Skip to main content

Mitotic Control by Ran and RanBP1 in Mammalian Cells

  • Chapter
The Small GTPase Ran

Abstract

Growing evidence from model systems indicates mitotic roles for the Ran network independent of nuclear transport. Ran binding protein 1 (RanBPl) is a regulatory component which modulates nucleotide turnover on Ran, and hence its functional state. In mammalian cells, deregulated RanBP1 activity and, more generally, dysfunction of the Ran network, yield mitotic aberrations and genetically imbalanced cells, which are discussed in this chapter. The mammalian RanBP1 gene is subject to growth-dependent and cell cycle phase-dependent control: RanBP1 gene transcription is linked to the basal cell cycle machinery under the control of E2F and pRb (retinoblastoma) factors, which are major regulators of the Gl/S transition. RanBPl protein levels increase from S phase until late telophase, when the protein is no longer detected in daughter nuclei. The cell cycle regulated pattern of RanBPl activity can be disrupted by either overexpressing exogenous constructs or inactivating the endogenous protein. Both types of alterations impair steps of mitotic control, yielding spindles with abnormal poles, impairment of microtubule dynamics during mitosis, blockage or delay of mitotic progression, and failure of chromatin decondensation in daughter nuclei during mitotic exit. Several types of solid tumors show high frequencies of aneuploidy. RanBPl is overexpressed in at least certain transformed cell types. In the future it will be important to assess whether deregulation of RanBPl activity predisposes cells to develop genomic abnormalities during transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battistoni A, Guarguaglini G, Degrassi F, Pittoggi C, Palena A, Di Matteo G, Pisano C, Cundari E, Lavia P (1997) Deregulated expression of the RanBPl gene alters cell cycle progression in murine fibroblasts. J Cell Sei 110, 2345–2357

    CAS  Google Scholar 

  • Bäumer M, Künzler M, Steigemann P, Braus GH, Irniger S.(2000) Yeast Ran-binding protein Yrblp is required for efficient proteolysis of cell cycle regulatory proteins Pdslp and Siclp. J Biol Chem 275, 38929–38937

    Article  PubMed  Google Scholar 

  • Bischoff FR, Ponstingl H (1991a) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82

    Article  Google Scholar 

  • Bischoff FR, Ponstingl H (1991b) Mitotic regulator protein RCC1 is complexed with a nuclear Ras-related polypeptide. Proc Natl Acad Sei USA 88, 10830–10834

    Article  Google Scholar 

  • Bischoff FR, Maier G, Tilz G, Ponstingl H (1990) A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc Natl Acad Sei USA 87, 8617–8621

    Article  CAS  Google Scholar 

  • Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H (1995) Co-activation of RanGTPase and inhibition of GTP dissociation by RanGTP binding protein RanBPl. EMBO J 1, 705–715

    Google Scholar 

  • Bressan A, Somma MP, Lewis J, Santolamazza C, Copeland N, Gilbert D, Jenkins NA, Lavia P (1991) Characterisation of the opposite-strand genes from the mouse bidirection-ally transcribed Htf9 locus. Gene 103, 201–209

    Article  PubMed  CAS  Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation Nature 400, 775–181

    Google Scholar 

  • Carazo-Salas RE, Gruss OJ, Mattaj IW, Karsenti E (2001) RanGTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3, 228–234

    Article  PubMed  CAS  Google Scholar 

  • Ciciarello M, Mangiacasale R, Casenghi M, Limongi MZ, D’Angelo M, Soddu S, Lavia P, Cundari E (2001) p53 displacement from centrosomes and p53-mediated Gl arrest following transient inhibition of the mitotic spindle. J Biol Chem 276, 19205–19213

    Article  PubMed  CAS  Google Scholar 

  • Coutavas E, Ren M, Oppenheim J, D’Eustachio P, Rush MG (1993) Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366, 585–587

    Article  PubMed  CAS  Google Scholar 

  • Coutavas E, Hsieh CM, Ren M, Drivas GT, Rush MG, D’Eustachio P (1994) Tissue-specific expression of Ran isoforms in the mouse. Mamm Genome 5, 623–628

    Article  PubMed  CAS  Google Scholar 

  • Dasso M, Seki T, Azuma Y, Ohba T, Nishimoto T (1994) A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J 13, 5732–5744

    PubMed  CAS  Google Scholar 

  • DeGregori J, Russ A, von Melchner H, Rayburn H, Priyaranjan P, Jenkins NA, Copeland NG, Ruley HE (1994) A murine homolog of the yeast RNA1 gene is required for postimplantation development. Genes Dev 8, 265–276

    Article  PubMed  CAS  Google Scholar 

  • Demeter J, Morphew M, Sazer S (1995) A mutation in the RCC1-related protein piml results in nuclear envelope fragmentation in fission yeast. Proc Natl Acad Sei USA 92, 1436–1440

    Article  CAS  Google Scholar 

  • Di Fiore B, Guarguaglini G, Palena A, Kerkhoven RM, Bernards R, Lavia P (1999) Two E2F-binding sites independently control growth-regulated and cell-cycle regulated transcription of the Htf9-a/RanBPl gene. J Biol Chem 274, 10339–10348

    Article  PubMed  Google Scholar 

  • Di Matteo G, Fuschi P, Zerfass K, Moretti S, Ricordy R, Cenciarelli C, Tripodi M, Jansen-Dürr P, Lavia P (1995) Transcriptional control of the Htf9-a/RanBPl gene during the cell cycle. Cell Growth Diff 6, 1213–1224

    PubMed  Google Scholar 

  • Di Matteo G, Salerno M, Guarguaglini G, Di Fiore B, Palitti F, Lavia P (1998) Interactions with single-stranded and double-stranded DNA-binding factors and alternative promoter conformation upon transcriptional activation of the Htf9-a/RanBPl and Htf9-c genes. J Biol Chem 273, 495–505

    Article  PubMed  Google Scholar 

  • Drivas GT, Shih A, Coutavas E, Rush MG, D’Eustachio P (1990) Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol 10, 1793–1798

    PubMed  CAS  Google Scholar 

  • Fleig U, Salus SS, Karig I, Sazer S (2000) The fission yeast ran GTPase is required for microtubule integrity. J Cell Biol 151, 1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Giannakakou P, Sackett DL, Ward Y, Webster KR, Blagosklonny MV, Fojo T (2000) p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol 2, 709–711

    Article  PubMed  CAS  Google Scholar 

  • Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Ver-nos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104, 83–93

    Article  PubMed  CAS  Google Scholar 

  • Guarguaglini G, Renzi L, D’Ottavio F, Di Fiore B, Casenghi M, Cundari E, Lavia P (2000) Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ 77, 455–465

    Google Scholar 

  • He X, Hayashi N, Walcott NG, Azuma Y, Patterson TE, Bischoff FR, Nishimoto T, Sazer S (1998) The identification of cDNAs that affect the mitosis-to-interphase transition in Schizosaccharomyces pombe, including sbpl, which encodes a spilp-GTP-binding protein. Genetics 148, 645–656

    PubMed  CAS  Google Scholar 

  • Hetzer M, Bilbao-Cortes D, Walther TC, Gruss OJ, Mattaj IW (2000) GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 5, 1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Kalab P, Pu RT, Dasso M (1999) The Ran GTPase regulates mitotic spindle assembly. Curr Biol 9, 481–484

    Article  PubMed  CAS  Google Scholar 

  • Künzler M, Gerstberger T, Stutz F, Bischoff FR, Hurt E (2000) Yeast ran-binding protein 1 (Yrbl) shuttles between the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (XPOIndependent pathway. Mol Cell Biol 20, 4295–4308

    Article  PubMed  Google Scholar 

  • Kiinzler M, Trueheart J, Sette C, Hurt E, Thorner J (2001) Mutations in the yrbl gene encoding yeast Ran-binding-protein-1 that impair nucleocytoplasmic transport and suppress yeast mating defects. Genetics 157, 1089–1105

    Google Scholar 

  • Lavia P, Jansen-Dürr P (1999) E2F target genes and cell cycle checkpoint control. BioEs-says 27, 221–230

    Article  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396, 643–-649

    Article  PubMed  CAS  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partioning of the RanGTPase-activating protein RanGAPl 1 between the cytosol and the nuclear pore complex. J Cell Biol 755, 1457–1470

    Article  Google Scholar 

  • Matynia A, Dimitrov K, Mueller U, He X, Sazer S (1996) Perturbations in the spilp GTPase cycle of Schizosaccharomyces pombe through its GTPase-activating protein and guanine nucleotide exchange factor components result in similar phenotypic consequences. Mol Cell Biol 16, 6352–6362

    PubMed  CAS  Google Scholar 

  • Merdes A, Cleveland DW (1997) Pathways of spindle pole formation: different mechanisms; conserved components. J Cell Biol 138, 953–956

    Article  PubMed  CAS  Google Scholar 

  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106

    Article  PubMed  CAS  Google Scholar 

  • Nicolas F, Zhang C, Hughes M, Goldberg M, Watton S, Clarke P (1997) Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J Cell Sei 770, 3019–3030

    Google Scholar 

  • Nishitani H, Ohtsubo M, Yamashita K, Iida H, Pines J, Yasuda H, Shibata Y, Hunter T, Nishimoto T (1991) Loss of RCC1, a nuclear DNA-binding protein, uncouples the completion of DNA replication from the activation of cdc2 protein kinase and mitosis. EMBO J 27, 1555–1563

    Google Scholar 

  • Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo M, Kai R, Furuno N, Sekiguchi T, Sekiguchi M, Hayashida H, Kuma K, Miyata T, Fukushige S, Murotsu T, Matsubara K, Nishimoto T (1987) Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev 1, 585–593

    Article  PubMed  CAS  Google Scholar 

  • Ouspenski II (1998) A RanBPl mutation which does not visibly affect nuclear import may reveal additional functions of the Ran GTPase system. Exp Cell Res 244, 171–183

    Article  PubMed  CAS  Google Scholar 

  • Ouspenski II, Mueller UW, Matynia A, Sazer S, Elledge S J, Brinkley BR (1995) Ran-binding protein 1 is an essential component of the Ran/RCCl molecular switch system in budding yeast. J Biol Chem 270, 1975–1978

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli AE, Powers MA, Lund E, Forbes D, Dahlberg JE (1997) Inhibition of mRNA export in vertebrate cells by nuclear export signal conjugates. Proc Natl Acad Sei USA 94, 14394–14399

    Article  CAS  Google Scholar 

  • Pihan GA, Doxsey S J (1999) The mitotic machinery as a source of genetic instability in cancer. Semin Cancer Biol 9, 289–302

    Article  PubMed  CAS  Google Scholar 

  • Plafker K, Macara IG (2000) Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBPl Mol Cell Biol 20, 3510–3521

    Article  PubMed  CAS  Google Scholar 

  • Pu RT, Dasso M (1997) The balance of RanBPl and RCC1 is critical for nuclear assembly and nuclear transport. Mol Biol Cell 10, 1955–1970

    Google Scholar 

  • Ren M, Coutavas E, D’Eustachio P, Rush MG (1994) Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol Cell Biol 14, 4216–4224

    PubMed  CAS  Google Scholar 

  • Sazer S, Nurse P (1994) A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J 13, 606–615

    PubMed  CAS  Google Scholar 

  • Seki T, Yamashita K, Nishitani H, Takagi T, Russell P, Nishimoto T (1992) Chromosome condensation caused by loss of RCC1 function requires the cdc25C protein that is located in the cytoplasm. Mol Biol Cell 3, 1373–1388.

    PubMed  CAS  Google Scholar 

  • Tsuneoka M, Fulia N, Hideko O, Eisuke M (1997) c-myc activates RCC1 gene expression through E-box elements Oncogene 14, 2301–2311

    Article  PubMed  CAS  Google Scholar 

  • Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R (1998) A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 13, 903–913

    Article  Google Scholar 

  • Watanabe M, Fukuda M, Yoshida M, Yanagida M, Nishida E (1999) Involvement of CRM1, a nuclear export receptor, in mRNA export in mammalian cells and fission yeast. Genes Cells 4: 291–297

    Article  PubMed  CAS  Google Scholar 

  • Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y (2001) Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291, 653–656

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Lizarraga SB, Zhang L, Wiese C, Gliksman NR, Walczak CE, Zheng Y (2001) Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 3, 221–227

    Article  PubMed  CAS  Google Scholar 

  • Wittmann T, Wilm M, Karsenti E, Vernos I (2000) TPX2, a novel Xenopus MAP involved in spindle pole. J Cell Biol 149, 1405–1418

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Clarke PR (2000) Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288, 1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Clarke PR (2001) Roles of RanGTP and RanGDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr Biol 11, 208–212

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Hughes M, Clarke, PR (1999) RanGTP stabilizes microtubule asters and inhibits nuclear assembly in Xenopus egg extracts J Cell Sei 112, 2453–2461

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Fiore, B., Guarguaglini, G., Lavia, P. (2001). Mitotic Control by Ran and RanBP1 in Mammalian Cells. In: Rush, M., D’Eustachio, P. (eds) The Small GTPase Ran. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1501-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1501-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5585-4

  • Online ISBN: 978-1-4615-1501-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics