Skip to main content

Presence and functions of immune components in the tumor microenvironment

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 495))

Abstract

There is ample evidence that alterations in oncogenes and tumor suppressor genes are causally involved in malignant transformation (1-3). In addition to alterations in these class I cancer genes (4), changes in the expression of numerous genes whose DNA was not altered i.e. class II cancer genes (4), play crucial roles in tumorigenesis and in tumor progression. Among the important class II cancer genes are proteases, angiogenic factors and angiogenesis inhibitors, cytokines and chemokines and their receptors as well as various adhesion molecules (5-8). It seems that class II cancer genes play a more significant role in the process of tumor progression than in cellular transformation and primary tumorigenesis (4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lengauer, C., Kinzler, K.W. and Vogelstein, B. Genetic instabilities in human cancers. Nature, 396: 643–649, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Schwab, M. Oncogene amplification in solid tumors. Semin. Cancer Biol. 9: 319–325, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Macleod, K., Tumor suppressor genes. Curr. Opin. Genetic. Dey. 10: 81–93, 2000.

    Article  CAS  Google Scholar 

  4. Sager, R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc. Natl. Acad. Sci. USA 94: 952–955, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Negus, R.P. and Balkwill, F.R. Cytokines in tumour growth, migration and metastasis. World J. Urol. 14: 157–165, 1996.

    CAS  Google Scholar 

  6. Hanahan, D. and Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Lochter, A., Sternlicht, M.D., Werb, Z. and Bissell, M.J. The significance of matrix metalloproteinases during early stages of tumor progression. Ann. NY Acad. Sci. 857: 180–193,1998.

    Article  CAS  Google Scholar 

  8. Ruoslahti, E. Fibronectin and its integrin receptors in cancer. Adv. Cancer Res. 76: 1–20, 1999.

    Article  PubMed  CAS  Google Scholar 

  9. Kerbel, R.S., Viloria-Petit, A., Okada, F. and Rak, J. Establishing a link between oncogenes and tumor angiogenesis. Mol. Med. 4: 286–295, 1998.

    CAS  Google Scholar 

  10. Witz, I.P. Differential expression of genes by tumor cells of a low or a high malignancy phenotype: The case of murine and human Ly-6 proteins. J. Cell. Biochem. (Suppl.) 34: 61–66, 2000.

    Article  CAS  Google Scholar 

  11. Fidler, I.J. Critical determinants of cancer metastasis: rationale for therapy. Cancer chemother. Pharmacol. 43 (Suppl. IA)S3–10, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Yuan, J. and Glazer, P.M. Mutagenesis induced by the tumor microenvironment. Mutat. Res. 400: 439–446, 1998.

    Article  PubMed  CAS  Google Scholar 

  13. Goedegebuure, P.S. and Eberlein, T.J. The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors. Immunol. Res. 14: 119–131, 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Mantovani, A., Bottazzi, B., Sozzani, S., Peri, G,. Allavena, P., Dong, Q.G.,Vecchi, A. and Colotta, F. Cytokine regulation of monocyte recruitment. Arch. Immunol. Ther. Exp. (Warz) 43: 149–152, 1995.

    Google Scholar 

  15. Wagner, S.N., Schultewolter, T., Wagner, C., Briedigkeit, L., Becker, J.C., Kawasnicka, H.M. and Goos, M. Immune response against human primary malignant melanoma: a distinct cytokine mRNA profile associated with spontaneous regression. Lab. Invest. 78: 541–550, 1998.

    CAS  Google Scholar 

  16. Russell, S.W., Witz, I.P. and Herberman, R.B. A review of data, problems, and open questions pertaining to in situ tumor immunity. In: Contemporary Topics in Immunobiology (Witz, I.P. and Hanna, M.G.Jr., Eds) Vol. 10, Plenum Press, New-York, pp. 1–20, 1980.

    Google Scholar 

  17. Klein, E., Vánky, F., Galili, U., Vose, B.M. and Fopp, M. Separation and characteristics of tumor-infiltrating lymphocytes in man. In: Contemporary Topics in Immunobiology (Witz, I.P. and Hanna, M.G.Jr., Eds) Vol. 10, Plenum Press, New-York, pp. 79–108, 1980.

    Google Scholar 

  18. Ioachim, H.L. Correlations between tumor antigenicity, malignant potential, and local host immune response. In: Contemporary Topics in Immunobiology (Witz, I.P. and Hanna, M.G.Jr., Eds) Vol. 10, Plenum Press, New-York, pp. 213–238, 1980.

    Google Scholar 

  19. Yron, I., Wood, T.A.Jr, Spiess, P.J. and Rosenberg, S.A. In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J. Immunol. 125: 238–1980.

    Google Scholar 

  20. Rosenberg, S.A. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunology Today 18: 175–182, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, R.F. and Rosenberg, S.A. Human tumor antigens for cancer vaccine development. Immunol. Rev. 170: 85–100, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Sheu, B.C., Lin, R.H., Ho, H.N. and Huang, S.C. Down-regulation of CD25 expression on the surface of activated tumor-infiltrating lymphocytes in human cervical carcinoma. Hum. Immunol. 56: 39–48, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Reichert, T.E., Day, R., Wagner, E.M. and Whitesite, T.L. Absent or low expression of the zeta chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res. 58: 5344–5347, 1998.

    PubMed  CAS  Google Scholar 

  24. Whiteside, T.L. Signaling defects in T lymphocytes of patients with malignancy. Cancer Immunol. Immunother. 48: 346–352, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Sikora, J., Dworacki, G. and Zeromski, J. Expression of Fas and Fas ligand and apoptosis in tumor-associated lymphocytes and in tumor cells from malignant pleural effusions. Nat. Immun. 16: 244–255, 1998.

    CAS  Google Scholar 

  26. Cardi, G., Heaney, J.A., Schned, A.R. and Emstoff, M.S. Expression of Fas(APO1/CD95) in tumor-infiltrating and peripheral blood lymphocytes in patients with renal cell carcinoma. Cancer Res. 58: 2078–2080, 1998.

    PubMed  CAS  Google Scholar 

  27. Hoffman, D.M., Gitlitz, B.J., Belldegrun, A. and Figlin, R.A. Adoptive cellular therapy. Semin. Oncol. 27: 221–233, 2000.

    PubMed  CAS  Google Scholar 

  28. Bordignon, C., Carlo-Stella, C., Colombo, M.P., De Vincentiis, A., Lanata, L., Lemoli, R.M., Locatelli, F., Olivieri, A., Rondelli, D., Zanon, P. and Tura, S. Cell therapy: achievements and perspectives. Haematologica 84: 1110–1149, 1999.

    PubMed  CAS  Google Scholar 

  29. Zhu, H., Melder, R.J., Baxter, L.T. and Jain, R.K. Physiologically based kinetic model of effector cell biodistribution in mammals: implications for adoptive immunotherapy. Cancer Res. 56: 3771–3781, 1996.

    PubMed  CAS  Google Scholar 

  30. Sibille, C., Chomez, P., Wildmann, C., Van Pel, A., De Plaen, E., Maryanski, J.L., de Bergeyck, V. and Boon, T. Structure of the gene of tum-transplantation antigen P198: a point mutation generates a new antigenic peptide. J. Exp. Med. 172: 35–45, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Boon, T., Coulie, P.G. and Van den Eynde, B. Tumor antigens recognized by T cells. Immunol. Today 18: 267–268, 1997.

    CAS  Google Scholar 

  32. Killion, J.J. and Fidler, I.J. Therapy of cancer metastasis by tumoricidal activation of tissue macrophages using liposome-encapsulated immunomodulators. Pharmacol. Ther. 78: 141–154, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. and Ruco. L. The origin and function of tumor-associated macrophages. Immunol. Today 13: 265–270, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Mantovani, A. Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab. Invest. 71: 5–16, 1994.

    CAS  Google Scholar 

  35. Lewis, C.E., Leek, R., Harris, A. and McGee, J.O. Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J. Leukoc. Biol. 57: 747–751, 1995.

    PubMed  CAS  Google Scholar 

  36. Liu, L., Barth, R.F., Adams, D.M., Soloway, A.H. and Reisfled, R.A. Critical evaluation of bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. Anticancer Res. 16: 2581–2587, 1996.

    PubMed  CAS  Google Scholar 

  37. Ross, J.S. and Fletcher, J.A. The HER-2/neu oncogene: prognostic factor, predictive factor and target for therapy. Semin. Cancer Biol. 9: 125–138, 1999.

    Article  CAS  Google Scholar 

  38. Weiner, L.M. Monoclonal antibody therapy of cancer. Semin. Oncol. 26: 43–51, 1999.

    PubMed  CAS  Google Scholar 

  39. Welt, S., Ritter, G. Antibodies in the therapy of colon cancer. Semin. Oncol. 26: 683–690, 1999.

    CAS  Google Scholar 

  40. Brinkmann, U. Recombinant antibody fragment and immunotoxin fusions for cancer therapy. In Vivo 14: 21–27, 2000.

    PubMed  CAS  Google Scholar 

  41. Green, M.C., Murray, J.L. and Hortobagyi, G.N. Monoclonal antibody therapy for solid tumors. Cancer Treat. Rev. 26: 269–286, 2000.

    Article  PubMed  CAS  Google Scholar 

  42. Witz, I.P. Tumor-bound immunoglobulins: in situ expression of humoral immunity. Adv. Cancer Res. 25: 95–148, 1977.

    Article  CAS  Google Scholar 

  43. Ran, M., Yaakubowicz, M. and Witz, I.P. Lymphocytotoxic auto antibodies eluted from in-vivo propagating sarcoma cells. J. Natl. Cancer Inst. 60: 1509–1513, 1978.

    PubMed  CAS  Google Scholar 

  44. Ran, M., Katz, B., Kimchi, N., Halachmi, E., Teillaud, J-L., Even, J., Berko, Y., Atlas, E., Fridman, W.H. and Witz, I.P. The in-vivo acquisition of Fc gamma RII expression on polyomas virus transformed cells derived from tumors of long latency. Cancer Res. 51: 612–618, 1991.

    PubMed  CAS  Google Scholar 

  45. Witz, I.P. and Ran, M. FcR may function as a progression factor of non-lymphoid tumors. Immunol. Res. 11: 283–295. 1992.

    Article  PubMed  CAS  Google Scholar 

  46. Zusman, T., Lisansky, E.,Arons, E., Anavi, R.,Bonnerot, C., Sautes, C.,Fridman, W.H., Witz, I.P. and Ran, M. The contribution of the intracellular domain of the murine Fcgamma receptor type II B1 to its tumor enhancing potential. Int. J. Cancer, 67: 1–9, 1996.

    Google Scholar 

  47. Cahalon, L., Korem, S., Puri, Y., Smorodinsky, N.I. and Witz, I.P. Regulation of tumor growth and immunomodulation mediated by naturally-occurring autoantibodies. Ann. N.Y. Acad. Sci. 651: 393–408, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Tartour, E. and Fridman, W.H. Cytokines and Cancer. Int. Rev. Immunol. 16: 683–704, 1998.

    Article  PubMed  CAS  Google Scholar 

  49. Goto, S., Sato, M., Kaneko, R., Itoh, M., Sato, S. and Takeuchi, S. Analysis of Thl and Th2 cytokine production by peripheral blood mononuclear cells as a parameter of immunological dysfunction in advanced cancer patients. Cancer Immunol. Immunother. 48: 435–442, 1999.

    Article  CAS  Google Scholar 

  50. Lode, H.N. and Reisfeld, R.A. Targeted cytokines for cancer immunotherapy. Immunol. Res. 21: 279–288, 2000.

    Article  PubMed  CAS  Google Scholar 

  51. Tagawa, M. Cytokine therapy for cancer. Curr. Pharm. Des. 6: 681–699, 2000.

    CAS  Google Scholar 

  52. Bickels, J., Manusama, E.R., Gutman, M., Eggermont, A.M., Kollender, Y., Abu-Abid, S., Van Geel, A.N., Lev-Shlush, D., Klausner, J.M. and Meller, I. Isolated limb perfusion with tumour necrosis factor-alpha and melphalan for unresectable bone sarcomas of the lower extremity. Eur. J. Surg. Oncol. 25: 509–514, 1999.

    Article  PubMed  CAS  Google Scholar 

  53. Hafner, M., Orosz, P., Kruger, A. and Männel, D.N. TNF promotes metastasis by impairing natural killer cell activity. Int. J. Cancer 66: 388–392, 1996.

    CAS  Google Scholar 

  54. Gold, L.I. The role of transforming growth factor-beta (TGF-beta) in human cancer. Crit. Rev. Oncog. 10: 303–360, 1999.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Witz, I.P. (2001). Presence and functions of immune components in the tumor microenvironment. In: Mackiewicz, A., Kurpisz, M., Żeromski, J. (eds) Progress in Basic and Clinical Immunology. Advances in Experimental Medicine and Biology, vol 495. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0685-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0685-0_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5194-8

  • Online ISBN: 978-1-4615-0685-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics