Skip to main content

Ethnic and Geographical Distributions of CYP2C19 Alleles in the Populations of Southeast Asia

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 531))

Abstract

The genetic polymorphism of drug-metabolizing enzymes has a major influence on the fate of xenobiotic substances, whether as drugs or absorbed from the environment. Our understanding of this polymorphism is important in order to evaluate the genetic predisposition for exposure-related risks and, in the future, to develop individualized drug therapy. Cytochrome P450 enzymes play a central role in the metabolism of many drugs, chemicals, and carcinogens. Differences in the activity of these enzymes are responsible for the inter-individual variability in drug response and toxicity (Bertilsson, 1995). Of the cytochrome P450 enzymes, the isoform CYP2C19 is of particular interest because of its high inter-individual and inter-racial differences (Goldstein et al., 1997; Kaneko et al., 1999; Griese et al., 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adedoyin, A., Prakash, C., O’Shea, D., Blair, I.A., and Wilkinson, G.R., 1994, Stereoselective disposition of hexobarbital and its metabolites: relationship to the S-mephenytoin polymorphism in Caucasian and Chinese subjects. Pharmacogenetics 4: 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, T., Cederberg, C., Edvardsson, G., Heggelund, A., and Lundborg, P., 1990, Effect of omeprazole on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin. Pharmacol. Ther. 47: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, T., Miners, J.O., Veronese, M.E., Tassaneeyakul, W., Meyer, U.A., and Birkett, D.J., 1993, Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br. J. Clin. Pharmacol. 36: 521–530.

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson, L., 1995, Geographical/interracial differences in polymorphic drug oxidation. Clin. Pharmacokinet. 29: 192–209.

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson, L., Henthorn, T.K., Sanz, E., Tybring, G., Säwe, J., and Villén, T., 1989, Importance of genetic factors in the regulation of diazepam metabolism: relationship to S­mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin. Pharmacol. Ther. 45: 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Capelli, C., Wilson, J.F., Richards, M., Stumpf, M.P.H., Gratrix, F., Oppenheimer, S., et al., 2001, A predominantly indigenous paternal heritage for the Austronesian-speaking peoples of insular Southeast Asia and Oceanic. Am. J. Hum. Genet. 68: 432–443.

    Article  PubMed  CAS  Google Scholar 

  • De Morais, S.M.F., Wilkilson, G.R., Blaisdell, J., Meyer, U.A., Nakamura, K., and Goldstein, J.A., 1994, The major genetic defect responsible for the polymorphisme of S-mephenytoin metabolism in humans. J. Biol. Chem. 269: 15419–15422.

    PubMed  Google Scholar 

  • Ferguson, R.J., De Morais, S.M., Benhamou, S., Bouchardy, C., Blaisdell, J., Ibeanu, G., Wilkinson, G.R., Sarich, T.C., Wright, J.M., Dayer, P., and Goldstein, J.A., 1998, A new genetic defect in human CYP2C 19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J. Pharmacol. Exp. Ther. 284: 356–361.

    PubMed  CAS  Google Scholar 

  • Furuta, T., Ohashi, K., Kamata, T., Takashima, M., Kosuge, K., Kawasaki, T., et al., 1998, Effect of genetic differences in omeprazole metabolism on cure rate for Helicobacter pylori infection and peptic ulcer. Ann. Intern. Med. 29 :1027–1030.

    Google Scholar 

  • Goldstein, J.A., and Blaisdell, J., 1996, Genetic tests which identify the principal defects in CYP2C19 responsible for the polymorphism in mephenytoin metabolism. Methods Enzymol. 272: 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J.A., Ishizaki, T., Chiba, K., de Morais, S.M.F., Bell, D., Krahn, P.M., and Evans, D.A.P., 1997, Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7: 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Griese, E.U., Ilett, K.F., Kitteringham, N.R., Eichelbaum, M., Powell, H., Spargo, R.M., et al., 2001, Allele and genotype frequencies and polymorphic cytochromes P450 2D6, 2C19 and 2E1 in Aborigines from Western Australia. Pharmacogenetics 11 : 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Herrlin, K., Massele, A.Y., Jande, M., Alm, C., Tybring, G., Abdi, Y.A., et al., 1998, Bantu Tanzanians have a decreased capacity to metabolize omeprazole and mephenytoin in relation to their CYP2C19 genotype. Clin. Pharmacol. Ther. 64 :391–401.

    Article  PubMed  CAS  Google Scholar 

  • Ibeanu, G.C., Goldstein, J.A., Meyer, U., Benhamou, S., Bouchardy, C., Dayer, P., Ghanayem, B.I., and Blaisdell J., 1998, Identification of new human CYP2C19 alleles (CYP2C19*6 and CYP2C19*2B) in a Caucasian poor metabolizer of mephenytoin. J. Pharmacol. Exp. Ther. 286: 1490–1495.

    PubMed  CAS  Google Scholar 

  • Ibeanu, G.C., Blaisdell, J., Ferguson, R.J., Ghanayem, B.I., Brosen, K., Benhamou, S., Bouchardy, C., Wilkinson, G.R., Dayer P, and Goldstein, J.A., 1999, A novel transversionin the intron 5 donor splice junction of CYP2C19 and a sequence polymorphism in exon 3 contribute to the poor metabolizer phenotype for the anticonvulsant drug S-mephenytoin. J. Pharmacol. Exp. Ther. 290: 635–640.

    PubMed  CAS  Google Scholar 

  • Kaneko, A., Lum, J.K., Yaviong, J., Takahashi, N., Ishizaki, T., Bertilsson, L., et al., 1999, High and variable frequencies of CYP2C19 mutations: medical consequences of poor drug metabolism in Vanuatu and other Pacific Islands. Pharmacogenetics 9: 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, M., Brauer, S., Weiss, G., Schiefenhovel, W., Underhill, P., and Stoneking, M., 2001, Independent histories of human Y chromosomes from Melanesia and Australia. Am. J. Hum. Genet. 68: 173–190.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., Ieiri, I., Mamiya, K., Urae, A., and Higuchi, S., 1998, Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population.Ther. Drug. Monit. 203: 243–247.

    Article  Google Scholar 

  • Kubota, T., Chiba, K., and Ishizaki, T., 1996, Genotyping of S-mephenytoin 4’-hydroxylation in an extended Japanese population. Clin. Pharmacol. Ther. 60: 661–666.

    Article  PubMed  CAS  Google Scholar 

  • Lum, J.K., and Cann, R.L., 1998, mtDNA and language support a common origin of Micronesians and Polynesians in Island Southeast Asia. Am. J. Phys. Anthropol. 105: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Lum, J.K., Cann, R.L., Martinson, J.J., and Jorde, L.B., 1998, Mitochondrial and nuclear genetic relationships among Pacific Island and Asian populations. Am. J. Hum. Genet. 63: 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Masimirembwa, C., Bertilsson, L., Johansson, I., Hasler, J.A., and Ingelman-Sundberg, M., 1995, Phenotyping and genotyping of S-mephenytoin hydroxylase (cytochrome P450 2CI9) in a Shona population of Zimbabwe. Clin. Pharmacol. Ther. 57: 656–661.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, K.K., Flinois, J.P., Beaune, P., and Brosen, K., 1996, The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J. Pharmacol. Exp. Ther. 277: 1659–1664.

    PubMed  CAS  Google Scholar 

  • Persson, I., Aklillu, E., Rodrigues, F., Bertilsson, L., and Ingelman-Sundberg. M., 1996, SMephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics 6: 521–526.

    Article  PubMed  CAS  Google Scholar 

  • Poolsup, N., Li, W.P.A., and Knight, T.L., 2000, Pharmacogenetics and psychopharmacotherapy. J. Clin. Pharm. Ther. 25: 197–220.

    Article  PubMed  CAS  Google Scholar 

  • Qin, X.P., Xie, H.G., Wang, W., He, N., Huang, S.L., Xu, Z.H., Ou-Yang, D.S., et al., 1999, Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects. Clin. Pharmacol. Ther. 66: 642–646.

    PubMed  CAS  Google Scholar 

  • Richards, M., Oppenheimer, S., and Sykes, B., 1998, mtDNA suggests Polynesian origins in eastern Indonesia. Am. J. Hum. Genet. 63: 1234–1236.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, T.H., Griffin, K.J., Jung, F., Raucy, J.L., and Johnson, E.F., 1997, Targeted antipeptide antibodies to cytochrome P450 2C18 based on epitope mapping of an inhibitory monoclonal antibody to P450 2C51. Arch. Biochem. Biophys. 338: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Roh, H.K., Dahl, M.L., Johansson, I., Ingelman-Sundberg, M., Cha, Y.N., and Bertilsson, L., 1996, Debrisoquine and S-mephenytoin hydroxylation phenotypes and genotypes in a Korean population. Pharmacogenetics 6: 441–447.

    Article  PubMed  CAS  Google Scholar 

  • Romkes, M., Faletto, M.B., Blaisdell, J.A., Raucy, J.L., and Goldstein, J.A., 1991, Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochem. 30: 3247–3255.

    Article  CAS  Google Scholar 

  • Sindrup, S.H., Brosen, K., Hansen, M.G.J., Aaes-Jorgensen, T., Overo, K.F., and Gram, L.F., 1993, Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther. Drug. Monit. 15: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Taniwagara, Y., Aoyama, N., Kita, T., Shirakawa, K., Komada, F., Kasuga, M., and Okumura, K., 1999, CYP2C19 genotype-related efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori. Clin. Pharmacol. Ther. 66: 528–534.

    Article  Google Scholar 

  • Thomson, R.J.M., Martinson, J.J., Norwich, J.T., Harding, R.M., Clegg, J.B., and Boettcher, B., 1996, An ancient common origin of Aboriginal Australians and New Guinea highlanders is supported by aα-globin haplotypes analysis. Am. J. Hum. Genet. 58: 1017–1024.

    Google Scholar 

  • Ventakakrishnan, K., Greenblatt, G.J., von Moltke, L.L., Schmider, J., Harmatz J.S., and Shader R.I., 1998, Five distinct human cytochromes mediate amitriptyline Ndemethylation in vitro: dominance of CYP 2C19 and 3A4. J. Clin. Pharmacol. 38: 112–121.

    Google Scholar 

  • Ward, S.A., Walle T., Walle, U.K., Wilkinson G.R., and Branch, R.A., 1989, Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin. Pharmacol. Ther. 45: 72–79.

    Article  PubMed  CAS  Google Scholar 

  • Wright, J.D., Helsby, N.A., and Ward, S.A., 1995, The role of S-mephenytoin hydroxylase (CYP2C19) in the metabolism of the antimalarial biguanides. Br. J. Clin. Pharmacol. 39: 441–444.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Z.S., Goldstein, J.A., Xie, H.G., Blaisdell, J., Wang, W., Jiang, C.H., et al., 1997, Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J. Pharmacol. Exp. Ther. 281: 604–619.

    PubMed  CAS  Google Scholar 

  • Yasumori, T., Li, Q.H., Yamazoe, Y., Ueda, M., Tsuzuki, T., and Kato, R., 1994, Lack of low Km diazepam N-demethylase in livers of poor metabolizers for S-mephenytoin 4’-hydroxylation. Pharmacogenetics 4: 323–331.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yusuf, I., Djojosubroto, M.W., Ikawati, R., Lum, K., Kaneko, A., Marzuki, S. (2003). Ethnic and Geographical Distributions of CYP2C19 Alleles in the Populations of Southeast Asia. In: Marzuki, S., Verhoef, J., Snippe, H. (eds) Tropical Diseases. Advances in Experimental Medicine and Biology, vol 531. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0059-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0059-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4905-1

  • Online ISBN: 978-1-4615-0059-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics