium. Biochem. Biophys. Res. Commun. 76:790–795.

    Article  PubMed  CAS  Google Scholar 

  • Haase, P., U. Deppenmeier, M. Blaut, and G. Gottschalk. 1992. Purification and characterization of F420H2 dehydrogenase from Methanolobus tindarius. Eur. J. Biochem. 203:527–531.

    Article  PubMed  CAS  Google Scholar 

  • Harold, F. M. 1972. Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36:172–230.

    PubMed  CAS  Google Scholar 

  • Hedderich, R., A. Berkessel, and R. K. Thauer. 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 193:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Hedderich, R., and R. K. Thauer. 1988. Methanobacterium thermoautotrophicum contains a soluble enzyme system that specifically catalyzes the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate with H2. FEBS Lett. 234:223–227.

    Article  CAS  Google Scholar 

  • Heine-Dobbernack, E., S. M. Schoberth, and H. Sahm. 1988. Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl. Environ. Microbiol. 54:454–459.

    PubMed  CAS  Google Scholar 

  • Hilpert, W., B. Schink, and P. Dimroth. 1984. Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J. 3:1665–1670.

    PubMed  CAS  Google Scholar 

  • Hoffmann, A., W. Laubinger, and P. Dimroth. 1990. Na+-coupled ATP synthesis in Propionigenium modestum: is it a unique system? Biochim. Biophys. Acta. 1018: 206–210.

    Article  CAS  Google Scholar 

  • Ihara, K., and Y. Mukohata. 1991. The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acids sequences of its two major subunits. Arch. Biochem. Biophys. 286:111–116.

    Article  PubMed  CAS  Google Scholar 

  • Imae, Y. and T. Asumi. 1989. Na+-driven bacterial flagellar motors. J. Bioenerg. Biomembr. 21: 705–716.

    Article  PubMed  CAS  Google Scholar 

  • Inatomi, K. I. 1986. Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri. J. Bacteriol. 167:837–841.

    PubMed  CAS  Google Scholar 

  • Inatomi, K. I., S. Eya, M. Maeda, and M. Futai. 1989. Amino acid sequence of the alpha and beta subunits of Methanosarcina barkeri ATPase deduced from cloned genes. J. Biol. Chem. 264:10954–10959.

    PubMed  CAS  Google Scholar 

  • Inatomi, K. I, M. Maeda, and M. Futai. 1989. Dicyclohexylcarbodiimide-binding protein is a subunit of the Methanosarcina barkeri ATPase complex. Biochem. Biophys. Res. Commun. 162:1585–1590.

    Article  PubMed  CAS  Google Scholar 

  • Jarrell, K. F., S. E. Bird, and G. D. Sprott. 1984. Sodium-dependent isoleucine transport in the methanogenic archaebacterium Methanococcus voltae. FEBS Lett. 166:357–361.

    Article  CAS  Google Scholar 

  • Jarrell, K. F., and G. D. Sprott. 1981. The transmembrane electrical potential and intracellular pH in methanogenic bacteria. Can. J. Microbiol. 27:720–728.

    Article  PubMed  CAS  Google Scholar 

  • Jarrell, K. F., and G. D. Sprott. 1982. Nickel transport in Methanobacterium bryantii. J. Bacteriol. 151:1195–1203.

    PubMed  CAS  Google Scholar 

  • Jarrell, K. F., and G. D. Sprott. 1983. The effects of ionophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii. Arch. Biochem. Biophys. 225:33–41.

    Article  PubMed  CAS  Google Scholar 

  • Jarrell, K. F., and G. D. Sprott. 1985. Importance of sodium to the bioenergetic properties of Methanococcus voltae. Can. J. Microbiol. 31:851–855.

    Article  CAS  Google Scholar 

  • Jin, C. S. L., K. D. Blanchard, and J. S. Chen. 1983. Two hydrogenases with distinct electron-carrier specificity and subunit composition in Methanobacterium formicicum. Biochim. Biophys. Acta. 748:8–20.

    Article  CAS  Google Scholar 

  • Jones, J. B., and T. C. Stadtman. 1981. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vanniellii. J. Biol. Chem. 256:656–663.

    PubMed  CAS  Google Scholar 

  • Jussofie, A., F. Mayer, and G. Gottschalk. 1986. Methane formation from methanol and molecular hydrogen by protoplasts of new isolates. Arch. Microbiol. 146:245–249.

    Article  CAS  Google Scholar 

  • Kaesler, B., and P. Schönheit. 1988. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. Eur. J. Biochem. 174:189–197.

    Article  PubMed  CAS  Google Scholar 

  • Kaesler, B., and P. Schönheit. 1989a. The role of sodium ions in methanogenesis-formaldehyde oxidation to CO2 and 2 H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2. Eur. J. Biochem. 184:223–232.

    Article  CAS  Google Scholar 

  • Kaesler, B., and P. Schönheit. 1989b. The sodium cycle in methanogenesis-CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur. J. Biochem. 186:309–316.

    Article  CAS  Google Scholar 

  • Kamlage, B., and Blaut, M. 1992. Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol. J. Bacteriol. 174:3921–3927.

    PubMed  CAS  Google Scholar 

  • Karrasch, M., G. Börner, M. Enßle, and R. K. Thauer. 1989. Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett. 253:226–230.

    Article  PubMed  CAS  Google Scholar 

  • Karrasch, M., G. Börner, M. Enßle, and R. K. Thauer. 1990a. The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur. J. Biochem. 194:367–372.

    Article  PubMed  CAS  Google Scholar 

  • Karrasch, M., G. Börner, and R. K. Thauer. 1990b. The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett. 274:48–52.

    Article  PubMed  CAS  Google Scholar 

  • Keltjens, J. T., and C. van der Drift. 1986. Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39:259–303.

    Article  CAS  Google Scholar 

  • Kemner, J. M., J. A. Krzycki, R. C. Prince, and J. G. Zeikus. 1987. Spectroscopic and enzymatic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochrome b function in Methanosarcina barkeri. FEMS Microbiol. Lett. 48:267–272.

    Article  CAS  Google Scholar 

  • Kengen, S. W. M., P. J. H. Daas, E. F. G. Duits, J. T. Keltjens, C. Van der Drift, and G. D. Vogels. 1992. Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterinxoenzyme M methyltransferase reaction in Methanobacterium thermoautotrophicwn. Biochim. Biophys. Acta. 1118: 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, N., J. A. Fox, R. P. Hausinger, L. Daniels, W. A. Orme-Johnson, and C. Walsh. 1983. Paramagnetic centers in the nickel-containing, deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicwn. Proc. Natl. Acad. Sci. USA 80:378–382.

    Article  PubMed  CAS  Google Scholar 

  • Krulwich, T. A. 1983. Na+/H+ Antiporters. Biochim. Biophys. Acta. 726:245–264.

    Article  PubMed  CAS  Google Scholar 

  • Krzycki, J. A., and J. G. Zeikus. 1984. Acetate catabolis m by Methanosarcina barkeri: hydrogen-dependent methane production from acetate by a soluble cell protein fraction. FEMS Microbiol. Lett. 25:27–32.

    Article  CAS  Google Scholar 

  • Kühn, W., K. Fiebig, H. Hippe, R. A. Man, B. A. Huser, and G. Gottschalk. 1983. Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20:407–410.

    Article  Google Scholar 

  • Kühn, W., and G. Gottschalk. 1983. Characterization of the cytochromes occurring in Methanosarcina species. Eur. J. Biochem. 135:89–94.

    Article  PubMed  Google Scholar 

  • Lancaster, J. R. 1986. A unified scheme for carbon and electron flow coupled to ATP synthesis by substrate-level phosphorylation in the methanogenic bacteria. FEBS Lett. 199:12–18.

    Article  CAS  Google Scholar 

  • Lanyi, J. K. 1979. The role of Na+ in transport processes of bacterial membranes. Biochim. Biophys. Acta. 559:377–397.

    Article  PubMed  CAS  Google Scholar 

  • Laubinger, W., and P. Dimroth. 1988. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry 27:7531–7535.

    Article  PubMed  CAS  Google Scholar 

  • Laubinger, W., and P. Dimroth. 1989. The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. Biochemistry 28:7194–7198.

    Article  PubMed  CAS  Google Scholar 

  • Laufer, K., B. Eikmanns, U. Frimmer, and R. K. Thauer. 1987. Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation by methyl iodide, CO2 and H2 by the enzyme system involved. Z. Naturforsch. 42:360–372.

    CAS  Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40:415–450.

    Article  PubMed  CAS  Google Scholar 

  • Lübben, M., H. Lünsdorf, and G. Schäfer. 1987. A plasma membrane ATPase of the thermophilic archaebacterium Sulfolobus acidocaldarius. Purification and immunological relationships to F1-ATPases. Eur. J. Biochem. 167:211–219.

    Article  PubMed  Google Scholar 

  • Lünsdorf, H., M. Niedrig, and K. Fiebig. 1991. Immunocytochemical localization of the conenzyme F420-reducing hydrogenase in Methanosarcina barkeri Fusaro. J. Bacteriol. 173:978–984.

    PubMed  Google Scholar 

  • Mahlmann, A., U. Deppenmeier, and G. Gottschalk. 1989. Methanofuran b is required for CO2 formation from formaldehyde by Methanosarcina barkeri. FEMS Microbiol. Lett. 61:115–120.

    Article  CAS  Google Scholar 

  • Maloy, R. S. 1990. Sodium-coupled cotransport. In Bacterial energetics, T. A. Krulwich (ed), pp. 203–224. Academic Press, San Diego.

    Google Scholar 

  • Mandel, M., Y. Moriyama, J. D. Hulmes, Y. C. E. Pan, H. Nelson, and N. Nelson. 1988. cDNA sequence encoding the 16-kDa proteolipid of cromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc. Natl. Acad. Sci. USA 85:5521–5524.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, F., M. Rohde, M. Salzmann, A. Jussofie, and G. Gottschalk. 1988. The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic strain Göl that contains components of the methylreductase system. J. Bacteriol. 170:1438–1444.

    PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1985. Methanosphaera stadtmanii, gen. nov, sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122.

    Article  PubMed  CAS  Google Scholar 

  • Mountfort, D. O. 1978. Evidence for ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem. Biophys. Res. Commun. 85:1346–1350.

    Article  PubMed  CAS  Google Scholar 

  • Mountfort, D. O., E. Mörschel, D. B. Beimborn, and P. Schönheit. 1986. Methanogenesis and ATP synthesis in a protoplast system of Methanobacterium thermoautotrophicum. J. Bacteriol. 168:892–900.

    PubMed  CAS  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1987a. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur. J. Biochem. 162:461–466.

    Article  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1987b. Oxidation of trimethylamine to the level of formaldehyde by Methanosarcina barkeri is dependent on the protonmotive force. FEMS Microbiol. Lett. 43:183–186.

    Article  Google Scholar 

  • Müller, V., M. Blaut, and G. Gottschalk. 1988a. The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Eur. J. Biochem. 172:601–606.

    Article  Google Scholar 

  • Müller, V., M. Blaut, R. Heise, C. Winner, and G. Gottschalk. 1990. Sodium bioenergetics in methanogens and acetogens. FEMS Microbiol. Rev. 87:373–376.

    Article  Google Scholar 

  • Müller, V., C. Winner, and G. Gottschalk. 1988b. Electron transport-driven sodium extrusion during methanogenesis from formaldehyde + H2 by Methanosarcina barkeri. Eur. J. Biochem. 178:519–525.

    Article  PubMed  Google Scholar 

  • Muth, E. 1988. Localization of the F420-reducing hydrogenase in Methanococcus voltae. Arch. Microbiol. 150:205–207.

    Article  CAS  Google Scholar 

  • Muth, E., E. Mörschel, and A. Klein. 1987. Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanococcus voltae. Eur. J. Biochem. 169:571–577.

    Article  PubMed  CAS  Google Scholar 

  • Naumann, E., K. Fahlbusch, and G. Gottschalk. 1984. Presence of a trimethylamine:HS-coenzyme M methytransferase in Methanosarcina barkeri. Arch. Microbiol. 138:79–83.

    Article  CAS  Google Scholar 

  • Odom, J. M., and H. D. Peck Jr. 1981. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria. FEMS Microbiol. Lett. 12:47–50.

    Article  CAS  Google Scholar 

  • Ossmer, R., T. Mund, P. Hartzeil, U. Konheiser, G. W. Kohring, A. Klein, R.S. Wolfe, G. Gottschalk and F. Mayer. 1986. Immunocytochemical localization of component C of the methylreductase system in Methanococcus voltae and Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 83:5789–5792.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, P. L., and E. Carafoli. 1987. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12:146–150.

    Article  CAS  Google Scholar 

  • Peinemann, S., M. Blaut, and G. Gottschalk. 1989. ATP synthesis coupled to methane formation from methyl-CoM and H2 catalyzed by vesicles of the methanogenic bacterial strain Göl. Eur. J. Biochem. 186:175–180.

    Article  PubMed  CAS  Google Scholar 

  • Peinemann, S., R. Hedderich, M. Blaut, R. K. Thauer, and G. Gottschalk. 1990. ATP synthesis coupled to electron transfer from H2 to the heterodisulfide of 2-mercaptoethane sulfonate and 7-mercaptoheptanoylthreonine phosphate in vesicle preparations of the methanogenic bacterium strain Göl. FEBS Lett. 263:57–60.

    Article  CAS  Google Scholar 

  • Peinemann, S., V. Müller, M. Blaut, and G. Gottschalk. 1988. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J. Bacteriol. 170:1369–1372.

    PubMed  CAS  Google Scholar 

  • Perski, H. J., J. Moll, and R. K. Thauer. 1981. Sodium dependence of growth and methane formation in Methanobacterium thermoautotrophicum. Arch. Microbiol. 130:319–321.

    Article  CAS  Google Scholar 

  • Perski, H. J., P. Schönheit, and R. K. Thauer. 1982. Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett. 143:323–326.

    Article  CAS  Google Scholar 

  • Reeve, J.N., G.S. Beckler, D.S. Cram, P.T. Hamilton, J.W. Brown, and J.A. Krzycki. 1989. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proc. Natl. Acad. Sci. USA 86:3031–3035.

    Article  PubMed  CAS  Google Scholar 

  • Roberton, A. M., and R. S. Wolfe. 1970. Adenosine triphosphate pools in Methanobacterium. J. Bacteriol. 102:43–51.

    PubMed  CAS  Google Scholar 

  • Santoro, N., and J. Konisky. 1987. Characterization of bromoethanesulfonate-resistent mutants of Methanococcus voltae: Evidence of a coenzyme M transport system. J. Bacteriol. 169:660–665.

    PubMed  CAS  Google Scholar 

  • Schauer, N. L., and J. G. Ferry. 1980. Metabolism of formate in Methanobacterium formicicum. J. Bacteriol. 142:800–807.

    PubMed  CAS  Google Scholar 

  • Scheel, E., and G. Schäfer. 1990. Chemiosmotic energy conversion and the membrane ATPase of Methanolobus tindarius. Eur. J. Biochem. 187:727–735.

    Article  PubMed  CAS  Google Scholar 

  • Schönheit, P., and D. B. Beimborn. 1985. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2-CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane. Eur. J. Biochem. 148:545–550.

    Article  PubMed  Google Scholar 

  • Schönheit, P., and D. B. Beimborn. 1985. Presence of a Na+/H+ antiporter in Methanobacterium thermoautotrophicum and its role in Na+ dependent methanogenesis. Arch. Microbiol. 142:354–361.

    Article  Google Scholar 

  • Schönheit, P., and D. B. Beimborn. 1986. Monensin and gramicidin stimulate CH4 formation from H2 and CO2 in Methanobacterium thermoautotrophicum at low Na+ concentration. Arch. Microbiol. 146:181–185.

    Article  Google Scholar 

  • Schönheit, P., and H. J. Perski. 1983. ATP synthesis driven by potassium diffusion potential in Methanobacteriwn thermoautotrophicum is stimulated by sodium. FEMS Microbiol. Lett. 20:263–267.

    Article  Google Scholar 

  • Schuldiner, S., and E. Padan. 1992. Na+/H+ antiporters. In Alkali cation transport systems in prokaryotes. E. P. Bakker (ed.), CRC Press, Boca Raton, in press

    Google Scholar 

  • Schulz, H., S. P. J. Albracht, J. M. C. Coremans, and G. Fuchs. 1988. Purification and some properties of the corrinoid-containing membrane protein from Methanobacteriwn thermoautotrophicum. Eur. J. Biochem. 171:589–597.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, H., and G. Fuchs. 1986. Cobamide-containing membrane protein complex in Methanobacterium. FEBS Lett. 198:279–282.

    Article  CAS  Google Scholar 

  • Semeykina, A. L., V. P. Skulachev, M. L. Verkhovskaya, E. S. Bulygina, and K. M. Chumakov. 1989. The Na+-motive terminal oxidase activity in alkalo- and halo-tolerant Bacillus. Eur. J. Biochem. 183:671–678.

    Article  PubMed  CAS  Google Scholar 

  • Skulachev, V. P. 1985. Membrane-linked energy transduction. Bioenergetic functions of sodium: H+ is not unique as coupling ion. Eur. J. Biochem. 154:199–208.

    Article  Google Scholar 

  • Smigan, P., L. Horovska, and M. Greksak. 1988. Na+-driven ATP synthesis in Methanobacterium thermoautotrophicum can be modulated with sodium ion concentrations in the growth medium. FEBS Lett. 242:85–88.

    Article  CAS  Google Scholar 

  • Smigan, P., P. Rusnak, M. Greksak, T. N. Zhilina, and G. A. Zavarzin. 1992. Mode of sodium ion action on methanogenesis and ATPase of the moderate halophilic methanogenic bacterium Methanohalophilus halophilus. FEBS Lett. 300:193–196.

    Article  PubMed  CAS  Google Scholar 

  • Sprott, G. D., S. E. Bird, and I. J. McDonald. 1985. Proton motive force as a function of the pH at which Methanobacterium bryantii is grown. Can. J. Microbiol. 31:1031–1034.

    Article  CAS  Google Scholar 

  • Stan-Lotter, H., E. M. Bowman, and L. I. Hochstein. 1991. Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases. Arch. Biochem. Biophys. 284:116–119

    Article  PubMed  CAS  Google Scholar 

  • Steigerwald, V.J., G.S. Beckler, and J.N. Reeve. 1990. Conservation of hydrogenase and polyferredoxin structures in the hyperthermophilic archaebacterium Methanothermus fervidus. J. Bacteriol. 172:4715–4718.

    PubMed  CAS  Google Scholar 

  • Stupperich, E., A. Juza, C. Eckerskorn, and L. Edelmann. 1990. An immunological study of corrinoid proteins from bacteria revealed homologous antigenic determinants of a soluble corrinoid-dependent methyltransferase and corrinoid-containing membrane proteins from Methanobacterium species. Arch. Microbiol. 155:28–34.

    Article  CAS  Google Scholar 

  • Terlesky, K. C., and J. G. Ferry. 1988. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.

    PubMed  CAS  Google Scholar 

  • Terlesky, K. C., and J. G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.

    CAS  Google Scholar 

  • Thauer, R. K. 1990. Energy metabolism of methanogenic bacteria. Biochim. Biophys. Acta. 1018: 256–259.

    Google Scholar 

  • Tokuda, H., and T. Unemoto. 1985. The Na+-motive respiratory chain of marine bacteria. Microbiol. Sci. 2:65–71.

    PubMed  CAS  Google Scholar 

  • Unemoto, T., H. Tokuda, and M. Hayashi. 1990. Primary sodium pumps and their significance in bacterial energetics. In Bacterial energetics. T. A. Krulwich (ed.), pp. 33–54. Academic Press, San Diego.

    Google Scholar 

  • Van der Meijden, P., H. J. Heythuysen, F. P. Pouwels, F. P. Houwen, and C. van der Drift. 1983. Methyltransferase involved in methanol conversion by Methanosarcina barkeri. Arch. Microbiol. 134:238–242.

    Article  PubMed  CAS  Google Scholar 

  • Van der Meijden, P., B. Jansen, C. van der Drift, and G. D. Vogels. 1983. Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes from Methanosarcina barkeri. FEMS Microbiol. Lett. 19:247–251.

    Article  Google Scholar 

  • Winner, C., and G. Gottschalk. 1989. H2 and CO2 production from methanol or formaldehyde by the methanogenic bacterium strain Göl treated with 2-bromoethanesulfonic acid. FEMS Microbiol. Lett. 65:259–264.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Müller, V., Blaut, M., Gottschalk, G. (1993). Bioenergetics of Methanogenesis. In: Ferry, J.G. (eds) Methanogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2391-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2391-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6013-1

  • Online ISBN: 978-1-4615-2391-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics