Skip to main content

Data Structures for 3D Multi-Tessellations: An Overview

  • Chapter

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 713))

Abstract

Multiresolution models support the interactive visualization of large volumetric data through selective refinement, an operation which permits to focus resolution only on the most relevant portions of the domain, or in the proximity of interesting field values. A 3D Multi-Tessellation (MT) is a multiresolution model, consisting of a coarse tetrahedral mesh at low resolution, and of a set of updates refining such a mesh, arranged as a partial order. In this paper, we describe and compare different data structures which permit to encode a 3D MT and to support selective refinement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cignoni, P., Costanza, D., Montani, C, Rocchini, C, and Scopigno, R. (2000a). Simplification of tetrahedral volume with accurate error evaluation. In Proceedings IEEE Visualization’00, pages 85–92. IEEE Computer Society.

    Google Scholar 

  • Cignoni, P., De Floriani, L., Magillo, P., Puppo, E., and Scopigno, R. (2000b). TAn2 — visualization of large irregular volume datasets. Technical Report DISI-TR-00-07, Department of Computer and Information Science, University of Genova (Italy), (submitted for publication).

    Google Scholar 

  • Cignoni, P., De Floriani, L., Montani, C, Puppo, E., and Scopigno, R. (1994). Multiresolution modeling and rendering of volume data based on simplicial complexes. In Proceedings 1994 Symposium on Volume Visualization, pages 19–26. ACM Press.

    Chapter  Google Scholar 

  • Danovaro, E., De Floriani, L., Magillo, P., and Puppo, E. (2001). Representing vertex-based simplicial multi-complexes. In Bertrand, G., Imiya, A., and Klette, R., editors, Digital and Image Geometry, Lecture Notes in Computer Science, volume 2243, pages 128–147. Springer-Verlag, New York.

    Google Scholar 

  • De Floriani, L., Puppo, E., and Magillo, P. (1997). A formal approach to multiresolution modeling. In Klein, R., Strafier, W., and Rau, R., editors, Geometric Modeling: Theory and Practice, pages 302–323. Springer-Verlag.

    Chapter  Google Scholar 

  • El-Sana, J. and Varshney, A. (1999). Generalized view-dependent simplification. Computer Graphics Forum, 18(3):C83–C94.

    Article  Google Scholar 

  • Garland, M. (1999). Multiresolution modeling: Survey & future opportunities. In Eurographics ’99 — State of the Art Reports, pages 111–131.

    Google Scholar 

  • Greiner, G. and Grosso, R. (2000). Hierarchical tetrahedral-octahedral subdivision for volume visualization. The Visual Computer, 16:357–365.

    Article  MATH  Google Scholar 

  • Gross, M. and Staadt, O. (1998). Progressive tetrahedralizations. In Proceedings IEEE Visualization’98, pages 397–402, Research Triangle Park, NC. IEEE Computer Society.

    Google Scholar 

  • Grosso, R. and Greiner, G. (1998). Hierarchical meshes for volume data. In Proceedings of the Conference on Computer Graphics International 1998 (CGI-98), pages 761–771, Los Alamitos, California. IEEE Computer Society.

    Google Scholar 

  • Guéziec, A., Taubin, G., Lazarus, F., and Horn, W. (1998). Simplicial maps for progressive transmission of polygonal surfaces. In Proceedings ACM VRML98, pages 25–31.

    Google Scholar 

  • Holliday, D. and Nielson, G. (2000). Progressive volume model for rectilinear data using tetrahedral Coons patches. In de Leeuw, W. and van Liere, R., editors, Data Visualization 2000. Springer Verlag.

    Google Scholar 

  • Hoppe, H. (1998). Efficient implementation of progressive meshes. Computers & Graphics, 22(1):27–36.

    Article  Google Scholar 

  • Lee, M., De Floriani, L., and Samet, H. (2001). Constant-time neighbor finding in hierarchical meshes. In Proceedings International Conference on Shape Modeling, pages 286–295, Genova (Italy).

    Chapter  Google Scholar 

  • Luebke, D. and Erikson, C. (1997). View-dependent simplification of arbitrary polygonal environments. In ACM Computer Graphics Proceedings, Annual Conference Series, (SIGGRAPH ’97), pages 199–207.

    Chapter  Google Scholar 

  • Magillo, P. (2000). The MT (Multi-Tesselation) package. Dept. of Computer and Informations Sciences, University of Genova, Italy, http://www.disi.unige.it/person/MagilloP/MT/index.html.

    Google Scholar 

  • Nielson, G. (1997). Tools for triangulations and tetrahedralizations and constructing functions defined over them. In Nielson, G., H. Hagen, and Müller, H., editors, Scientific Visualization: Overviews, Metodologies, Techniques, pages 429–525. IEEE Computer Society.

    Google Scholar 

  • Nielson, G. and Roxborough, T. (2000). Tetrahedron based, least squares, progressive volume models with applications to freehand ultrasound data. In Proceedings IEEE Visualization 2000, pages 93–100. IEEE Computer Society.

    Google Scholar 

  • Ohlberger, M. and Rumpf, M. (1999). Adaptive projection operators in multiresolution scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 5(1):74–93.

    Article  Google Scholar 

  • Puppo, E. (1996). Variable resolution terrain surfaces. In Proceedings Eight Canadian Conference on Computational Geometry, pages 202–210, Ottawa, Canada. Extended version appeared with title Variable Resolution Triangulations, Computational Geometry, 1998, 11 (3–4): 219–238.

    Google Scholar 

  • Rivara, M. and Levin, C. (1992). A 3D refinement algorithm suitable for adaptive and multi-grid techniques. J. Comp. Appl. Math., 8:281–290.

    MATH  Google Scholar 

  • Trotts, I., Hamann, B., and Joy, K. (1999). Simplification of tetrahedral meshes with error bounds. IEEE Transactions on Visualization and Computer Graphics, 5(3):224–237.

    Article  Google Scholar 

  • Xia, J., El-Sana, J., and Varshney, A. (1997). Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics, 3(2): 171–183.

    Article  Google Scholar 

  • Zhou, Y., Chen, B., and Kaufman, A. (1997). Multiresolution tetrahedral framework for visualizing regular volume data. In Proceedings IEEE Visualization’97, pages 135–142. IEEE Computer Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Danovaro, E., De Floriani, L., Magillo, P., Puppo, E. (2003). Data Structures for 3D Multi-Tessellations: An Overview. In: Post, F.H., Nielson, G.M., Bonneau, GP. (eds) Data Visualization. The Springer International Series in Engineering and Computer Science, vol 713. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1177-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1177-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5430-7

  • Online ISBN: 978-1-4615-1177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics