Skip to main content

Effects of Conformation on the Chemical Stability of Pharmaceutically Relevant Polypeptides

  • Chapter
Rational Design of Stable Protein Formulations

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 13))

Abstract

Although most of the attention on the stability of protein and peptide pharmaceuticals has focused on denaturation and aggregation, chemical degradation cannot be ignored. A large number of possible chemical reactions have been identified as leading to decomposition of polypeptides (Manning et al., 1989). However, a select few are of primary concern to pharmaceutical scientists. In particular, hydrolysis and oxidation reactions appear to be the most common source of chemical instability. Hydrolysis of peptides refers to the nucleophilic addition of water to either an amide linkage in the peptide backbone (in a process known as proteolysis) or to an amide side chain of either asparagine or glutamine (known as deamidation). Meanwhile, oxidation can occur at cysteine residues (to form disulfide linkages), at methionine (to form sulfoxides), or at heterocyclic aromatic side chains of tryptophan and histidine (to form N-oxides).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arakawa, T., Prestrelski, S.J., Kenney, W.C., and Carpenter, J.F., 1993. Factors affecting short-term and long-term stabilités of proteins, Adv. Drug Delivery Rev. 10: 1–28.

    Article  CAS  Google Scholar 

  • Araki, F., Nakamura, H., Nojima, N., Tsukumo, K., and Sakamoto, S., 1989. Stability of recombinant human epidermal growth factor in various solutions, Chem. Pharm. Bull. 37:404–406.

    Article  PubMed  CAS  Google Scholar 

  • Artigues, A., Birkett, A., and Schirch, V., 1990. Evidence for the in vivo deamidation and isomerization of an asparaginyl residue in cytosolic serine hydroxy-methyltransferase, J. Biol. Chem. 265:4853–4858.

    PubMed  CAS  Google Scholar 

  • Aswad, D.W., ed., 1995. Deamidation and Isoasparate Formation in Peptides and Proteins, CRC Press, Boca Raton.

    Google Scholar 

  • Becker, G.W., Tackitt, P.M., Bromer, W.W., Lefeber, D.S., and Riggin, R.M., 1988. Isolation and characterization of a sulfoxide and desamido derivative of biosynthetic human growth hormone, Biotechnol Appi Biochem. 10:326–337.

    CAS  Google Scholar 

  • Berson, S.A. and Yalow, R.S., 1966. Deamidation of insulin during storage in frozen state, Diabetes 15:875–878.

    PubMed  CAS  Google Scholar 

  • Bongers, J., Heimer, E.P., Lambros, T., Pan, Y.C., Campbell, R.M., and Felix, A.M., 1992. Degradation of aspartic acid and asparagine residues in human growth hormone-releasing factor, Int. J. Peptide Protein Res. 39:364–374.

    Article  CAS  Google Scholar 

  • Brange, J., Langkj3/4 r, L., Havelund, S., and V¿lund, A., 1992. Chemical stability of insulin. 1. hydrolytic degradation during storage of pharmaceutical preparations. Pharm. Res. 9:715–726.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, T.V. and Clarke, S., 1995. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides, Int. J. Peptide Protein Res. 45:547–553.

    Article  CAS  Google Scholar 

  • Brot, N. and Weissbach, H., 1983. Biochemistry and physiological role of methionine sulfoxide residues in proteins, Arch. Biochem. Biophys. 223:271–281.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, P., Luk, D.C., Weissbach, H., and Brot, N., 1978. Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein’s biological activity, Proc. Natl. Acad. Sci. USA 75:5349–5352.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B.S., Beauvais, R.M., Dong, A., and Carpenter, J.F., 1996. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation, Arch. Biochem. Biophys. 331:249–258.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Costantino, H.R., Hsu, C.-C., and Shire, S.J., 1999. Influence of calcium ions on the structure and stability of recombinant human deoxyribonuclease I in the aqueous and lyophilized States, J. Pharm. Sci. 88:477–482.

    Article  PubMed  CAS  Google Scholar 

  • Chloupek, R.C., Harris, R.J., Leonard, C.K., Keck, R.G., Keyt, B.A., Spellman, M.W., Jones, A.J.S., and Hancock, W.S., 1989. Study of the primary structure of recombinant tissue plasminogen activator by reversed phase high performance liquid chromatographic tryptic mapping, J. Chromatogr. 463:375–396.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S., 1987. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins, Int. J. Peptide Protein Res. 30:808–829.

    Article  CAS  Google Scholar 

  • Clarke, J. and Itzhake, L.S., 1998. Hydrogen exchange and protein folding, Curr. Opinion Struct. Biol. 8:112–118.

    Article  CAS  Google Scholar 

  • Cleland, J.L., Mac, A., Boyd, B., Yang, J., Duenas, E.T., Yeung, D., Brooks, D., Hsu, C., Chu, H., Mukku, V., and Jones, A.J.S., 1997. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres, Pharm. Res. 14:420–425.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, J.L., Powell, M.F., and Shire, S.J., 1993. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation, Crit. Rev. Ther. Drug Carrier Systems 10:307–377.

    CAS  Google Scholar 

  • Darrington, R.T. and Anderson, B.D., 1994. The role of intramolecular nucleophilic catalysis and the effects of self-association on the deamidation of human insulin at low pH, Pharm. Res. 11:784–793.

    Article  PubMed  CAS  Google Scholar 

  • Dathe, M., Fabian, H., Gast, K., Zirwer, D., Winter, R., Beyermann, M., Schumann, M., and Bienert, M., 1996. Conformational differences of ovine and human corticotropin releasing hormone. A CD, IR, NMR and dynamic light scattering study, Int. J. Peptide Protein Res. 47:383–393.

    Article  CAS  Google Scholar 

  • DePaz, R.A., Barnett, C.C., Carpenter, J.F., Dale, D.A., Gaertner, A., and Randolph, T.W., 2000. The excluding effects of sucrose on a protein chemical degradation pathway: methionine oxidation in subtilisin, Arch. Biochem. Biophys. 384:123–132.

    Article  PubMed  CAS  Google Scholar 

  • DiAugustine, R.P., Gibson, B.W., Aberth, W., Kelly, M., Ferrua, C.M., Tomooka, Y., Brown, C.F., and Walker, M., 1987. Evidence for isoaspartyl (deamidated) forms of mouse epidermal growth factor, Anal. Biochem. 165:420–429.

    Article  PubMed  CAS  Google Scholar 

  • Di Donato, A., Galletti, P., and D’Alession, G., 1986. Selective deamidation and enzymatic methylation of seminal ribonuclease, Biochemistry 25:8361–8368.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, B.D. and Porter, P.B., 1981. Stability of bovine insulin, J. Pharm. Pharmacol. 33:203–206.

    Article  PubMed  CAS  Google Scholar 

  • Foord, R.L. and Leatherbarrow, R.J., 1998. Effect of osmolytes on the exchange rates of backbone amide protons in proteins, Biochemistry 37:2969–2978.

    Article  PubMed  CAS  Google Scholar 

  • Fransson, J., Florin-Robertsson, E., Axelsson, K., and Nyhlen, C., 1996. Oxidation of human insulin-like growth factor I in formulation studies: kinetics of methionine oxidation in aqueous solution and in solid state, Pharm. Res. 13:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  • Fransson, J. and Hagman, A., 1996. Oxidation of human insulin-like growth factor I in formulation studies, II. Effects of oxygen, visible light, and phosphate on methionine oxidation in aqueous solution and evaluation of possible mechanisms, Pharm. Res. 13:1476–1481.

    Article  PubMed  CAS  Google Scholar 

  • Fransson, J.R., 1997. Oxidation of human insulin-like growth factor I in formulation studies. 3. Factorial experiments of the effects of ferric ions, EDTA, and visible light on methionine oxidation and covalent aggregation in aqueous solution, J. Pharm. Sci. 86:1046–1050.

    Article  PubMed  CAS  Google Scholar 

  • Frenz, J., Wu, S.-L., and Hancock, W.S., 1989. Characterization of human growth hormone by capillary electrophoresis, J. Chromatogr. 480:379–391.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, T. and Clarke, S., 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation, J. Biol. Chem. 262:785–794.

    PubMed  CAS  Google Scholar 

  • George-Nascimento, C., Lowenson, J., Borissenko, M., Calderon, M., Medina-Selby, A., Kuo, J., Clarke, S., and Randolph A., 1990. Replacement of a labile aspartyl residue increases the stability of human epidermal growth factor, Biochemistry 29:9584–9591.

    Article  PubMed  CAS  Google Scholar 

  • Gietz, U., Alder, R., Langguth, P., Arvinte, T., and Merkle, H.P., 1998. Chemical degradation kinetics of recombinant hirudin (HV1) in aqueous solution: effect of pH, Pharm. Res. 15:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, C.S., Illades-Aguiar, B., Casillas-Martinez, L., and Setlow, P., 1998. In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species, J. Bacteriol 180:2694–2700.

    PubMed  CAS  Google Scholar 

  • Houghten, R.A. and Li, C.H., 1976. Studies on pituitary prolactin. 39. reaction of the ovine hormone with hydrogen peroxide, Biochim. Biophys. Acta 439:240–249.

    Article  PubMed  CAS  Google Scholar 

  • Houghten, R.A., Glaser, C.B., and Li, C.H., 1977. Human somatotropin. Reaction with hydrogen peroxide. Arch. Biochem. Biophys. 178:350–355.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, Y.R., Chang, W.C., Mendiaz, E.A., Hara, S., Chow, D.T., Mann, D.B., Langley, K.E., and Lu, H.S., 1998. Selective deamidation of recombinant human stem cell factor during in vitro Aging: isolation and characterization of the aspartyl and isoaspartyl homodimers and heterodimers, Biochemistry 37:2251–2262.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B.A., Shirokawa, J.M., Hancock, W.S., Spellman, M.W., Basa, L.J., and Aswad, D.W., 1989. Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone, J. Biol. Chem. 264:14262–14271.

    PubMed  CAS  Google Scholar 

  • Kendrick, B.S., Chang, B.S., Arakawa, T., Peterson, B., Randolph, T.W., Manning, M.C., and Carpenter, J.F., 1997. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: Role in restricted conformational mobility and compaction of native state. Proc. Natl Acad. Sci. USA 94:11917–11922.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, B.S., Carpenter, J.F., Cleland, J.L., and Randolph, T.W., 1998. A transient expansion of the native state preces aggregation of recombinant human interferon-γ. Proc. Natl. Acad. Sci. USA 95:14142–14146.

    Article  PubMed  CAS  Google Scholar 

  • Kenkare, U.W. and Richards, KM., 1966. The histidyl residues in ribonuclease-S. Photooxidation in solution and in single crystals, the iodination of histidine-12, J. Biol. Chem. 241:3197–3206.

    PubMed  CAS  Google Scholar 

  • Kornfelt, T., Persson, E., and Palm, L., 1999. Oxidation of methionine residues in coagulation factor Vila, Arch. Biochem. Biophys. 363:43–54.

    Article  PubMed  CAS  Google Scholar 

  • Kosen, P.A., 1992. Disulfide bonds in proteins, in: Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation, T.J. Ahern and M.C. Manning, eds., Plenum Press, New York, pp. 31–66.

    Google Scholar 

  • Kossiakoff, A.A., 1988. Tertiary structure is a principal determinant to protein deamidation, Science 240:191–194.

    Article  PubMed  CAS  Google Scholar 

  • Kroon, D.J., Baldwin-Ferro, A., and Lalan, P., 1992. Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping, Pharm. Res. 9:1386–1393.

    Article  PubMed  CAS  Google Scholar 

  • Lam, X.M., Yang, J.Y., and Cleland, J.L., 1997. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2, J. Pharm. Sci. 86:1250–1255.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.C. and Timasheff, S.N., 1981. The stabilization of proteins by sucrose, J. Biol. Chem. 256:7193–7201.

    PubMed  CAS  Google Scholar 

  • Levine, R.L., et al., 1996. Methionine residues as endogenous antioxidants in proteins, Proc. Natl. Acad. Sci. USA 93:15036–15040.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, U.J., Cheever, E.V., Hopkins, W.C., 1970. Kinetic study of the deamidation of growth hormone and prolactin, Biochim. Biophys. Acta. 214:498–508.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Schoneich, C., and Borchardt, R.T., 1995a. Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol. Bioeng. 48:490–500.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Nguyen, T.H., Schoneich, C., and Borchardt, R.T., 1995b. Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation, Biochemistry 34:5762–5772.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Schoneich, C., and Borchardt, R.T., 1995c. Chemical pathways of peptide degradation. VIII. Oxidation of methionine in small model peptides by prooxidant/transi-tion metal ion systems: influence of selective scavengers for reactive oxygen intermediates. Pharm. Res. 12:348–355.

    Article  PubMed  Google Scholar 

  • Lilova, A., Kleinschmidt, T., and Nedkov, P., 1987. Methionine residue susceptibility in native subtilisin DY, Biol. Chem. HoppeSeyler 368:513–519.

    Article  CAS  Google Scholar 

  • Liu, D.T.-Y., 1992. Deamidation: a source of microheterogeneity in pharmaceutical proteins, Trends Biotechnol. 10:364–369.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.L., Lu, K.V., Eris, T., Katta, V., Westcott, K.R., Narhi, L.O., and Lu, H.S., 1998. In vitro methionine oxidation of recombinant human leptin, Pharm. Res. 15:632–640.

    Article  PubMed  CAS  Google Scholar 

  • Lura, R., Schirch, V., 1988. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues, Biochemistry 27:7671–7677.

    Article  PubMed  CAS  Google Scholar 

  • Mach, H., et al., 1994. Origin of the photosensitivity of a monoclonal immunoglobulin G, in: Formulation and Delivery of Proteins and Peptides, J.L. Cleland and R. Langer, eds., American Chemical Society Symp. Series, Washington, D.C., pp. 72–84.

    Chapter  Google Scholar 

  • Manning, M.C., Patel, K., Borchardt, R.T., 1989. Stability of protein pharmaceuticals, Pharm. Res. 6:903–918.

    Article  PubMed  CAS  Google Scholar 

  • McCrossin, L.E., Charman, W.N., and Charman, S.A., 1998. Degradation of recombinant porcine growth hormone in the presence of guanidine hydrochloride, Int. J. Pharm. 173:157–170.

    Article  CAS  Google Scholar 

  • Meyer, J.D., Ho, B., Snyder, S., and Manning, M.C., 1996. Solution behavior of human corticotropin releasing factor, Pharm. Res. 13:S-100.

    Google Scholar 

  • Miles, A.M. and Smith, R.L., 1993. Functional methionines in the collagen/gelatin binding domain of plasma fibronectin: effects of chemical modification by chloramine T, Biochemistry 32:8168–8178.

    Article  PubMed  CAS  Google Scholar 

  • Nabuchi, Y., Fujiwara, E., Ueno, K., Kuboniwa, H., Asoh, Y., and Ushio, H., 1995. Oxidation of recombinant human parathyroid hormone: effect of oxidized position on the biological activity, Pharm. Res. 12:2049–2052.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T.H., Oxidative degradation of protein pharmacetucals, in: Formulation and Delivery of Proteins and Peptides, J.L. Cleland and R. Langer, eds., American Chemical Society Symp. Series, Washington, D.C., pp. 59–71.

    Google Scholar 

  • Nguyen, T.H., Burnier, J., and Meng, W., 1993. The kinetics of relaxin oxidation by hydrogen peroxide. Pharm. Res. 10:1563–1571.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, R.G., Sittampalam, G.S., and Rickard, E.C., 1989. Capillary zone electrophoresis of insulin and growth hormone, Anal. Biochem. 177:20–26.

    Article  PubMed  CAS  Google Scholar 

  • Oliva, A., Farina, J.B., and LlabrZs, M., 1996. Influence of temperature and shaking on stability of insulin preparations: degradation kinetics, Int. J. Pharm. 143:163–170.

    Article  CAS  Google Scholar 

  • Patel, K. and Borchardt, R.T., 1990. Chemical pathways of peptide degradation. II. kinetics of deamidation of an asparaginyl residue in a model hexapeptide, Pharm. Res. 7:703–711.

    Article  PubMed  CAS  Google Scholar 

  • Pearlman, R. and Bewley, T.A., 1993. Stability and characterization of human growth hormone, in: Pharmaceutical Biotechnology: Case Studies, Vol. 5, Y.J. Wang and R. Pearlman, eds., Plenum Press, New York, New York. pp. 1–59.

    Google Scholar 

  • Pearlman, R. and Nguyen, T.H., 1992. Pharmaceutics of protein drugs, J. Pharm. Pharmacol. 44 (Suppl 1): 178–185.

    PubMed  CAS  Google Scholar 

  • Pikal, M.J., Dellerman, K.M., Roy, M.L., and Riggin, R.M., 1991. The effects of formulation variables on the stability of freeze-dried human growth hormone, Pharm. Res. 8:427–436.

    Article  PubMed  CAS  Google Scholar 

  • Senderoff, R.I., Wootton, S.C., Boctor, A.M., Chen, T.M., Giordani, A.B., Julian, T.N., and Radebaugh, G.W., 1994. Aqueous stability of human epidermal growth factor 1–48, Pharm. Res. 11:1712–1720.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S., Harnmen, P.K., Anderson, J.W., Leung, A., Georges, F., Hengstenberg, W., Klevit, R.E., and Way good, E.B., 1993. Deamidation of HPr, a phosphocarrier protein of the phosphoenolpyruvate: sugar phosphotransferase system, involves asparagine 8 (HPr-1) and asparagine 12 (HPr-2) in isoaspartyl acid formation, J. Biol. Chem. 268:17695–17704.

    PubMed  CAS  Google Scholar 

  • Son, K. and Kwon, C., 1995. Stabilization of human epidermal growth factor (hEGF) in aqueous solution, Pharm. Res. 12:451–454.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, C.L., Donlan, M.E., Friedman, A.R., and Borchardt, R.T., 1993a. Solution conformation of Leu27-hGRF(1-32)-NH2 and Its deamidation products by 2D NMR, Int. J. Peptide Protein Res. 42:24–32.

    Article  CAS  Google Scholar 

  • Stevenson, C.L., Friedman, A.R., Kubiak, T.M., Donlan, M.E., and Borchardt, R.T., 1993b. Effect of secondary structure on the rate of deamidation of several growth hormone releasing factor analogs, Int. J. Peptide Protein Res. 42:497–503.

    Article  CAS  Google Scholar 

  • Strickley, R.G. and Anderson, B.D., 1996. Solid-state stability of human insulin. I. mechanism and the effect of water on the kinetics of degradation in lyophiles from pH 2–5 solutions, Pharm. Res. 13:1142–1153.

    Article  PubMed  CAS  Google Scholar 

  • Teh, L.C., Murphy, L.J., Huq, N.L., Sums, A.S., Friesen, H.G., Lazarus, L., and Chapman, G.E., 1987. Methionine oxidation in human growth hormone and human chorionic somatomammotropin. Effects on receptor binding and biological activities, J. Biol. Chem. 262:6472–6477.

    PubMed  CAS  Google Scholar 

  • Timasheff, S.N., 1998. Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated. Adv. Protein Chem. 91:355–432.

    Article  Google Scholar 

  • Tsai, P.K., Bruner, M.W., Irwin, J.I., Yu Ip, C.C., Oliver, C.N., Nelson, R.W., Volkin, D.B., and Middaugh, C.R., 1993. Origin of the isoelectric heterogeneity of monoclonal immunoglobulin hlB4, Pharm. Res. 10:1580–1586.

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Cross, R. and Schirch, V., 1991. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides, J. Biol. Chem. 266:22549–22556.

    PubMed  CAS  Google Scholar 

  • Violand, B.N., Schlittler, M.R., Toren, P.C., and Siegel, N.R., 1990. Formation of isoas-partate 99 in bovine and porcine somatotropins, J. Prot. Chem. 9:109–117.

    Article  CAS  Google Scholar 

  • Violand, B.N., Schiittier, M.R., Kolodziej, E.W., Toren, P.C., Cabonce, M.A., Siegel, N.R., Duffin, K.L., Zobel, J.F., Smith, C.E., and Tou, J.S., 1992. Isolation and characterization of porcine somatotropin containing a succinimide residue in place of aspartate129, Protein Sci. 1:1634–1641.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, W., 1995. Oxidation of methionyl residues in proteins: tools, targets, and reversal, Free Radical Biol. Med. 18:93–105.

    Article  CAS  Google Scholar 

  • Wearne, S.J. and Creighton, T.E., 1989. Effect of protein conformation on rate of deamidation: ribonuclease A, Proteins 5:8–12.

    Article  PubMed  CAS  Google Scholar 

  • Wills, P.R., Comper, W.D., and Winzor, D.J., 1993. Thermodynamic nonideality in macro-molecular solutions: interpretation of virial coefficients, Arch. Biochem. Biophys. 300:206–213.

    Article  PubMed  CAS  Google Scholar 

  • Wright, H.T., 1991. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins, Protein Eng. 4:283–294.

    Article  PubMed  CAS  Google Scholar 

  • Xie, M. and Schowen, R.L., 1999. Secondary structure and protein deamidation, J. Pharm. Sci. 88:8–13.

    Article  PubMed  CAS  Google Scholar 

  • Zull, J.E., Smith, S.K., and Wiltshire, R., 1990. Effect of methionine oxidation and deletion of amine-terminal resiudes on the conformation of parathyroid hormone, J. Biol Chem. 265:5671–5676.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meyer, J.D., Ho, B., Manning, M.C. (2002). Effects of Conformation on the Chemical Stability of Pharmaceutically Relevant Polypeptides. In: Carpenter, J.F., Manning, M.C. (eds) Rational Design of Stable Protein Formulations. Pharmaceutical Biotechnology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0557-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0557-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5131-3

  • Online ISBN: 978-1-4615-0557-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics