Skip to main content

Matrix Metalloproteinases and Tumor Progression

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 532))

Abstract

The matrix metalloproteinases (MMPs) are a family of more than 20 distinct enzymes that are frequently overexpressed in human tumors. Functional studies have shown that MMPs play an important role in the proteolytic destruction of extracellular matrix and basement membranes, thereby facilitating tumor invasion and metastasis. In addition, these enzymes may also be important in other steps of tumor evolution including neoplastic cell proliferation and angiogenesis stimulation. On the basis of the relevance of MMPs in tumor progression, a number of different strategies aimed to block the unwanted activity of these enzymes in cancer have been developed. Unfortunately, most clinical trials with the first series of MMP inhibitors have failed to show clear benefit in patients with advanced cancer. Explanations for this lack of success include the failure to recognize the role of these enzymes in early stages of the disease as well as inadequacy of either the employed inhibitors or the proteases to be targeted.

The introduction of novel concepts such as tumor degradome, and global approaches to protease analysis, may facilitate the identification of the relevant MMPs that must be targeted in each individual cancer patient. On the other hand, the finding that MMPs are enzymes whose effects on biologically active substrates can have profound consequences on cell behaviour, suggests that selective inhibition of a limited set of MMPs at early stages of tumor evolution might be much more effective than using wide-spectrum inhibitors active against most family members, and administered to patients at late stages of the disease. Further studies directed to elucidate these questions will be necessary to clarify whether any of the multiple strategies of MMP inhibition may be part of future therapeutic approaches to control tumor progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chambers, A. F., Groom, A.C., and MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites.Nature Rev Cancer2, 563–572 (2002)

    Article  CAS  Google Scholar 

  2. López-Otín, C. and Overall, C. M. Protease degradomics, a challenge for proteomics.Nature Rev. Mol. Cell Biol. 3509–519 (2002)

    Article  CAS  Google Scholar 

  3. Brinckerhoff, C. E. and Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince.Nature Rev. Mol. Cell Biol. 3,207–214 (2002).

    Article  CAS  Google Scholar 

  4. Egeblad, M. and Werb, Z. New functions for the matrix metalloproteinases in cancer progression.Nature Rev. Cancer 2,163–175 (2002).

    Article  CAS  Google Scholar 

  5. Overall, C. M. and López-Otín, C Strategies for MMP inhibition in cancer: innovations for the post-trial era.Nature Rev. Cancer. 2657–672 (2002)

    Article  CAS  Google Scholar 

  6. Urfa, J. A. and López-Otín, C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity.Cancer Res. 60,4745–4751 (2000).

    Google Scholar 

  7. Velasco, G.et al.Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members.J. Biol. Chem. 274,4570–4576 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. Sternlicht, M. D.et al.The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis.Cell 98,137–146 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Sternlicht, M. D. and Werb, Z. How matrix metalloproteinases regulate cell behavior.Annu. Rev. Cell Dev. Biol. 17,463–516 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. Rifkin, D. B., Mazzieri, R., Munger, J. S., Noguera, 1. and Sung, J. Proteolytic control of growth factor availability.APMIS 107,80–85 (1999).

    CAS  Google Scholar 

  11. Mañes, S.et al.The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells.J Biol. Chem. 274,6935–6945 (1999).

    Article  PubMed  Google Scholar 

  12. Noe, V.et al.Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1.J. Cell Sci. 114,111–118 (2001).

    PubMed  CAS  Google Scholar 

  13. Lochter, A.et al.Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells.J Cell Biol. 139,1861–1872 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Ho, A. T., Voura, E. B., Soloway, P. D., Watson, K. L. and Khokha, R. MMP inhibitors augment fibroblast adhesion through stabilization of focal adhesion contacts and up-regulation of cadherin function.J. Biol.Chem. 276,40215–40224 (2001).

    PubMed  CAS  Google Scholar 

  15. McQuibban, G. A.et al.Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3.Science 289,1202–1206 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. Fingleton, B., Vargo-Gogola, T., Crawford, H. C. and Matrisian, L. M. Matrilysin (MMP-7) expression selects for cells with reduced sensitivity to apoptosis.Neoplasia 3,459–468 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. Yu, Q. and Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-ß and promotes tumor invasion and angiogenesis.Genes Dev. 14,163–176 (2000).

    PubMed  Google Scholar 

  18. Stetler-Stevenson, W. G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention.J. Clin. Invest. 103,1237–1241 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. Dong, Z., Kumar, R., Yang, X. and Fidler, I. J. Macrophage-derived metalIoelastase is responsible for the generation of angiostatin in Lewis lung carcinoma.Cell 88,801–810 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. Cornelius, L. A.et al.Matrix metalloproteinases generate angiostatin: effects on neovascularization.J. Immunol. 161,6845–6852 (1998).

    PubMed  CAS  Google Scholar 

  21. Ferreras, M., Felbor, U., Lenhard, T., Olsen, B. R. and Delaisse, J. Generation and degradation of human endostatin proteins by various proteinases.FEBS Lett. 486,247–251 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. Kheradmand, F., Werner, E., Tremble, P., Symons, M. and Werb, Z. Role of Racl and oxygen radicals in collagenase-1 expression induced by cell shape change.Science 280,898–902 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. Overall, C. M., Wrana, J. L. and Sodek, J. Independent regulation of collagenase, 72–10a progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-ß.J. Biol. Chem. 264,1860–1869 (1989).

    PubMed  CAS  Google Scholar 

  24. Guérin, E., Ludwig, M. G., Basset, P. and Anglard, P. Stromelysin-3 induction and interstitial collagenase repression by retinoic acid: therapeutical implication of receptor-selective retinoids dissociating transactivation and AP-1-mediated transrepression.J. Biol. Chem. 272,11088–11095 (1997).

    Article  PubMed  Google Scholar 

  25. Urfa, J. A., Jiménez, M. G., Balbín, M., Freije, J. M. P. and López-Otín, C. Differential effects of transforming growth factor-(3 on the expression of collagenase-1 and collagenase-3 in human fibroblasts.J. Biol. Chem. 273,9769–9777 (1998).

    Article  Google Scholar 

  26. Jiménez, M. J.et al.A regulatory cascade involving retinoic acid, Cbfal, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation.J Cell Biol. 155,1333–1344 (2001).

    Article  PubMed  Google Scholar 

  27. Simon, C., Goepfert, H. and Boyd, D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion.Cancer Res.58, 1135–1139 (1998).

    PubMed  CAS  Google Scholar 

  28. Johansson, N.et al.Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase.J. Cell Sci.113, 227–235 (2000).

    PubMed  CAS  Google Scholar 

  29. Pendás, A. M., Balbin, M., Llano, E., Jimenez, M. G. and López-Otín, C. Structural analysis and promoter characterization of the human collagenase-3 gene (MMP13).Genomics40, 222–233 (1997).

    Article  PubMed  Google Scholar 

  30. Gutman, A. and Wasylyk, B. The collagenase gene promoter contains a TPA and oncogeneresponsive unit encompassing the PEA3 and AP-1 binding sites.EMBO J.9, 2241–2246 (1990).

    PubMed  CAS  Google Scholar 

  31. Bond, M., Fabunmi, R. P., Baker, A. H. and Newby, A. C. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B.FEBS Lett.435, 29–34 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. Rutter, J. L.et al.A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription.Cancer Res.58, 5321–5325 (1998).

    PubMed  CAS  Google Scholar 

  33. Biondi, M. L.et al.MMP1 and MMP3 polymorphisms in promoter regions and cancer.Clin. Chem.46, 2023–2024 (2000).

    PubMed  CAS  Google Scholar 

  34. Springman, E. B., Angleton, E. L., Birkedal-Hansen, H. and Van Wart, H.E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation.Proc. Natl Acad. Sci. USA87, 364–368 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. Bannikov, G. A., Karelina, T. V., Collier, I. E., Marmer, B. L. and Goldberg, G. I. Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J.Biol. Chem.277, 1 6022–16027 (2002).

    Google Scholar 

  36. Knauper, V.et al.Cellular mechanisms for human collagenase-3 (MMP-13) activation: evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme.J Biol. Chem.271, 17124–17131 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. Sato, H.et al.A matrix metalloproteinase expressed on the surface of invasive tumour cells.Nature370, 61–65 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. Strongin, A. Y.et al.Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. JBiol. Chem.270, 5331–5338 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. Overall, C. M.et al.Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV.J. Biol. Chem.274, 4421–4429 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. Pei, D. and Weiss, S. J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen.Nature375, 244–247 (1995).

    Article  PubMed  CAS  Google Scholar 

  41. Yana, I. and Weiss, S. J. Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases.Mol. Biol. Ce!!11, 2387–2401 (2000).

    CAS  Google Scholar 

  42. Lohi, J., Wilson, C. L., Roby, J. D. and Parks, W. C. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury.J Biol. Chem.276, 10134–10144 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. Velasco, G.et al.Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors.Cancer Res.60, 877–882 (2000).

    PubMed  CAS  Google Scholar 

  44. Nagase, H., Itoh, Y. and Binner, S. Interaction of alpha 2-macroglobulin with matrix metalloproteinases and its use for identification of their active forms.Ann. N. Y. Acad. Sci.732, 294302 (1994).

    Google Scholar 

  45. Brew, K.. Dinakarpandian, D. and Nagase, H. Tissue inhibitors of metalloproteinases: evolution, structure and function.Biochim Biophys Acta1477, 267–283 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. Amour, A.et al.The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3.FEES Lett.473, 275–279 (2000).

    Article  CAS  Google Scholar 

  47. Kashiwagi, M., Tortorella, M., Nagase, H. and Brew, K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). JBiot. Chem.276, 12501–12504 (2001).

    Article  CAS  Google Scholar 

  48. Khokha, R.et al.Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells.Science243, 947–950 (1989).

    Article  PubMed  CAS  Google Scholar 

  49. Corcoran, M. L. and Stetler-Stevenson, W. G. Tissue inhibitor of metalloproteinase-2 stimulates fibroblast proliferation via a cAMP-dependent mechanism.J. Biol. Chem.270, 13453–13459 (1995).

    Article  PubMed  CAS  Google Scholar 

  50. Jiang, Y., Goldberg, I. D. and Shi, Y. E. Complex roles of tissue inhibitors of metalloproteinases in cancer.Oncogene21, 2245–2252 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. Oh, J.et al.The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis.Cell107, 789–800 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. Herman, M. P.et al.Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis.J Clin. Invest.107, 1117–1126 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. Mott, J. D.et al.Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor.J. Biol. Chem.275, 1384–1390 (2000).

    Article  PubMed  CAS  Google Scholar 

  54. Petitclerc, E.et al.New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo.J. Biot. Chem.275, 8051–8061 (2000).

    Article  CAS  Google Scholar 

  55. Stetefeld, J.et al.The laminin-binding domain of agrin is structurally related to N-TIMP-1.Nat. Struct. Biol. 8, 705–709 (2001)

    Article  PubMed  CAS  Google Scholar 

  56. Westermarck, J. and Kähäri, V. M. Regulation of matrix metalloproteinase expression in tumor invasion.FASEBJ.13, 781–792 (1999).

    CAS  Google Scholar 

  57. Hua, J. and Muschel, R. J. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system.Cancer Res.56, 5279–5284 (1996).

    PubMed  CAS  Google Scholar 

  58. Kondraganti, S.et al.Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion.Cancer Res.60, 6851–6855 (2000).

    PubMed  CAS  Google Scholar 

  59. Nagavarapu, U., Relloma, K. and Herron, G. S. Membrane type 1 matrix metalloproteinase regulates cellular invasiveness and survival in cutaneous epidermal cells.J. Invest. Dermatol.118, 573–581 (2002).

    Article  PubMed  CAS  Google Scholar 

  60. Slaton, J. W.et al.Treatment with low-dose interferon-alpha restores the balance between matrix metalloproteinase-9 and E-cadherin expression in human transitional cell carcinoma of the bladder.Clin. Cancer Res.7, 2840–2853 (2001).

    PubMed  CAS  Google Scholar 

  61. Ala-aho, R.et al.Inhibition of collagenase-3 (MMP-13) expression in transformed human keratinocytes by interferon-gamma is associated with activation of extracellular signal-regulated kinase-1,2 and STAT1.Oncogene.19, 248–257 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. Ma, Z., Qin, H. and Benveniste, E. N. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-y and IFN-(3: critical role of STAT-lce.J. Immunol.167, 5150–5159 (2001).

    PubMed  CAS  Google Scholar 

  63. Mengshol, J. A., Mix, K. S. and Brinckerhoff, C. E. Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull’s-eye or missing the mark?Arthritis Rheum.46, 13–20 (2002).

    Article  PubMed  CAS  Google Scholar 

  64. Futamura, M.et al.Malolactomycin D, a potent inhibitor of transcription controlled by the Ras responsive element, inhibit Ras-mediated transformation activity with suppression of MMP-1 and MMP-9 in NIH3T3 cells.Oncogene20, 6724–6730 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. Zhang, Y.et al.Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90.Cancer Res.62, 3962–3965 (2002).

    PubMed  CAS  Google Scholar 

  66. McGaha, T. L., Phelps, R. G., Spiera, H. and Bona, C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts.J. Invest. Dermatol.118, 461–470 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. Elkin M, Reich R, Nagler A, Aingorn E, Pines M, de-Groot N, Hochberg A, Vlodaysky I. Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone.Clin. Cancer Res.5, 1982–1988 (1999).

    PubMed  CAS  Google Scholar 

  68. Karin, M. and Chang, L. AP-1-glucocorticoid receptor crosstalk taken to a higher level.J. Endocrinol. 169447–451 (2001).

    Article  PubMed  CAS  Google Scholar 

  69. Sato, T.et al.Inhibition of activator protein-1 binding activity and phosphatidylinositol 3-kinase pathway by nobiletin, a polymethoxy flavonoid, results in augmentation of tissue inhibitor of metalloproteinases-1 production and suppression of production of matrix metalloproteinases-1 and —9 in human fibrosarcoma HT-1080 cells.Cancer Res.62, 1025–1029 (2002).

    PubMed  CAS  Google Scholar 

  70. Mohan, R.et al.Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B.J. Biol. Chem.275, 1040510412 (2000).

    Google Scholar 

  71. Adams, J.et al.Proteasome inhibitors: a novel class of potent and effective antitumor agents.Cancer Res.59, 2615–2622 (1999).

    PubMed  CAS  Google Scholar 

  72. Tan, C. and Waldmann, T. A. Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia.Cancer Res.62, 1083–1086 (2002).

    PubMed  CAS  Google Scholar 

  73. Barille, S.et al.Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells.Blood90, 16491655 (1997).

    Google Scholar 

  74. Jimenez, M. J.et al.Collagenase 3 is a target of Cbfal, a transcription factor of the runt gene family involved in bone formation.Mol. Cell Biol.19, 4431–4442 (1999).

    PubMed  CAS  Google Scholar 

  75. Yang J. et al. Prostate cancer cells induce osteoblast differentiation through a Cbfal-dependent pathway. Cancer Res.61, 5652–5659 (2001).

    PubMed  CAS  Google Scholar 

  76. Sun Y. et al. Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem.275, 11327–11332 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Koul, D.et al.Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN.Oncogene20, 6669–6678 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. Fenrick, R.et al.TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1.Mol. Cell Biol.20, 58285839 (2000).

    Google Scholar 

  79. Galvez, B. G., Matias-Roman, S., Albar, J. P., Sanchez-Madrid, F. and Arroyo, A. G. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling.J. Biol. Chem.276, 37491–37500 (2001).

    Article  PubMed  CAS  Google Scholar 

  80. Annabi, B.et al.Green tea polyphenol (-)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MTI-MMP-driven migration in glioblastoma cells.Biochim. Biophys. Acta.1542, 209–220 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Bassi, D. E.et al.Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells.Proc. Natl. Acad. Sci. USA98, 10326–10331 (2001).

    Article  PubMed  CAS  Google Scholar 

  82. Rodriguez-Manzaneque, J. C.et al.Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor.Proc. Natl Acad. Sci. USA98, 12485–12490 (2001).

    Article  PubMed  CAS  Google Scholar 

  83. Yang, Z., Strickland, D. K. and Bornstein, P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2.1 Biol.Chem.276, 8403–8408 (2001).

    Article  CAS  Google Scholar 

  84. Kim, Y. M.et al.Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase.Cancer Res.60, 5410–5413 (2000).

    PubMed  CAS  Google Scholar 

  85. Nakada, M.et al.Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product, N-tes.Cancer Res.61, 8896–8902 (2001).

    PubMed  CAS  Google Scholar 

  86. Sgadari, C.et al.HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma.Nature Med.8, 225–232 (2002).

    Article  PubMed  CAS  Google Scholar 

  87. Kruger, A., Fata, J. E. and Khokha, R. Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice.Blood90, 1993–2000 (1997).

    PubMed  CAS  Google Scholar 

  88. Martin, D. C.et al.Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis.Lab. Invest.79, 225–234 (1999).

    PubMed  CAS  Google Scholar 

  89. Brown, P. D. Clinical studies with matrix metalloproteinase inhibitors.APMIS107, 174–180 (1999).

    Article  PubMed  CAS  Google Scholar 

  90. Duivenvoorden, W. C.et al.Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer.Cancer Res.62, 1588–1591 (2002).

    PubMed  CAS  Google Scholar 

  91. Cianfrocca, M.et al.Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi’s sarcoma: a phase I AIDS malignancy consortium study.J Clin. Oncol.20, 153–159 (2002).

    Article  PubMed  CAS  Google Scholar 

  92. Boissier, S.et al.Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases.Cancer Res.60, 2949–2954 (2000).

    PubMed  CAS  Google Scholar 

  93. Coussens, L. M., Fingleton, B. and Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations.Science295, 2387–2392 (2002).

    Article  PubMed  CAS  Google Scholar 

  94. Bramhall, S.R.et al.Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial.Br. J. Cancer.86, 1864–1870 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C. and Buckels, J. A. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial.J. Clin. Oncol.19, 3447–3455 (2001).

    PubMed  CAS  Google Scholar 

  96. Groves, M. D.et al.Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme.J Clin. Oncol20, 1383–1388 (2002).

    Article  PubMed  CAS  Google Scholar 

  97. Zucker, S., Cao, J. and Chen, W. T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment.Oncogene19, 6642–6650 (2000).

    Article  PubMed  CAS  Google Scholar 

  98. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. and Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice.Science284, 808–812 (1999).

    Article  PubMed  CAS  Google Scholar 

  99. Fingleton, B. M., Heppner Goss, K. J., Crawford, H. C. and Matrisian, L. M. Matrilysin in early stage intestinal tumorigenesis.APMIS107, 102–110 (1999).

    Article  PubMed  CAS  Google Scholar 

  100. Pozzi, A.et al.Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization.Proc. Natl Acad Sci. USA97, 2202–2207 (2000).

    Article  PubMed  CAS  Google Scholar 

  101. Pozzi, A., LeVine, W. F. and Gardner, H. A. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis.Oncogene 22,272–281 (2002).

    Article  Google Scholar 

  102. Vazquez, F.et al.METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity.J. Biol. Chem. 274,23349–23357 (1999).

    Article  PubMed  CAS  Google Scholar 

  103. Cal, S.et al.Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains.Gene 283,49–62 (2002)

    Article  PubMed  CAS  Google Scholar 

  104. Gomis-Ruth, F. X.et al.Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1.Nature 389,77–81 (1997).

    Article  PubMed  CAS  Google Scholar 

  105. Bode, W.et al.Structural properties of matrix metalloproteinases.Cell Mol. Life Sci. 55,639–652 (1999).

    Article  PubMed  CAS  Google Scholar 

  106. Morgunova, E., Tuuttila, A., Bergmann, U. and Tryggvason, K. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2.Proc. Natl. Acad. Sci. USA. 99,7414–7419 (2002).

    Article  PubMed  CAS  Google Scholar 

  107. Koivunen, E.et al.Tumor targeting with a selective gelatinase inhibitor.Nat. Biotechnol. 17,768–774 (1999).

    Article  PubMed  CAS  Google Scholar 

  108. Bernardo, M. M., Brown, S., Li, Z. H., Fridman, R. and Mobashery, S. Design, synthesis, and characterization of potent, slow-binding inhibitors that are selective for gelatinases.J. Biol. Chem.277, 11201–11207 (2002).

    Article  PubMed  CAS  Google Scholar 

  109. Garbisa, S.et al.Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin3-gallate.Cancer 91,822–832 (2001).

    Article  PubMed  CAS  Google Scholar 

  110. Falardeau, P., Champagne, P., Poyet, P., Hariton, C. and Dupont, E. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials.Semin. Oncol. 28,620–625 (2001).

    Article  PubMed  CAS  Google Scholar 

  111. Nielsen, B. S.et al.Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas.Cancer Res.61, 70917100 (2001).

    Google Scholar 

  112. Bissell, M. J. and Radisky, D. Putting tumours in context.Nature Rev.Cancer1, 46–54 (2001).

    Article  CAS  Google Scholar 

  113. Silletti, S., Kessler, T., Goldberg, J., Boger, D. L. and Cheresh, D. A. Disruption of matrix metalloproteinase 2 binding to integrin ctv133 by an organic molecule inhibits angiogenesis and tumor growth in vivo.Proc. Natl Acad. Sci. USA98, 119–124 (2001).

    PubMed  CAS  Google Scholar 

  114. Overall, C. M. Matrix metalloproteinase substrate binding domains, modules, and exosites: overview and experimental strategies.Methods Mol. Biol.151, 73–114 (2001).

    Google Scholar 

  115. Liu, S., Netzel-Arnett, S., Birkedal-Hansen, H. and Leppla, S. H. Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin.Cancer Res.60, 6061–6067 (2000).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freije, J.M.P., Balbín, M., Pendás, A.M., Sánchez, L.M., Puente, X.S., López-Otín, C. (2003). Matrix Metalloproteinases and Tumor Progression. In: Llombart-Bosch, A., Felipo, V. (eds) New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, vol 532. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0081-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4914-3

  • Online ISBN: 978-1-4615-0081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics