Skip to main content

Abstract

The trend to replace aluminum with copper in IC interconnects requires that CMP be used to planarize the copper which has been deposited into RIE-patterned structures. Therefore, in this chapter, we discuss and develop a copper CMP model which predicts wafer-scale removal rate based on mass-transport theory and surface kinetic steps. The model seems to capture the essential features of the planarization of copper, and is very similar to the surface reaction kinetics model developed for low-κ CMP in Chapter 6. The model computes the concentration of the chemical reactant in the slurry using a convective diffusive mass transport equation. Surface kinetic equations are used to model the chemical reaction and mechanical abrasion processes at the wafer surface during CMP. The model approach for the CMP of copper is based upon a recent paper [7.1] and a PhD thesis [7.2]. The approach used here incorporates the fundamentals of pad/abrasive contact into the lubrication and mass transport process. It extends upon the low-κ CMP model developed previously, and may find applicability to dielectrics and other metals with well-known chemical reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Thakurta, D.W. Schwendeman, R.J. Gutmann, S. Shankar, L. Jiang and W.N. Gill, Thin Solid Films, accepted for publication (2002).

    Google Scholar 

  2. D.G. Thakurta, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2001).

    Google Scholar 

  3. S. R. Runnels and L. M. Eyman, J. Electrochem. Soc., 141, 1698 (1994).

    Article  Google Scholar 

  4. D. G. Thakurta, C. L. Borst, D. W. Schwendeman, R. J. Gutmann, and W. N. Gill, Thin Solid Films, 366, 181 (2000).

    Article  Google Scholar 

  5. T.-K. Yu, C. C. Yu, and M. Orlowski, in IEDM Tech. Dig., 865 (1993).

    Google Scholar 

  6. M. Bhushan, R. Rouse, and J. E. Lukens, J. Electrochem. Soc., 142 3845 (1995

    Article  Google Scholar 

  7. D. Stein, D. Hetherington, M. Dugger, and T. Stout, J. Electronic Materials, 25, 1623 (1996).

    Article  Google Scholar 

  8. L. Jiang and S. Shankar, Proc. of 16 th Intl. VLSI Multilevel Interconnection Conference (VMIC), 245 (1999).

    Google Scholar 

  9. N. Patir and H. S. Cheng, ASME J. Lubrication Tech., 100, 12 (1978).

    Article  Google Scholar 

  10. D. G. Thakurta, C. L. Borst, D. W. Schwendeman, R. J. Gutmann, and W. N. Gill, J. Electrochem. Soc., 148(4), G207–214 (2001).

    Article  Google Scholar 

  11. S. Sundararajan, D. G. Thakurta, D. W. Schwendeman, S. P. Murarka, and W. N. Gill, J. Electrochem. Soc., 146, 761 (1999).

    Article  Google Scholar 

  12. R. S. Subramanian, L. Zhang, and S. V. Babu, J. Electrochem. Soc., 146, 4263 (1999).

    Article  Google Scholar 

  13. J. M. Smith, Chemical Engineering Kinetics, McGraw-Hill, New York (1970).

    Google Scholar 

  14. R. J. Gutmann, C. L. Borst, B.-C. Lee, D. Thakurta, D. J. Duquette, and W. N. Gill, Proc. of 17th Intl. VLSI Multilevel Interconnection Conference (VMIC), Santa Clara, CA, 123 (2000).

    Google Scholar 

  15. J. M. Steigerwald, Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (1995).

    Google Scholar 

  16. Q. Luo, S. Ramarajan, and S. V. Babu, Thin Solid Films, 335, 160 (1998).

    Article  Google Scholar 

  17. A. R. Baker, Electrochem. Soc. Fall Meeting, extended abstracts (EA 96–2), San Antonio, TX (1996).

    Google Scholar 

  18. C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. Cale, Thin Solid Films, 533, 308 (1997).

    Google Scholar 

  19. D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin, and T. Cale, J. Electrochem. Soc., 144, 1121 (1997).

    Article  Google Scholar 

  20. D. Wang, A. Zutshi, T. Bibby, S. Beaudoin, and T. Cale, Effects of carr ier film physical properties on W CMP, Thin Solid Films, 345, 278 (1999).

    Article  Google Scholar 

  21. J. Tichy, J. A. Levert, L. Shan, and S. Danyluk, Electrochem. Soc., 146, 1523 (1999).

    Article  Google Scholar 

  22. B.-C. Lee, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2000).

    Google Scholar 

  23. B.-C. Lee, B. Wang, D. J. Duquette, R. J. Gutmann, Proc. of 6 th Intl. CMP for Multilevel Interconnect Conf. (CMP-MIC), Santa Clara, CA, 47 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borst, C.L., Gill, W.N., Gutmann, R.J. (2002). Copper CMP Model Based Upon Fluid Mechanics and Surface Kinetics. In: Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1165-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1165-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7193-5

  • Online ISBN: 978-1-4615-1165-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics