Skip to main content

Phenotypic Overlap between Monocytes and Vascular Endothelial Cells

  • Chapter
Book cover Novel Angiogenic Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 522))

Summary

During embryonic development, endothelial cells (ECs) develop organ specific properties. ECs express specific markers, which are helpful in identifying these cells in vivo and in culture. Interestingly, most of the supposed specific endothelial markers are present on both ECs and hematopoietic precursors or mature blood cells, which correspond to the idea of a common embryonic precursor. Monocytes/makrophages and monocyte-derived dendritic cells, as more differentiated hematopoietic cell populations, show a wide phenotypic overlap with particularly hepatic sinusoidal, and microvascular endothelial cells within inflamed tissue, such as neovascularizised complicated atherosclerotic plaques. Furthermore, under local angiogenic growth conditions monocytes or monocyte precursors or immature dendritic cells may differentiate into endothelial like cells. First evidence suggests an endothelium-independent revascularization potential carried by monocyte-derived macrophages. These macrophages have been shown to form tunnel-like structures in ischemic regions. Future studies have to address the question, whether monocyte-/dendritic cell-derived endothelial like cells can develop a similar functional behaviour in vasoregulation, coagulation and fibrinolysis, as described for vascular endothelial cells, and thus may contribute to neoangiogenesis by a direct vessel-forming role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Garlanda, and E. Dejana. Heterogenity of endothelial cells. Specific markersArrerioscler Tromh Vase Biol.171193–1202.(1997).

    Google Scholar 

  2. D. B. Cines, ES. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmermann, R. P.McEver, J. S. Pober, T. M. Wick, B. A. Konkle. B. S. Schwatz. E. S. Barnathan, K. R. McCrae, B. A. Hug. A. M. Schmidt. and D. Stern, Endothelial cells in physiology and in the pathophysiology of vascular disorders.Blood 913527–3561 (1997).

    Google Scholar 

  3. T. N. Sato, Y. Qin. C. A. Kozak, and KL Audus, Tie-1 and Tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system, (erratum 1993, 90:12056)Proc Nail Acad Sei(USA)909355–9358 (1993).

    Article  CAS  Google Scholar 

  4. F. Shalaby, J. Ho, W. L. Stanford. K. D. Fischer. A. C. Schuh, L. Schwartz, A. Bernstein and J. Rossant, A requirement for Flk-I in primitive and definitive hematopoiesis and vasculogenesisCell .89981–990 (1999).

    Article  Google Scholar 

  5. A. Eichmann, C. Corbel, V. Nataf. P. Vaigot, C. Bream, and N. M. L. Douarin, Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2.Proc Natl Acad Sci(USA)94.5141–5146 (1997).

    Article  CAS  Google Scholar 

  6. T. Asahara, T. Murohara, A. Sullivan, M. Silver. R. van der Zee. T. Li. B. Witzenbichler. G. Schattemann and J. M. Isner, Isolation of putative progenitor endothelial cells for angiogenesisScience 275:964–967 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. M. Nieda. A. Nicol, P. Denning-Kendall. J. Sweetenham. B. Bradle. and J. Hows, Endothelial cell precursors are normal components of human umbilical cord blood. British J Haematology 98775–777 (1997).

    Article  CAS  Google Scholar 

  8. B. Q. Shi. S. Rafii, M. H. D. Wu, E. S. Wijelath. C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L. R. Sauvage, M. A. S. Moore. R. F. Storb. and W. P. Hammond, Evidence for circulating bone marrow-derived endothelial cells.Blood 92362–367 (1998).

    PubMed  CAS  Google Scholar 

  9. M. Peichev, A. J. Naiyer. D. Pereira, Z. Zhu. W. J. Lane, M. Williams, M. C. Oz, D. J. Hicklin, L. Witte, M. S. Moore. and S. Rafii. Expression of VEGFR-2 and AC133 by circulating human CD34’ cells identifies a population of functional endothelial precursorsBlood 95952–958 (2000).

    PubMed  CAS  Google Scholar 

  10. T. Mustonen, K. Alitalo, Endothelial receptor tyrosine kinases involved in angiogenesisJ Cell Biol 129.895–902 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. F. Shalaby, J. Rossant. T. P. Yamaguchi. M. Gertsenstein. X. F. Wu. M. L. Breituran, and A. C. Schuh, Failure of blood island formation and vasculogenesis in FIk- I -deficient mice.Nature 37662–66 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. J. Yamashita, H. Itoh. M. Hirashima, M. Ogawa. S. Nishikawa, T. Yurugi. M. Naito. K. Nakao. and S. 1. Nishikawa, Flk I -positive cells derived from embryonic stem cells serve as vascular progenitorsNature 40892–96 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. B. L. Ziegler, M. Valtieri. G. A. Porada, R. De Maria, R. Muller. B. Masella. M. Gabbianelli. 1. Casella, E. Pelosi, T. Bock, E. D. Zanjani, and C. Peschle, KDR receptor: a key marker defining hematopoietic stem cellsScience 2851553–1558 (1999).

    Google Scholar 

  14. K. Choi, M. Kennedy, A. Kazarow, J. C. Papadimitiou. and G. Keller, A common precursor for hematopoietic and endothelial cells.Development 125.725–732 (1998).

    PubMed  CAS  Google Scholar 

  15. S. Miraglia, W. Godfrey, A. H. Yin, K. Atkins. R.Warnke. J. T. Holden. R. A. Bray. E. K. Waller. and D. W. Buck, A novel five-transmeinbrane hematopoietic stem cell antigen: isolation. characterization. and molecular cloningBlood 90.5013–5021 (1997).

    PubMed  CAS  Google Scholar 

  16. A. H. Yin. S. Miraglia, E. D. Zaniani, G. Almeida-Porada. M. Ogawa, A. G. Leary. J. Olweus, J. Kearney, and D. W. Buck, AC133, a novel marker for human hematopoietic stem and progenitor cells.Blood 905002–5012 (1997).

    PubMed  CAS  Google Scholar 

  17. U.M. Gehling, S. Ergün, U. Schumacher, C. Wagener, K. Pantel, M. Otte, G. Schuch, P. Schaffhausen, T. Mende, N. Kilic, K. Kluge, B. Schäfer, D. K. Hossfeld and W. Fiedler, In vitro differentiation of endothelial cells from ACI33-positive progenitor cellsBlood 953106–3112 (2000).

    PubMed  CAS  Google Scholar 

  18. T. Asahara, H. Masuda, T. Takahashi, C. Kalka. C. Pastore. M. Silver, M. Keame, M. Magner, and J. M. Isner, Bone marrow origin of endothelial progenitor cells responsible for postnatal Vasculogenesis in physiological and pathological neovascularizationCirc Res 85.221–228 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. C. Kalka, H. Masuda, T. Takahashi, M. Kalka-Moll, M. Silver, M. Kearney. T.Li. J.M. Isner, and T. Asahara, Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic NeovascularizationProc Nall Acad Sci(USA)97.3422–3427 (2000).

    Article  CAS  Google Scholar 

  20. M. Shima, S. L. Teitelbaum, V. M. Holers, C. Ruzicka, P. Osmack, and F. P. Ross, Macrophage-colonystimulating factor regulates expression of the integrins alpha 4 beta I and alpha 5 beta I by murine bone marrow macrophagesProc Nail Acad Sci(USA)92.5179–5183 (1995).

    Article  CAS  Google Scholar 

  21. R. Giavazzi, and I. R. Hart, Mononuclear phagocyte adherence in the presence of laminin. A possible marker of cellular differentiationExp Cell Res 146391–399 (1993).

    Article  Google Scholar 

  22. J. M. Austin, and D. Phil, Dendritic cellsCurr Opin Hemato.l5, 3–15 (1998).

    Google Scholar 

  23. C. Trezzini, T. W. Jungi, M. O. Spycher, F. E. Maly. and P. Rao. Human monocytes CD36 and CDI6 are signaling molecules. Evidence from studies using antibody-induced chemiluminescence as a tool to probe signal transductionImmunology 7129–37 (1990).

    PubMed  CAS  Google Scholar 

  24. H. Strobl, C. Scheinecker, B. Cesmarits, O. Majdic, and W. Knapp. Flow cytometric analysis of intracellular CD68 molecule expression in normal and malignant heamapoiesis.British J Haematol 90774–782 (1995).

    Article  CAS  Google Scholar 

  25. G. Ocklind, D. Friedrichs, and J. H. Peters, Expression of CD54, CD58, CD14„ and HLA-DR on macrophage and macrophage derived accessory cells and their accessory capacity.Immunol Len31. 253–258 (1992)

    Article  CAS  Google Scholar 

  26. S. H. Lee, P. R. Crocker, S. Westaby, N. Key. D. Y. Mason. S. Gordon. and D. J. Weatherall. Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clustersJ Exp Med 1681193–1198 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. P. J. Newman, and S. M. Albelda, Cellular and molecular aspects of PECAM-1Nouv Rev Fr Hematol 34Suppl:S9–13 (1992).

    Google Scholar 

  28. A. Sawano, S. lwai, Y. Sakurai, M. Ito. K. Shitara, T. Nakahata, and M. Shibuya. FIt-1, vascular endothelial growth factor receptor I, is a novel cell surface marker for the lineage of monocyte-macrophages in humansBlood 97785–791.(2001)

    Article  PubMed  CAS  Google Scholar 

  29. A. M. Schmidt, S. D. Yan, J. Brett, R. Mora, R. Nowygrod. and D. Stem, Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end productsJ Clin Invest 912155–2168 (1993).

    Article  CAS  Google Scholar 

  30. J. Banchereau, F. Bazan, D. Blanchard, F. Briere, J. P. Galizzi. C. van Knoten, Y. J. Liu. F. Rousset, and S. Sealand, The CD40 antigen and ist ligandAnnu Rev Immunol 12.881–922 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. K. Shimada, and Y. Yazaki, Binding sites for angiotensin I1 in human leucocytesJ Biochem 841013–1015 (1978).

    PubMed  CAS  Google Scholar 

  32. C. L. Manyak, H. Tse, P. Fischer, L. Coker, N. H. Signal. and G. C. Koo, Regulation of class Il MHC molecules on human endothelial cells. Effects of IFN and dexamethasoneJ Immunol 140.3817–3822 (1988).

    PubMed  CAS  Google Scholar 

  33. A. Shore, P. Leary, and J. M. Teitel, Comparison of accessory cell functions of endothelial cells and monocytes: II-2 production by T cells and PFC generation.Cell Immunol100.210–217 (1986).

    Article  PubMed  CAS  Google Scholar 

  34. P. H. Hart, G. A. Whitty, D. R. Burgess, M. Croatto, and J. A. Hamilton. Augmentation of glucocorticoid action on human monocytes by interleucin-4Lymphokine Res 9 147–153 (1990).

    PubMed  CAS  Google Scholar 

  35. I. Vallee, J. M. Guillaumin, G. Thibault, Y. Gruel. Y. Lebranchu, P. Bardos, and H. Warier, Human T lymphocyte proliferative response to resting porcine endothelial cells results from an HLA-restricted, IL-10 sensitive, indirect presentation pathway but also depends on endothelial-specific costimulatory factorsJ Immunol 1611652–1658 (1998).

    PubMed  CAS  Google Scholar 

  36. W. W. Hancock, M. H. Sayegh, X. G. Zheng, R. Peach, and P. S. Linsley, Costimulatory function and expression of CD40 ligand, CD80. and CD86 in vascularized murine cardiac allograft rejection Proc Nall Acad Sci (USA)9313967–13973 (1996).

    Article  CAS  Google Scholar 

  37. K. Seino, M. Azuma, H. Bashuda, K. Fukao, H. Yagita, and K. Okumura, CD86 (B70/B7–2) on endothelial cells co-stimulates allogeneic CD4+ T cells, In:Immunol 71331–1337 (1995).

    CAS  Google Scholar 

  38. K. C. Jollow, J. C. Zimring, J.B. Sundstrom, and A. A. Ansari, CD40 ligation induced phenotypic and functional expression of CD80 by human cardiac microvascular endothelial cellsTransplantation 68430–439 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. M.D. Dentn, C. S. Geehan, S. I. Alexander, M. H. Sayegh, and D. M. Briscoe, Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T cell alloactivation.J Exp Med 190555–566 (1999).

    Article  Google Scholar 

  40. K. D. Forsyth, K. Y. Chua, V. Talbot, and W. R. Thomas, Expression of the Leucocyte Common Antigen CD45 by endotheliumJ Immunol 1503471–3477 (1993).

    PubMed  CAS  Google Scholar 

  41. V. Desmet, Emy of the liver and intrahebryologpatic biliary tract, and an overview of malformations of the bile duct. In: OxfordTextbook ofClinical Hepatology, edited by N. McIntyre, J.P. Benhamou, J.BircherandJ. Rodes(Oxford, UK Oxford, 1991), pp. 497

    Google Scholar 

  42. G. Machiarelli, S. Makabe, and P. Motta, Scanning electron microscopy of adult and fetal liversinusoidsIn:Sinusoids in Human Liver: Health and Diseaseedited by P. Biolac-Sage, and C.Balabaud(Rijswijk, The Netherlands, Kupfer Cell Foundation, 1988) pp.63

    Google Scholar 

  43. Steinhoff G, M Behrend, B Schrader, AM Duijvestijn and K Wonigeit, Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-I, ICAM-I. ICAM-2, and LFA-3Am J Pathol 142481–488 (1993).

    PubMed  CAS  Google Scholar 

  44. M. Garcia-Barcina. B. Lukomska, W. Gawron, M. Winnock, F. Vidal-Vanaclocha, P. Bioulac-Sage, C. Balabaud, and W. Olszewski, Expression of cell adhesion molecules on liver-associated lymphocytes and their ligands on sinusoidal lining cells in patients with benign or malignant liver disease.Am J Pathol 1461406–1413 (1995).

    Google Scholar 

  45. A. W. Lohse, P. A. Knolle, K. Bilo, A. Uhrig, C. Waldmann, M. Ibe, E. Schmitt, G. Gerken, and K.. H Meyer Zum Buschenfelde, Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cellsGastroenterology 1101175–1181 (1996).

    Article  PubMed  CAS  Google Scholar 

  46. P. A. Knolle. A. Uhrig. S. Hegenbarth, E. Loser, E. Schmitt, G. Gerken, and A. W. Lohse, IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules.Clin Exp Immunol 114427–433 (1998).

    Article  PubMed  CAS  Google Scholar 

  47. P. A. Knolle, and G. Gerken. Local control of the immune response in the liverImmunol Rev 17421–34 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. P. A. Knolle, and A. Limmer, Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cellsTrends Immunol 22432–437 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. J. Y. Scoazec, and G. Feldmann, In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: results and functional implicationsHepatology 14789–797 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. A. Limmer, J. Ohl, C. Kurts, H. G. Ljunggren, Y. Reiss, M. Groettrup, F. Momburg, B. Arnold, and P. A. Knolle, Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell toleranceNat Med 6.348–1354 (2000).

    Google Scholar 

  51. C. Page, M. Rose, M. Yacoub. andR.Pigott. Antigenic heterogeneity of vascular endothelium.Am J Pathol 141673–683 (1992).

    PubMed  CAS  Google Scholar 

  52. D. M. Briscoe, L. E. DesRoches. J. M. Kiely, J. A. Lederer, and A. H. Lichtman, Antigen-dependent activation of T helper cell subsets by endotheliumTransplantation 59.1638–1641 (1995).

    PubMed  CAS  Google Scholar 

  53. D. M. Briscoe, P. Ganz, S. I. Alexander, R. J. Melder, R. K. Jain, R. S. Cotran, and A. H. Lichtman, The problem of chronic rejection: influence of leukocyte-endothelial interactions.Kidney Int Suppl 5852227 (1997).

    Google Scholar 

  54. I. Van Rhijn, L. H. Van den Berg, W. M. Bosboom, H. G. Otten, and T. Logtenberg, Expression of accessory molecules for T-cell activation in peripheral nerve of patients with CIDP and vasculitic neuropathyBrain 1232020–2029 (2000).

    Article  PubMed  Google Scholar 

  55. C. Zietz, B. Hotz, M. Sturzl, E. Rauch, R. Penning, and U. Lohrs, Aortic endothelium in HIV-1 infection: chronic injury, activation, and increased leukocyte adherenceAm J Pathol 149.1887–1898 (1996).

    PubMed  CAS  Google Scholar 

  56. W. Koster Endarteritis and arteritisBerl Klin Wochenschr 13.454–57 (1876).

    Google Scholar 

  57. N. Kumamoto, Y. Nakashima. K. Suieshi, Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significanceHum Pathol 26450–56 (1995).

    Article  PubMed  CAS  Google Scholar 

  58. E. O’Brien, M. R. Garwin, R. Dev, D. K. Stewart, T. Hinohara, J. B. Simpson, and S. M. Schwanz, Angiogenesis in human coronary atherosclerotic plaquesAm J Parhol 145883–93 (1994).

    Google Scholar 

  59. Y. Zhang, W. J. Cliff, G. I. Schoefl, and G.Higgins, Immunohistochemical study of intimai microvessels in coronary atherosclerosisAm J Pathol. 143164–172 (1993)

    Google Scholar 

  60. E. Groszek, and S. M. Grundy, The possible role of the arterial microcirculation in the pathogenesis of atherosclerosisJ Chron Dis 33679–684 (1980)

    Article  PubMed  CAS  Google Scholar 

  61. K. D. O’Brien, T. O. McDonald, A. Chait, M. D. Allen, C. E. Alpers, Neovascular expression of E-selectin, intercellular adhesion molecule-1. and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimai leucocyte contentCirculation 93672–82 (1996).

    Article  PubMed  Google Scholar 

  62. A. C. Barger, R. Beeuwkes, L. L. Lainey et al, Vasa vasorum aand neovascularization of human coronary arteries: a possible role in the pathophysiology of atherosclerosisN Eng J Med 310175–177 (1984).

    Article  CAS  Google Scholar 

  63. J. A. Fryer, P. C. Myers, and M. Appleberg, Carotid intraplaque heamorrhage: the significance of neovascularityJ Vasc Surg6, 341–9 (1987).

    PubMed  CAS  Google Scholar 

  64. M. Jeziorska, and D. E. Wooley, Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteriesJ Pathol. 188189–196 (1999).

    Article  PubMed  CAS  Google Scholar 

  65. A. N. Tenaglia, A. G. Peters, M. H. Sketch, and B. H. Annex. Neovascularization in atherectomy specimens from patients with unstable angina:implications for pathogenesis of unstable anginaAm Heart J 13510–14.(1998).

    Article  PubMed  CAS  Google Scholar 

  66. M. J. Mc Canhy, I. M. Loftus, M. M. Thompson. I. Jones, N. J. M. London, P. R. F. Bell. R. Naylor, and N. P. J. Prindle, Angiogenesis and the atherosclerootic carotid plaque: an association between symptomatology and plaque morphologyJ Vasc Surg22, 261–8 (1999).

    Google Scholar 

  67. M. Jeziorska, and D. E. Wooley, Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteriesJ Pathol 188189–196 (1999).

    Article  PubMed  CAS  Google Scholar 

  68. M. J. Tsapogas, G. A. Streling, and M. B. Girolami, Study on the organization of experimental thrombiAngiology 18825–832 (1967).

    Google Scholar 

  69. K. Prathap, Surface lining cells of healing thrombi in rat femoral veins, an electron-microscopic studyJ Pathol 1071–8 (1972).

    Article  PubMed  CAS  Google Scholar 

  70. H. J. Leu, W. Feigl, and M. Susani, Angiogenesis from mononuclear cells in thrombiVirchows Arch A 4115–14 (1987).

    Article  CAS  Google Scholar 

  71. P. J. Polverini, and S. J. Leibovich, Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophagesLab Invest 51635–642 (1984).

    PubMed  CAS  Google Scholar 

  72. B. Fernandez Pujol, F. C. Lucibello. U. M. Gehling, K. Lindemann. N. Weidner, M. L. Zuzarte1.Adamkiewicz, H. P. Elsasser, R. Muller, and K. Havemann. Endothelial-like cells derived from human CDI4 positive monocytesDifferentiation 65287–300 (2000).

    Article  Google Scholar 

  73. A. Schmeisser, C. D. Garlichs, H. Zhang, S. Eskafi, C. Graffy, J. Ludwig. R. H. Strasser, and W. G. Daniel, Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditionsCardiovasc Res 49.671–680 (2001).

    Article  PubMed  CAS  Google Scholar 

  74. M. Harraz, C. Jiao, H. D. Hanlon, R. S. Hartley, and G. C. Schatteman. Cd34(-) blood-derived human endothelial cell progenitorsStem Cells 19304–312 (2001).

    Article  PubMed  CAS  Google Scholar 

  75. B. Fernandez Pujol, F. C. Lucibello, M. Zuzarte. P. Lutjens, R. Muller. and K. Havemann, Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cellsEur J Cell Biol 8099–110 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. G. Hausser, B. Ludewig, H. R. Gelderblom, Y. Tsunetsugu-Yokota, K. Akagawa, and A. Meyerhans, Monocyte-derived dendritic cells represent a transient stage of differentiation in the myeloid lineageImmunobiology 5534–542 (1997).

    Article  Google Scholar 

  77. F. Sallusto, and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.J Exp Med 4.1109–1118 (1994).

    Article  Google Scholar 

  78. L. J. Zhou, and T. F. Tedder, CDI4+ blood monocytes can differentiate into functionally mature CD83+ dendritic cellsProc Nail Acad Sci (US A) 93, 2588–2592 (1996).

    Article  CAS  Google Scholar 

  79. D. I. Gabrilovich, H. L. Chen, K. R. Girgis, H. T. Cunningham, G. M. Meny, S. Nadaf, D. Kavanaugh, and D. P. Carbone, Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cellsNat Med 10.1096–1103. (1996).

    Article  Google Scholar 

  80. T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr. D. P. Carbone, and D. I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cellsJ Immunol 1601224–1232 (1998).

    PubMed  CAS  Google Scholar 

  81. J. E. Ohm, M. R. Shurin, C. Esche, M. T. Lotze, D. P. Carbone, and D. I. Gabrilovich, Effect of vascularendothelial growth factor and FLT3 ligand on dendritic cell generation in vivoJ Immunol 1633260–3268 (1999).

    Google Scholar 

  82. A. F. Valledor, F. E. Borras. M. Cullell-Young. and A. Celada, Transcription factors that regulate monocyte/macrophage differentiation.J Leukoc Bio63, 405–417 (1998).

    Google Scholar 

  83. A. Kappet, V. Ronicke, A. Damen. I. Flamme. W. Risau. and G. Breier, Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic miceBlood 934284–4292 (1999).

    Google Scholar 

  84. A. Kappe), T. M. Schlaeger, I. Flamme, S. H. Orkin, W. Risau, and G. Breier, Role of SCUTal-1, GATA, and ets transcription factor binding sites for the regulation of flk-1 expression during murine vascular developmentBlood 963078–3085 (2000).

    Google Scholar 

  85. C. D. Baroni, D. Vitolo, D. Remotti, A. Biondi. F. Pezzella, L. P. Ruco, and S. Uccini, Immunohistochemical heterogeneity of macrophage subpopulations in human lymphoid tissuesHis opathologv 111029–1042 (1987).

    CAS  Google Scholar 

  86. P. J. Buckley, S. A. Dickson, and W. S. Walker. Human splenic sinusoidal lining cells express antigens associated with monocytes, macrophages. endothelial cells, and T lymphocytesJ Immuno l 1342310–2315 (1985).

    Google Scholar 

  87. S. Uccini. M. C. Sirianni, L. Vincenzi, S. Topino, A. Stoppacciaro, I. Lesnoni La Parola, M. Capuano, C. Masini, D. Cerimele, M. Cella. A. Lanzavecchia. P. Allavena. A. Mantovani, C. D. Baroni, and L. P. Ruco, Kaposi’s sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi’s sarcoma patientsAm J Pathol 150929–938 (1997).

    PubMed  CAS  Google Scholar 

  88. M. Skobe, L. F. Brown. K. Tognazzi, R. K. Ganju. B. J. Dezube, K. Alitalo, and M. Detmar, Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and fit-4 are expressed in AIDS-associated Kaposi’s sarcomaJ Invest Dermatol 1131047–1053 (1999).

    Article  PubMed  CAS  Google Scholar 

  89. S. Marchio, L. Primo, M. Pagano, G. Palestro, A. Albini, T. Veikkola, I. Cascone, K. Alitalo, and F. Bussolino, Vascular endothelial growth factor-C stimulates the migration and proliferation of Kaposi’s sarcoma cellsJ Bin! Chem 274.27617–27622 (1999).

    Article  CAS  Google Scholar 

  90. W. Schaper, and W. D. Ito, Molecular mechanisms of coronary collateral vessel growth, Cire Res79911–919 (1996).

    Article  CAS  Google Scholar 

  91. N. 1. Moldovan, P. J. Goldschmidt-Clermont, J. Parker-Thornburg, S. D. Shapiro. and P. E. Kolattukudy, Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardiumCire Res 87378–384. (2000).

    Article  CAS  Google Scholar 

  92. R. D. Leek, C. E. Lewis, R. Whitehouse, M. Greenall, J. Clarke, and A. L. Harris, Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinomaCancer Res 56.4625–4629 (1996).

    PubMed  CAS  Google Scholar 

  93. R. D. Leek, R. J. Landers, A. L. Harris, and C. E. Lewis, Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breastBr J Cancer 79991–995 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmeisser, A., Graffy, C., Daniel, W.G., Strasser, R.H. (2003). Phenotypic Overlap between Monocytes and Vascular Endothelial Cells. In: Moldovan, N.I. (eds) Novel Angiogenic Mechanisms. Advances in Experimental Medicine and Biology, vol 522. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0169-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0169-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4951-8

  • Online ISBN: 978-1-4615-0169-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics