Skip to main content

Cellular and Molecular Analysis of Molluscan Circadian Pacemakers

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

A detailed understanding of how cells and tissues generate 24-hour periodicities remains one of the great challenges to contemporary cell and molecular science. Nonetheless, there has been near spectacular progress in the past 5 years in our knowledge about the molecular and cellular machinery responsible for generating circadian rhythms. This progress has come about in large part through the use of molecular genetic approaches in mature (e.g.Drosophila Neurospora) and new (e.g.Arabidopsismouse) chronobiological model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abran, D., Anctil, M., & Ali, M. A. (1994). Melatonin activity rhythms in eyes and cerebral ganglia of Aplysia californica. General & Comparative Endocrinology, 96, 215–222.

    Article  CAS  Google Scholar 

  • Adams, W. B., & Levitan, I. B. (1982). Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase in K+ conductance in Aplysia neuron R15. Proceedings of the National Academy of Sciences of the USA, 79, 3877–3880.

    Article  PubMed  CAS  Google Scholar 

  • Alberini, C. M., Ghirardi, M., Metz, R., & Kandel, E. R. (1994). C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell, 76, 1099–1114.

    Article  PubMed  CAS  Google Scholar 

  • Allada, R., White, N. E., So, W. V., Hall, J. C., & Rosbash, M. (1998). A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell, 93, 791–804.

    Article  PubMed  CAS  Google Scholar 

  • Aronson, B. D., Johnson, K. A., Loros, J. J., Sc Dunlap, J. C. (1994). Negative feedback defining a circadian clock: Autoregulation of the clock gene frequency. Science, 263, 1578–1584.

    Article  PubMed  CAS  Google Scholar 

  • Arvanitaki A., & Chalazonitis N. (1961). Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells in Aplysia). In E. Florey (Ed.), Nervous inhibition (pp. 194–231). New York: Pergamon Press.

    Google Scholar 

  • Audesirk, G. (1973). Spontaneous and light-induced compound action potentials in the isolated eye of Aplysia: Initiation and synchronization. Brain Research, 59, 229–242.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, S., & Jacklet, J. W. (1997). Ionic currents of isolated retinal pacemaker neurons: Projected daily phase differences and selective enhancement by a phase-shifting neurotransmitter. Journal of Neurophysiology, 77, 3075–3084.

    PubMed  CAS  Google Scholar 

  • Belardetti, E, Kandel, E. R., & Siegelbaum, S. A. (1987). Neuronal inhibition by the peptide FMRFamide involves opening of S K+ channels. Nature, 325, 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Belardetti, E, Campbell, W. B., Falck, J. R., Demontis, G., & Rosolowsky, M. (1989). Products of heme-catalyzed transformation of the arachidonate derivative 12-HPETE open S-type K+ channels in Aplysia. Neuron, 3, 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Benson, J. A. (1980). A cAMP analogue inhibits compound action potential production and phase shifts the circadian clock in the isolated eye of Aplysia californica. Comparative Biochemistry and Physiology-C: Comparative Pharmacology, 67C, 195–198.

    Article  CAS  Google Scholar 

  • Benson, J. A., & Jacklet, J. W. (1977). Circadian rhythm of output from neurones in the eye of Aplysia: I.Effects of deuterium oxide and temperature. Journal of Experimental Biology, 70, 151–166.

    CAS  Google Scholar 

  • Block, G. D. (1981). In vivo recording of the ocular circadian rhythm in Aplysia. Brain Research, 222,138–143.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., & Davenport, P. A. (1982). Circadian rhythm in Bulla gouldiana: Role of the eyes in controlling locomotor behavior. Journal of Experimental Zoology, 224, 57–63.

    Article  Google Scholar 

  • Block, G. D., & Lickey, M. E. (1973). Extraocular photoreceptors and oscillators can control the circadian rhythm of behavioral activity in Aplysia. Journal of Comparative Physiology, 84, 367–374.

    Article  Google Scholar 

  • Block, G. D., & McMahon, D. G. (1983). Localized illumination of the Aplysia and Bulla eye reveals new relationships between retinal layers. Brain Research, 265, 134–137.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., & McMahon, D. G. (1984). Cellular analysis of the Bulla ocular circadian pacemaker system: III. Localization of the circadian pacemaker. Journal of Comparative Physiology A-Sensory, Neural and Behavioral Physiology, 155, 387–395.

    Article  Google Scholar 

  • Block, G. D., & Roberts, M. H. (1981). Circadian pacemaker in the Bursatella eye: Properties of the rhythm and its effect on locomotor behavior. Journal of Comparative Physiology A-Sensory, Neural and Behavioral Physiology, 142, 403–410.

    Article  Google Scholar 

  • Block, G., & Smith, J. T. (1973). Cerebral photoreceptors in Aplysia. Comparative Biochemistry and Physiology A-Comparative Physiology, 46A, 115–121.

    Article  Google Scholar 

  • Block, G. D., & Wallace, S. E (1982). Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science, 217, 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., Hudson, D. J., & Lickey, M. E. (1974). Extraocular photoreceptors can entrain the circadian oscillator in the eye of Aplysia. Journal of Comparative Physiology, 89, 237–249.

    Article  Google Scholar 

  • Block, G. D., McMahon, D. G., Wallace, S. F., & Friesen, W. O. (1984). Cellular analysis of the Bulla ocular circadian pacemaker system: I. A model for retinal organization. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 155, 365–378.

    Article  Google Scholar 

  • Block, G. D., Khalsa, S. B., McMahon, D. G., Michel, S., & Guesz, M. (1993). Biological clocks in the retina:Cellular mechanisms of biological timekeeping. International Review of Cytology, 146, 83–144.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., Geusz, M., Khalsa, S. B., Michel, S., & Whitmore, D. (1996). Circadian rhythm generation,expression and entrainment in a molluscan model system. Progress in Brain Research, 111, 93–102.

    Article  PubMed  CAS  Google Scholar 

  • B. L. (1992). The effects of light and temperature on the circadian system of the marine mollusk Bulla gouldiana. Ph.D. dissertation, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Brodsky, J. L. (1996). Post-translational protein translocation: Not all hsc70s are created equal. Trends in Biochemical Sciences, 21, 122–126.

    PubMed  CAS  Google Scholar 

  • Chase, R. (1979). Photic sensitivity of the rhinophore in Aplysia. Canadian Journal of Zoology, 57, 698–701.

    Article  Google Scholar 

  • Colwell, C. S. (1990). Light and serotonin interact in affecting the circadian system of Aplysia. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 167, 841–845.

    CAS  Google Scholar 

  • Colwell, C. S., Khalsa, S. B., & Block, G. D. (1992a). FMRFamide modulates the action of phase shifting agents on the ocular circadian pacemakers of Aplysia and Bulla. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 170, 211–215.

    CAS  Google Scholar 

  • Colwell, C. S., Michel, S., & Block, G. D. (1992b). Evidence that potassium channels mediate the effects of serotonin on the ocular circadian pacemaker of Aplysia. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 171, 651–656.

    CAS  Google Scholar 

  • Colwell, C. S., Whitmore, D., Michel, S., & Block, G. D. (1994). Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 175, 415–423.

    CAS  Google Scholar 

  • Corrent, G., & Eskin, A. (1982). Transmitterlike action of serotonin in phase shifting a rhythm from the Aplysia eye. American Journal of Physiology, 242, R333–R338.

    PubMed  CAS  Google Scholar 

  • Corrent, G., McAdoo, D. J., & Eskin, A. (1978). Serotonin shifts the phase of the circadian rhythm from the Aplysia eye. Science, 202, 977–979.

    Article  PubMed  CAS  Google Scholar 

  • Corrent, G., Eskin, A., & Kay, I. (1982). Entrainment of the circadian rhythm from the eye of Aplysia: Role of serotonin. American Journal of Physiology, 242, R326–R332.

    PubMed  CAS  Google Scholar 

  • Crosthwaite, S. K, Dunlap, J. C., & Loros, J. J. (1997). Neurospora we-1 and we-2. Transcription, photo-responses, and the origins of circadian rhythmicity. Science, 276, 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Darlington, T. K., Wager-Smith, K., Ceriani, M. F., Staknis, D., Gekakis, N., Steeves, T. D. L., Weitz, C. J., Takahashi, J. S., & Kay, S. A. (1998). Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science, 280, 1599–1603.

    Article  PubMed  CAS  Google Scholar 

  • Delgado, R., Hidalgo, P., Diaz, F., Latorre, R., & Labarca, P. (1991). A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce. Proceedings of the National Academy of Sciences of the USA, 88, 557–560.

    Article  PubMed  CAS  Google Scholar 

  • DiFrancesco, D. (1991). The contribution of the `pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. Journal of Physiology, 434, 23–40.

    PubMed  CAS  Google Scholar 

  • Ding, J. M., Chen, D., Weber, E. T., Faiman, L. E., Rea, M. A., & Gillette, M. U. (1994). Resetting the biological clock: Mediation of nocturnal circadian shifts by glutamate and NO. Science, 266, 1713–1717.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, M. F., Nguyen, V. T., Bellier, S., & Bensaude, O. (1994). Inhibitors of transcription such as 5,6dichloro-1-beta-n-ribofuranosylbenzimidazole and isoquinoline sulfonamide derivatives (H-8 and H-7) promote dephosphorylation of the carboxyl-terminal domain of RNA polymerase II largest subunit. Journal of Biological Chemistry, 269, 13331–13336.

    PubMed  CAS  Google Scholar 

  • Dunlap, J. (1998). An end in the beginning. Science, 280, 1548–1549.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A. (1971). Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Zeitschrift fur vergleichende Physiologie, 74, 353–371.

    Article  Google Scholar 

  • Eskin, A. (1972). Phase shifting a circadian rhythm in the eye of Aplysia by high potassium pulses. Journal of Comparative Physiology, 80, 353–376.

    Article  Google Scholar 

  • Eskin, A. (1977). Neurophysiological mechanisms involved in photo-entrainment of the circadian rhythm from the Aplysia eye. Journal of Neurobiology, 8, 273–299.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A. (1982a). Increasing external K+ blocks phase shifts in a circadian rhythm produced by serotonin or 8-benzylthio-cAMP. Journal of Neurobiology, 13, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A. (1982b). Differential effects of amino acids on the period of the circadian rhythm from the Aplysia eye. Journal of Neurobiology, 13, 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A., & Corrent, G. (1977). Effects of divalent cations and metabolic poisons on the circadian rhythm from the Aplysia eye. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 117, 1–21.

    Article  CAS  Google Scholar 

  • Eskin, A., & Harcombe, E. (1977). Eye of Navanax. Optic activity, circadian rhythm and morphology. Comparative Biochemistry & Physiology A-Comparative Physiology, 57A, 443–449.

    Article  Google Scholar 

  • Eskin, A., & Maresh, R. D. (1982). Serotonin or electrical optic nerve stimulation increases the photosensitivity of the Aplysia eye. Comparative Biochemistry & Physiology-C: Comparative Pharmacology & Toxicology, 73C, 27–31.

    Article  CAS  Google Scholar 

  • Eskin, A., & Takahashi, J. S. (1983). Adenylate cyclase activation shifts the phase of a circadian pacemaker. Science, 220, 82–84.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A., Corrent, G., Lin, C. Y., & McAdoo, D.J. (1982). Mechanism for shifting the phase of a circadian rhythm by serotonin: Involvement of cAMP. Proceedings of the National Academy of Sciences of the USA, 79, 660–664.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A., Takahashi, J. S., Zatz, M., & Block, G. D. (1984a). Cyclic guanosine 3’:5’-monophosphate mimics the effects of light on a circadian pacemaker in the eye of Aplysia. Journal of Neuroscience, 4, 2466–2471.

    PubMed  CAS  Google Scholar 

  • Eskin, A., Yeung, S. J., & Klass, M. R. (1984b). Requirement for protein synthesis in the regulation of a circadian rhythm by serotonin. Proceedings of the National Academy of Sciences of the USA, 81, 7637–7641.

    Article  PubMed  CAS  Google Scholar 

  • Gekakis, N., Saez, L., Delahaye-Brown, A. M., Myers, M. P., Sehgal, A., Young, M. W., & Weitz, C.J. (1995). Isolation of timeless by PER protein interaction: Defective interaction between timeless protein and long-period mutant PERL. Science, 270, 811–815.

    Article  PubMed  CAS  Google Scholar 

  • Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S., & Weitz, C. J. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280, 1564–1569.

    Article  PubMed  CAS  Google Scholar 

  • Geusz, M. E., Michel, S., & Block, G. D. (1994). Intracellular calcium responses of circadian pacemaker neurons measured with fura-2. Brain Research, 638, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Geusz, M. E., Foster, R. G., Degrip, W. J., & Block, G. D. (1997). Opsin-like immunoreactivity in the circadian pacemaker neurons and photoreceptors of the eye of the opisthobranch mollusc Bulla gouldiana. Cell and Tissue Research, 287, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Hardin, P. E., Hall, J. C., & Rosbash, M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature, 343, 536–540.

    Article  PubMed  CAS  Google Scholar 

  • Harf, L., Arch, S., & Eskin, A. (1976). Polypeptide secretion from the eye of Aplysia californica. Brain Research, 111, 295–299.

    Article  PubMed  CAS  Google Scholar 

  • Hard, E U. (1996). Molecular chaperones in cellular protein folding. Nature, 381, 571–579.

    Article  Google Scholar 

  • Hattar, S., & Eskin, A. (1996). ApC/EBP mRNA has a circadian rhythm and it is affected by light in the eye of Aplysia. Society of Neuroscience Abstracts, 22, 551–3.

    Google Scholar 

  • Hattar, S., Levenson, J., & Eskin, A. (1997). Rhythm of ApC/EBP mRNA in the eye of Aplysia: In vivo vs in vitro. Society of Neuroscience Abstracts, 23, 521–16.

    Google Scholar 

  • Hattar, S., Eskin, A., & Levenson, J. (1998). Effects of age on the circadian rhythm and eye of Aplysia californica. Society of Neuroscience Abstracts, 24, 761–7.

    Google Scholar 

  • Heizmann, C. W. (1992). Calcium-binding proteins: basic concepts and clinical implications. General Physiology and Biophysics, 11, 411–425.

    PubMed  CAS  Google Scholar 

  • Herman, K. G., & Strumwasser, F. (1984). Regional specializations in the eye of Aplysia, a neuronal circadian oscillator. Journal of Comparative Neurology, 230, 593–613.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, E. D., Silva, C. M., Whitmore, D., & Block, G. D. (1997). The Bulla retinal circadian clock regulates spontaneous firing through tyrosine kinase and phosphatase activity. Society of Neuroscience Abstracts, 23, 521–15.

    Google Scholar 

  • Homayouni, R., Nunez-Regueiro, M., Byrne, J. H., & Eskin, A. (1997). Identification of two phosphopro-eins affected by serotonin in Aplysia sensory neurons. Brain Research, 750, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, D. J., & Lickey, M. E. (1980). Internal desynchronization between two identified circadian oscillators in Aplysia. Brain Research, 183, 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W. (1969a). Electrophysiological organization of the eye of Aplysia. Journal of General Physiology, 53, 21–42.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W. (1969b). Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science, 164, 562–563.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W. (1974). The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia. Journal of Comparative Physiology, 90, 33–45.

    Article  Google Scholar 

  • Jacklet, J. W. (1977). Neuronal circadian rhythm: Phase shifting by a protein synthesis inhibitor. Science, 198, 69–71.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W. (1980). Light sensitivity of the rhinophores and eyes of Aplysia. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 136, 257–262.

    Article  Google Scholar 

  • Jacklet, J. W. (1991). Photoresponsiveness of Aplysia eye is modulated by the ocular pacemaker and serotonin. Biological Bulletin, 180, 284–294.

    Article  Google Scholar 

  • Jacklet, J. W., & Barnes, S. (1993). Photoresponsive pacemaker neurons from the dissociated retina of Aplysia. Neuroreport, 5, 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W., & Colquhoun, W. (1983). Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. Journal of Neurocytology, 12, 673–696.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W., & Geronimo, J. (1971). Circadian rhythm: Population of interacting neurons. Science, 174, 299–302.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W., Schuster, L., & Rolerson, C. (1982). Electrical activity and structure of retinal cells of the Aplysia eye: I. Secondary neurones. Journal of Experimental Biology, 99, 369–380.

    Google Scholar 

  • Jacklet, J. W., Klose, M., & Goldberg, M. (1987). FMRF-amide-like immunoreactive efferent fibers and FMRF-amide suppression of pacemaker neurons in eyes of Bulla. Journal of Neurobiology, 18, 433–449.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. H., Knight, M. R., Kondo, T., Masson, P., Sedbrook, J., Haley, A., & Trewavas, A. (1995). Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science, 269, 1863–1865.

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L. K., & Strumwasser, F. (1984). A voltage-clamp analysis of currents underlying cyclic AMP-induced membrane modulation in isolated peptidergic neurons of Aplysia. Journal of Neurophysiology, 52, 340–349.

    PubMed  CAS  Google Scholar 

  • Kandel, E. R., & Schwartz, J. H. (1982). Molecular biology of learning: Modulation of transmitter release. Science, 218, 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S. B., & Block, G. D. (1988a). Calcium channels mediate phase shifts of the Bulla circadian pacemaker. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 164,195–206.

    Article  CAS  Google Scholar 

  • Khalsa, S. B., & Block, G. D. (1988b). Phase-shifts of the Bulla ocular circadian pacemaker in the presence of calmodulin antagonists. Life Sciences, 43, 1551–1556.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S B, & Block, G. D. (1990). Calcium in phase control of the Bulla circadian pacemaker. Brain Research, 506, 40–45.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S. B., & Block, G. D. (1992). Phase-shifting of a neuronal circadian pacemaker in Bulla gouldiana by pentylenetetrazol. Comparative Biochemistry and Physiology—C: Comparative Pharmacology and Toxicology, 101, 557–560.

    Article  CAS  Google Scholar 

  • Khalsa, S. B., Ralph, M. R., & Block, G. D. (1990). Chloride conductance contributes to period determination of a neuronal circadian pacemaker. Brain Research, 520, 166–169.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S. B., Ralph, M. R., & Block, G. D. (1991). Does low intracellular pH stop the motion of the Bulla circadian pacemaker? Journal of Neuroscience, 11, 2672–2679.

    PubMed  CAS  Google Scholar 

  • Khalsa, S. B., Whitmore, D., & Block, G. D. (1992). Stopping the circadian pacemaker with inhibitors of protein synthesis. Proceedings of the National Academy of Sciences of the USA, 89, 10862–10866.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S. B., Ralph, M. R., & Block, G. D. (1993). The role of extracellular calcium in generating and in phase-shifting the Bulla ocular circadian rhythm. Journal of Biological Rhythms, 8, 125–139.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S. B., Whitmore, D., Bogart, B., & Block, G. D. (1996). Evidence for a central role of transcription in the timing mechanism of a circadian clock. American Journal of Physiology, 271, 1, C1646–1651.

    PubMed  CAS  Google Scholar 

  • Khalsa, S. B., Michel, S., & Block, G. D. (1997). The role of extracellular sodium in the mechanism of a neuronal in vitro circadian pacemaker. Chronobiology International, 14, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Koumenis, C., & Eskin, A. (1992). The hunt for mechanisms of circadian timing in the eye of Aplysia. Chronobiology International, 9, 201–221.

    Article  PubMed  CAS  Google Scholar 

  • Koumenis C., Nunez-Regueiro M., & Eskin A. (1992). Identification of three additional putative oscillator proteins (POPs) from the eye of Aplysia as stress-related proteins. Society of Neuroscience Abstracts, 18, 881.

    Google Scholar 

  • Koumenis, C., Nunez-Regueiro, M., Raju, U., Cook, R., & Eskin, A. (1995). Identification of three proteins in the eye of Aplysia, whose synthesis is altered by serotonin (5-HT). Possible involvement of these proteins in the ocular circadian system. Journal of Biological Chemistry, 270, 14619–14627.

    Article  PubMed  CAS  Google Scholar 

  • Koumenis, C., Tran, Q., & Eskin, A. (1996). The use of a reversible transcription inhibitor, DRB, to investigate the involvement of specific proteins in the ocular circadian system of Aplysia. Journal of Biological Rhythms, 11, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Krucher, N. A., Meijer, L., & Roberts, M. H. (1997). The cyclin-dependent kinase (cdk) inhibitors, olomoucine and roscovitine, alter the expression of a molluscan circadian pacemaker. Cellular and Molecular Neurobiology, 17, 495–507.

    Article  PubMed  CAS  Google Scholar 

  • Kupfermann, I. (1967). A circadian locomotor rhythm in Aplysia californica. Physiology and Behavior, 3, 179–182.

    Article  Google Scholar 

  • Lickey, M. E., Wozniak, J. A., Block, G. D., Hudson, D. J., & Augter, G. K. (1977). The consequences of eye removal for the circadian rhythm of behavioral activity in Aplysia. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 118, 121–143.

    Article  Google Scholar 

  • Lotshaw, D. P., & Jacklet, J. W. (1986). Involvement of protein synthesis in circadian clock of Aplysia eye. American Journal of Physiology, 250, R5–R17.

    PubMed  CAS  Google Scholar 

  • Lotshaw, D. P., & Jacklet, J. W. (1987). Serotonin induced protein phosphorylation in the Aplysia eye. Comparative Biochemistry and Physiology—C: Comparative Pharmacology and Toxicology, 86, 27–32.

    Article  CAS  Google Scholar 

  • Luborsky-Moore, J. L., & Jacklet, J. W. (1977). Ultrastructure of the secondary cells in the Aplysia eye. Journal of Ultrastructure Research, 60, 235–245.

    Article  PubMed  CAS  Google Scholar 

  • McMahon D. G., & Block, G. D. (1982). Organized photoreceptor layer is not required for light responses in three opisthobranch eyes. Society of Neuroscience Abstracts, 8, 33.

    Google Scholar 

  • McMahon, D. G., & Block, G. D. (1987a). The Bulla ocular circadian pacemaker. I. Pacemaker neuron membrane potential controls phase through a calcium-dependent mechanism. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 161, 335–346.

    Article  CAS  Google Scholar 

  • McMahon, D. G., & Block, G. D. (1987b). The Bulla ocular circadian pacemaker. II. Chronic changes in membrane potential lengthen free running period. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 161, 347–354.

    Article  CAS  Google Scholar 

  • McMahon, D. G., Wallace, S. F., & Block, G. D. (1984). Cellular analysis of the Bulla ocular circadian pacemaker system: II. Neurophysiological basis of circadian rhythmicity. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 155, 379–385.

    Article  Google Scholar 

  • Michel, S., Khalsa, S. B., & Block, G. D. (1992). Phase shifting of the circadian rhythm in the eye of Bulla by inhibition of chloride conductance. Neuroscience Letters, 146, 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Michel, S., Geusz, M. E., Zaritsky, J. J., & Block, G. D. (1993). Circadian rhythm in membrane conductance expressed in isolated neurons. Science, 259, 239–241.

    Article  PubMed  CAS  Google Scholar 

  • Michel, S., Manivannan, K., Zaritsky, J. J., & Block, G. D. (1999). A delayed rectifier current is modulated by the circadian pacemaker in Bulla. Journal of Biological Rhythms, 14, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M. P., Wager-Smith, K., Wesley, C. S., Young, M. W., & Sehgal, A. (1995). Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science, 270, 805–808.

    Article  PubMed  CAS  Google Scholar 

  • Nadakavukaren, J. J., Lickey, M. E., & Jordan, W. P. (1986). Regulation of the circadian clock in the Aplysia eye: Mimicry of neural action by serotonin. Journal of Neuroscience, 6, 14–21.

    PubMed  CAS  Google Scholar 

  • Noel, F., Koumenis, C., Nunez-Regueiro, M., Raju, U., Byrne, J. H., & Eskin, A. (1994). Effects on protein synthesis produced by pairing depolarization with serotonin, an analogue of associative learning in Aplysia. Proceedings of the National Academy of Sciences of the USA, 91, 4150–4154.

    Article  PubMed  CAS  Google Scholar 

  • Page, T. L. (1981). Effects of localized low-temperature pulses on the cockroach circadian pacemaker. American Journal of Physiology, 240, R144–R150.

    PubMed  CAS  Google Scholar 

  • Page, T. L., Wassmer, G. T., Fletcher, J., & Block, G. D. (1997). Aftereffects of entrainment on the period of the pacemaker in the eye of the mollusk Bulla gouldiana. Journal of Biological Rhythms, 12, 218–225.

    Article  PubMed  CAS  Google Scholar 

  • Pennartz, C. M., Bierlaagh, M. A., & Geurtsen, A. M. (1997). Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: Involvement of a slowly inactivating component of sodium current. Journal of Neurophysiology, 78, 1811–1825.

    PubMed  CAS  Google Scholar 

  • Pepinsky, R. B., Sinclair, L. K., Browning, J. L., Mattaliano, R. J., Smart, J. E., Chow, E. P., Falbel, T., Ribolini, A., Garwin, J. L., & Wallner, B. P. (1986). Purification and partial sequence analysis of a 37-kDa protein that inhibits phospholipase A2 activity from rat peritoneal exudates. Journal of Biological Chemistry, 261, 4239–4246.

    PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia on Quantitative Biology, 25, 159–184.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1967). Circadian systems I: The driving oscillation and its assay in Drosophila pseudo-obscura. Proceedings of the National Academy of Sciences of the USA, 58, 1762–1767.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh C. S. (1974). Circadian oscillations in cells and the circadian organization of multicellular systems. In F. O. Schmidt & E G. Worden (Eds.), The neurosciences, Third study program (pp. 437–458). Cambridge, MA: MIT Press.

    Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents: V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology A—Sensory, Neural and Behavioral Physiology, 106, 333–355.

    Article  Google Scholar 

  • Raiford P. R. (1984). Locomotor control by an ocular pacemaker in Bulla gouldiana. Masters thesis, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Raju, U., Yeung, S. J., & Eskin, A. (1990). Involvement of proteins in light resetting ocular circadian oscillators of Aplysia. American Journal of Physiology, 258, R256–R262.

    PubMed  CAS  Google Scholar 

  • Raju, U., Koumenis, C., Nunez-Regueiro, M., & Eskin, A. (1991). Alteration of the phase and period of a circadian oscillator by a reversible transcription inhibitor. Science, 253, 673–675.

    Article  PubMed  CAS  Google Scholar 

  • Raju, U., Nunez-Regueiro, M., Cook, R., Kaetzel, M. A., Yeung, S. C., & Eskin, A. (1993). Identification of an annexin-like protein and its possible role in the Aplysia eye circadian system. Journal ofNeurochemis-try, 61, 1236–1245.

    Article  CAS  Google Scholar 

  • Ralph, M. R., & Block, G. D. (1990). Circadian and light-induced conductance changes in putative pacemaker cells of Bulla gouldiana. Journal of Comparative Physiology A-Sensory, Neural and Behavioral Physiology, 166, 589–595.

    CAS  Google Scholar 

  • Ralph, M. R., Khalsa, S. B. S., & Block, G. D. (1992). Cyclic nucleotides and circadian rhythm generation in Bulla gouldiana. Comparative Biochemistry and Physiology A-Comparative Physiology, 101A, 813–817.

    Article  CAS  Google Scholar 

  • Roberts, M. H., & Block, G. D. (1982). Dissection of circadian organization of Aplysia through connective lesions and electrophysiological recording. Journal of Experimental Zoology, 219, 39–50.

    Article  Google Scholar 

  • Roberts, M. H., & Block, G. D. (1983). Mutual coupling between the ocular circadian pacemakers of Bulla gouldiana. Science, 221, 87–89.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. H., & Block, G. D. (1985). Analysis of mutual circadian pacemaker coupling between the two eyes of Bulla. Journal of Biological Rhythms, 1, 55–75.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. H., & Moore, R. Y. (1987). Localization of neuropeptides in efferent terminals of the eye in the marine snail, Bulla gouldiana. Cell and Tissue Research, 248, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. H., & Xie, X. (1996). Phase relationship between ocular and behavioral circadian rhythms in Bulla gouldiana exposed to different photoperiods. Physiology and Behavior, 59, 703–708.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. H., Block, G. D., & Lusska, A. E. (1987). Comparative studies of circadian pacemaker coupling in Opisthobranch molluscs. Brain Research, 423, 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. H., Bedian, V., & Chen, Y. L. (1989) Kinase inhibition lengthens the period of the circadian pacemaker in the eye of Bulla gouldiana. Brain Research, 504, 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. H., Towles, J. A., & Leader, N. K. (1992). Tyrosine kinase regulation of a molluscan circadian clock. Brain Research, 592, 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, B. S., & Strumwasser, F. (1976). Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide. Electrophysiological and biochemical studies. Journal of General Physiology, 68, 359–384.

    Article  PubMed  CAS  Google Scholar 

  • Rusak, B., Robertson, H. A., Wisden, W., & Hunt, S. P. (1990). Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science, 248, 1237–1240.

    Article  PubMed  CAS  Google Scholar 

  • Rutila, J. E., Suri, V., Le, M., So, W. V., Rosbash, M., & Hall, J. C. (1998). CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell, 93, 805–814.

    Article  PubMed  CAS  Google Scholar 

  • Sankrithi, N., & Eskin, A. (1999). Effects of cyclin-dependent kinase inhibitors on transcription and ocular circadian rhythm of Aplysia. Journal of Neurochemistry, 72, 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Sloan M., Koumenis C., & Eskin A. (1995). Effects of phase-shifting treatments on the mRNA levels of putative oscillator proteins, BiP and porin, in Aplysia. Society of Neuroscience Abstracts, 21, 658.1.

    Google Scholar 

  • Sloan, M. A., Levenson, J., Tran, Q., Kerbeshian, M., Block, G. D., & Eskin, A. (1999). Aging affects the ocular circadian pacemaker of Aplysia california. Journal of Biological Rhythms, 14, 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Strumwasser, F. (1967). Neurophysiological aspects of rhythms. In G. Quarton, T. Melnechuk, & F. O. Schmitt (Eds.), The neurosciences (pp. 516–528). New York: Rockefeller University Press.

    Google Scholar 

  • Strumwasser, E (1973). Neural and humoral factors in the temporal organization of behavior. Physiologist, 16, 9–42.

    PubMed  CAS  Google Scholar 

  • Strumwasser, F., Alvarez, R. B., Viele, D. V., & Woolum, J. C. (1979). Structure and function of a neuronal circadian oscillator system. In H. Nakagawa (Ed.), Biological rhythms and their central mechanism (pp. 41–56). Amsterdam. Elsevier/North-Holland.

    Google Scholar 

  • Sweatt, J. D., Volterra, A., Edmonds, B., Karl, K. A., Siegelbaum, S. A., & Kandel, E. R. (1989). FMRFamide reverses protein phosphorylation produced by 5-HT and cAMP in Aplysia sensory neurons. Nature, 342, 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, J. S., Nelson, D. E., & Eskin, A. (1989). Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. Neuroscience, 28, 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Toung, Y. P., & Tu, C. P. (1992). Drosophila glutathione S-transferases have sequence homology to the stringent starvation protein of Escherichia coli. Biochemical and Biophysical Research Communications, 182, 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Turek, F. W., Penev, P., Zhang, Y., Van Reeth, O., Takahashi, J. S., & Zee, P. (1995). Alterations in the circadian system in advanced age. Ciba Foundation Symposium, 183, 212–226.

    PubMed  CAS  Google Scholar 

  • Welsh, D. K, Logothetis, D. E., Meister, M., & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14, 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Whitmore, D. (1997). The role of transcription and translation in the circadian pacemaker of the marine mollusks Bulla gouldiana and Aplysia californica. Ph.D. dissertation, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Whitmore, D., & Block, G. D. (1996). Cellular aspects of molluskan biochronometry. Seminars in Cell and Developmental Biology, 7, 781–789.

    Article  CAS  Google Scholar 

  • Woolum, J. C., & Strumwasser, F. (1980). The differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia. Proceedings of the National Academy of Sciences of the USA, 77, 5542–5546.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, S. J., & Eskin, A. (1987). Involvement of a specific protein in the regulation of a circadian rhythm in Aplysia eye. Proceedings of the National Academy of Sciences of the USA, 84, 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, S. J., & Eskin, A. (1988). Responses of the circadian system in the Aplysia eye to inhibitors of protein synthesis. Journal of Biological Rhythms, 3, 225–236.

    Article  Google Scholar 

  • Zwartjes, R. E., & Eskin, A. (1990). Changes in protein phosphorylation in the eye of Aplysia associated with circadian rhythm regulation by serotonin. Journal of Neurobiology, 21, 376–38

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blumenthal, E.M., Block, G.D., Eskin, A. (2001). Cellular and Molecular Analysis of Molluscan Circadian Pacemakers. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics