Skip to main content

The Role of HSF in Heat Shock Signal Transduction and Heat Shock Response in Plants

  • Chapter
Signal Transduction in Plants

Abstract

All organisms are exposed to different stress conditions in their natural environment. Particularly in plants, survival and yield are strongly influenced by environmental conditions. The response to heat stress is a model for acquisition of thermotolerance and it may also apply for the development of common stress tolerance of cells and organisms. The knowledge gained in recent years about stress signal transfer and regulation of gene expression led also to the first successes in changing stress tolerance traits in transgenic plants. This paper deals with the central role of the heat shock transcription factors in the signal transfer, the regulation of the heat shock response and the development of thermotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beissinger, M., and Buchner, J., 1998, How chaperones fold proteins. Biol. Chem. 379: 245–259.

    PubMed  CAS  Google Scholar 

  • Czarnecka-Verner, E., Yuan, C. X., Nover, L., Scharf, K.-D., English, G. and Gurley, W. B.,1997, Plant heat shock transcription factors: positive and negative aspects of regulation. Acta Physiol Plant. 19: 529–537.

    Article  CAS  Google Scholar 

  • Chu, B., Soncin, F., Price, B.D., Stevenson, M.A. and Calderwood, ST., 1996, Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor 1. J. Biol. Chem. 271: 30847–30857.

    Article  PubMed  CAS  Google Scholar 

  • Döhr, S., Wunderlich, M. and Schöffl, F., 2000, Derepression of the heat shock response in transgenic tobacco expressing Arabidopsis HSF1 fusion proteins (submitted).

    Google Scholar 

  • Hübel, A. and Schöffl, F., 1994, Arabidopsis heat shock factor: characterization of the gene and the recombinant protein. Plant Mol. Biol. 26: 353–362.

    Article  PubMed  Google Scholar 

  • Hübel, A., Lee, J. H., Wu, C. and Schöffl, F., 1995, Arabidopsis heat shock factor is constitutively active in Drosophila and human cells. Mol. Gen. Genet. 24: 136–141.

    Article  Google Scholar 

  • Jedlicka, P. Mortin, M. A. and Wu, C., 1998, Multiple functions of Drosophila heat shock factor in vivo. EMBO J. 16: 2452–2462.

    Google Scholar 

  • Knauf, U., Newton, E. M., Kyriakis, J. and Kingston, R. E., 1996, Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10:2782–2793.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. H., Hübel, A. and Schöffl, F., 1995, Derepression of the activity of genetically engineerd heat shock factor causes constitutive synthesis of heat shock proteins and increased thermal tolerance in transgenic Arabidopsis. Plant J. 8: 603–612.

    CAS  Google Scholar 

  • Lis, J., 1999, Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. In: Coldspring harbor Symposia on Quantitative Biology, Vo. LXIII, pp. 347–356, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Lohmann, C., Prändl, R., Eggers-Schumacher, G., Ward, J. and Schöffl, F., 2000, Determination of the activity profiles of heats hock factors (HSF) in Arabidopsis and identification of a HSF3 knock-out mutant (submitted).

    Google Scholar 

  • Mason, P.B. Jr., and Lis J.T., 1997, Cooperative and competitive protein interactions at the HSP70 promoter. J. Biol Chem. 272: 33227–33233.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M.P. and Bukau, B., 1999, Molecular chaperones: the busy life of HSP90. CurrentBiology 9: R322-R325.

    CAS  Google Scholar 

  • Nover, L., Scharf, K.D., Gagliardi, D., Vergne, P., Czarnecka-Verner, E., and Gurley, W.B., 1996, The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaper. 1: 215–223.

    Article  CAS  Google Scholar 

  • Owens-Grillo, J.K., Stancato, L.F., Hoffmann, K., Pratt, W.B., and Krishna, P., 1996, Binding of immuophilins to the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants. Biochemistry 35: 15249–15255.

    Article  PubMed  CAS  Google Scholar 

  • Prändl, R. and Schöffl, F., 1996, Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Mol. Biol. 31: 157–162.

    Article  PubMed  Google Scholar 

  • Prändl, R., Hinderhofer, K., Eggers-Schumacher, G. and Schöffl, F., 1998, HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Genet. 258: 269–278.

    Article  PubMed  Google Scholar 

  • Reindl, A., Schöffl, F., Schell, J., Koncz, C. and Bako, L., 1997, Phosporylation by a cycline-dependent kinase modulates DNA-binding of the Arabidopsis heat shock transcription factor HSF 1 in vitro. Plant Physiol. 115: 93–100.

    Article  CAS  Google Scholar 

  • Reindl, A. and Schöffl, F, 1998, Interaction between the Arabidopsis thaliana heat shock transcription factor HSF1 and the TATA-binding protein TBP. FEBS Lett. 436: 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Stepanova, L., Leng, X., Parker, S.B., and Harper, J.W., 1996, Mammalian p50Cdc37 is a protein kinase-targeting subunit of HSP90 that binds and stabilizes Cdk4. Genes Dev. 10: 1491–1502.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Mosser, D.D., Morimoto, R.I., 1998, Molecular Chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12: 654–666.

    Article  PubMed  CAS  Google Scholar 

  • Schöffl, F. and Key, J.L., 1982, An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J. Mol. Appl. Gen. 1: 301–314.

    Google Scholar 

  • Schöffl, F., Prändl, R. and Reindl, A., 1998, Regulation of the heat shock response. PlantPhysiol. 117: 1135–1141.

    Google Scholar 

  • Schöffl, F., Prändl, R. and Reindl, A., 1998, Molecular responses to heat stress. In MolecularResponses to Cold, Drought, Heat and Salt Stress in Higher Plants, (eds. K Shinozaki, K. Yamaguchi-Shinozaki), pp. 81–98, Austin Tx: R.G. Landes Company.

    Google Scholar 

  • Schöffl, F. and Prändl, R., 1999, Derepression of the heat shock protein synthesis in transgenic plants. In Plant Responses to Environmental Stress, (eds. M. Smallwood, C. Calvert, D. Bowles), pp. 65–73. Oxford (UK): BIOS Scientific Publishers Limited.

    Google Scholar 

  • Taylor, I.A.C., Workman, J.L., Schuetz, T. J. and Kingston, R.E., 1991, Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding proteins. Genes Dev.5:1285–1298.

    Article  PubMed  CAS  Google Scholar 

  • Voisine, C., Craig, E.A., Zufall, N, von Ahsen, O., Pfanner, N., and Voos W., 1999, The protein import motor of mitochondria: Unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell 91: 565–574.

    Article  Google Scholar 

  • Wehmeyer, N., Hernandez, L. D., Finkelstein, R. R. and Vierling, E., 1996, Synthesis of small heat shock proteins is part of the developmental program of late seed maturation. PlantPhysiol. 112: 747–757.

    CAS  Google Scholar 

  • Wu, C., 1995, Heat shock transcription factors: structure and regulation. Annu.Rev. Cell Dev.Biol. 11:441–469.

    Article  CAS  Google Scholar 

  • Zou, J., Guo, Y., Guettouche, T., Smith, D.F., and Voellmy, R., 1998, Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94: 471–480.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prändl, R., Lohmann, C., Döhr, S., Schöffl, F. (2001). The Role of HSF in Heat Shock Signal Transduction and Heat Shock Response in Plants. In: Sopory, S.K., Oelmüller, R., Maheshwari, S.C. (eds) Signal Transduction in Plants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1365-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1365-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5518-2

  • Online ISBN: 978-1-4615-1365-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics