Skip to main content

CMOS Performance Issues

  • Chapter
  • First Online:
Linear CMOS RF Power Amplifiers

Abstract

This chapter details how CMOS processes limit the performance of fully integrated linear PAs. The low V DD of modern, submicron CMOS processes, along with breakdown phenomena and hot carrier degradation, are the main limitations. On top of that, these limitations are also accompanied by other effects such as reduced output voltage headroom due to the V KNEE, the low quality factor of integrated inductor and transformers, transistor parasitics, substrate losses or stability issues. All these limitations have a direct impact on the linearity, the output power levels and the efficiency of PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors (ITRS) (2011) Edition: Process integration, devices, and structures. http://www.itrs.net/Links/2011ITRS/Home2011.htm. Accessed 30 Mar 2013

  2. Cripps SC (1999) RF power amplifiers for wireless communications. Artech House, Norwood

    Google Scholar 

  3. Razavi B (2001) Design of analog CMOS integrated circuits. McGraw Hill, New York

    Google Scholar 

  4. Kuo TC, Lusignan BB (2001) A 1.5 W class-F RF power amplifier in 0.2 mm CMOS technology. In: IEEE international digest technical papers solid-state circuits conference (ISSCC 2001), pp 154–155

    Google Scholar 

  5. Aoki I, Kee SD, Rutledge DB, Hajimiri A (2002) Distributed active transformer-a new power-combining and impedance-transformation technique. IEEE Trans Microw Theory Techn 50(1):316–331

    Article  Google Scholar 

  6. Vathulya VR, Sowlati T, Leenaerts D (2001) Class 1 bluetooth power amplifier with 24 dBm output power and 48 % PAE at 2.4 GHz in 0.25 mm CMOS. In: Proceedings of european solid-state Circuits Conference (ESSCIRC 2001), pp 57–60

    Google Scholar 

  7. Degraeve R, Groeseneken G, Bellens R, Depas M, Maes HE (1995) A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides. In: IEEE international electron devices meeting technical digest (IEDM 1995), pp 863–866

    Google Scholar 

  8. Weir BE, Silverman PJ, Monroe D, Krisch KS, Alam MA, Alers GB, Sorsch TW, Timp GL, Baumann F, Liu CT, Ma Y, Hwang D (1997) Ultra-thin gate dielectrics: they break down, but do they fail? In: IEEE international electron devices meeting technical digest (IEDM 1997), pp 73–76

    Google Scholar 

  9. Enjun X, Yuan JS, Hong Y (2004) CMOS RF and DC reliability subject to hot carrier stress and oxide soft breakdown. IEEE Trans Device Mater Rel 4(1):92–98

    Article  Google Scholar 

  10. Li Q, Zhang J, Li W, Yuan JS, Chen P, Oates AS (2001) RF circuit performance degradation due to soft breakdown and hot carrier effect in deep-submicrometer CMOS technology. IEEE Trans Microw Theory Tech 49(9):1546–1551

    Article  Google Scholar 

  11. Larcher L, Sanzogni D, Brama R, Mazzanti A, Svelto F (2006) Oxide breakdown after RF stress: experimental analysis and effects on power amplifier operation. In: 44th Annual IEEE international reliability physics symposium proceedings, pp 283–288

    Google Scholar 

  12. Lin HC, Lee DY, Lee CY, Chao TS, Huang TY, Wang T (2001) New insights into breakdown modes and their evolution in ultra-thin gate oxide. In: International symposium on VLSI technology, systems, and applications, procedings of technical paper, pp 37–40

    Google Scholar 

  13. Depas M, Nigam T, Heyns MM (1996) Soft breakdown of ultra-thin gate oxide layers. IEEE Trans Electron Devices 43(9):1499–1504

    Article  Google Scholar 

  14. Stathis JH (2002) Reliability limits for the gate insulator in cmos technology. IBM J Res Dev 46(2/3):265–286

    Article  Google Scholar 

  15. Cheng TW (1992) Hot carrier design considerations for MOS devices and circuits. Springer, New York

    Google Scholar 

  16. Takeda E, Yang CY, Miura-Hamada (1995) Hot carrier effects in MOS devices. Academic Press, New York

    Google Scholar 

  17. Sowlati T, Leenaerts DMW (2003) A 2.4-GHz 0.18 mm CMOS self-biased cascode power amplifier. IEEE J Solid-State Circuits 38(8):1318–1324

    Google Scholar 

  18. Crupi F, Kaczer B, Groeseneken G, De Keersgieter A (2003) New insights into the relation between channel hot carrier degradation and oxide breakdown short channel nMOSFETs. IEEE Electron Device Lett 24(4):278–280

    Article  Google Scholar 

  19. Aoki I, Kee S, Magoon R, Aparicio R, Bohn F, Zachan J, Hatcher G, McClymont D, Hajimiri A (2008) A fully-integrated quad-band GSM/GPRS CMOS power amplifier. IEEE J Solid-State Circuits 43(12):2747–2758

    Article  Google Scholar 

  20. Dabrowski J, Weber ER (2004) Predictive simulation of semiconductor processing: status and challenges. Springer, Berlin

    Book  Google Scholar 

  21. Hicks J, Bergstrom D, Hattendorf M, Jopling J, Maiz J, Pae S, Prasad C, Wiedemer J (2008) 45 nm Transistor reliability. Intel Tech J 12(2):131–144

    Google Scholar 

  22. Wu EY, Vayshenker A, Nowak E, Sune J, Vollertsen RP, Lai W, Harmon D (2002) Experimental evidence of TBD power-law for voltage dependence of oxide breakdown in ultrathin gate oxides. IEEE Trans Electron Devices 49(12):2244–2253

    Article  Google Scholar 

  23. Sasse GT, Kuper FG, Schmitz J (2008) MOSFET degradation under RF stress. IEEE Trans Electron Devices 55(11):3167–3174

    Article  Google Scholar 

  24. Enjun X (2005) Hot carrier effect on CMOS RF amplifiers. In: 43th Annual IEEE international reliability physics symposium Proceedings, pp 680–681

    Google Scholar 

  25. Naseh S, Deen MJ, Marinov O (2002) Effects of hot-carrier stress on the RF performance of 0.18 μm technology NMOSFETs and circuits. In: 40th Annual IEEE international reliability physics symposium Proceedings, pp 98–104

    Google Scholar 

  26. Qiang L, Wei L, Jinlong Z, Yuan JS (2002) Soft breakdown and hot carrier reliability of CMOS RF mixer and redesign. IEEE radio frequency integrated circuits symposium (RFIC 2002), 399–402

    Google Scholar 

  27. Hyoung-Seok O, Cheon-Soo K, Yu H, Kim C, x, Ki (2006) A fully-integrated +23-dBm CMOS triple cascode linear power amplifier with inner-parallel power control scheme. In: IEEE radio frequency integrated circuits symposium (RFIC 2006)

    Google Scholar 

  28. Niknejad AM, Chowdhury D, Jiashu C (2012) Design of CMOS power amplifiers. IEEE Trans Microw Theory Techn 60(6):1784–1796

    Article  Google Scholar 

  29. Reynaert P, Steyaert M (2006) RF power amplifiers for mobile communications. Springer, The Netherlands

    Google Scholar 

  30. Lee Hongtak, Park Changkun, Hong Songcheol (2009) A Quasi-Four-Pair Class-E CMOS RF power amplifier with an integrated passive device transformer. IEEE Trans Microw Theory Techn 57(4):752–759

    Article  Google Scholar 

  31. Onizuka K, Ishihara H, Hosoya M, Saigusa S, Watanabe O, Otaka S (2012) A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion. IEEE J Solid-State Circuits 47(8):1820–1827

    Google Scholar 

  32. Deferm N, Osorio JF, Anton de Graauw, Reynaert P (2011) A 94 GHz differential power amplifier in 45 nm LP CMOS. In: IEEE radio frequency integrated circuits symposium (RFIC 2011), pp 1–4

    Google Scholar 

  33. Komijani A, Natarajan A, Hajimiri A (2005) A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS. IEEE J Solid-State Circuits 40(9):1901–1908

    Google Scholar 

  34. Niknejad AM, Meyer RG (2001) Analysis of eddy-current losses over conductive substrates with applications to monolithic inductors and transformers. IEEE Trans Microw Theory Techn 49(1):166–176

    Article  Google Scholar 

  35. Burghartz JN (1998) Progress in RF inductors on silicon-understanding substrate losses. In: IEEE international electron devices meeting technical digest (IEDM 1998), 523–526

    Google Scholar 

  36. Chowdhury D, Reynaert P, Niknejad AM (2008) Transformer-coupled power amplifier stability and power back-off analysis. IEEE Trans Circuits Syst II: Exp Briefs 55(6):507–511

    Article  Google Scholar 

  37. Albulet M (2001) RF power amplifiers. Noble Publishing, Atlanta

    Google Scholar 

  38. Kim Jihwan, Kim Woonyun, Jeon Hamhee, Huang Yan-Yu, Yoon Youngchang, Kim Hyungwook, Lee Chang-Ho, Kornegay KT (2012) A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer. IEEE J Solid-State Circuits 47(3):599–614

    Article  Google Scholar 

  39. Po-Chih Wang, Chia-Jun Chang, Wei-Ming Chiu, Pei-Ju Chiu, Chun-Cheng Wang, Chao-Hua Lu, Kai-Te Chen, Ming-Chong Huang, Yi-Ming Chang, Shih-Min Lin, Ka-Un Chan, Ying-His Lin, Lee C (2007) A 2.4 GHz Fully Integrated Transmitter Front End with +26.5-dBm On-Chip CMOS Power Amplifier. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2007), pp 263–266

    Google Scholar 

  40. Hyunji Koo, Bonhoon Koo, Songcheol Hong (2012) Highly efficient 24-GHz CMOS linear power amplifier with an adaptive bias circuit. In: Asia-Pacific Microwave Conference Proceedings(APMC 2012), pp 7–9

    Google Scholar 

  41. Dal Fabbro PA, Meinen C, Kayal M, Kobayashi K, Watanabe Y (2006) A dynamic supply CMOS RF power amplifier for 2.4 GHz and 5.2 GHz frequency bands. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2006), pp 4

    Google Scholar 

  42. Murad SAZ, Pokharel RK, Kanaya H, Yoshida K (2009) A 3.1 - 4.8 GHz CMOS UWB Power Amplifier Using Current Reused Technique. In: IEEE international conference on wireless communications, networking and mobile computing (WiCom 2009), pp 1–4

    Google Scholar 

  43. Xu Z, Gu QJ, Chang M-F (2011) A 100–117 GHz W-band CMOS power amplifier with on-chip adaptive biasing. IEEE Microw Wireless Compon Lett 21(10):547–549

    Article  Google Scholar 

  44. Francois B, Reynaert P (2012) A fully integrated Watt-level linear 900-MHz CMOS RF power amplifier for LTE-applications. IEEE Trans Microw Theory Techn 60(6):1878–1885

    Article  Google Scholar 

  45. Chowdhury D, Hull CD, Degani OB, Yanjie Wang, Niknejad AM (2009) A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMax applications. IEEE J Solid-State Circuits 44(12):3393–3402

    Google Scholar 

  46. Yan T, Liao H, Li C, Huang R (2007) A 2-GHz fully-differential CMOS power amplifier with virtual grounds to suppress ground bounce. Microw Opt Techn Lett 49(11):2780–2784

    Article  Google Scholar 

  47. Cheung TSD, Long JR (2005) A 21-26-GHz SiGe bipolar power amplifier MMIC. IEEE J Solid-State Circuits 40(12):2583–2597

    Article  Google Scholar 

  48. Liu JY, Tang A, Ning-Yi Wang, Gu QJ, Berenguer R, Hsieh-Hung Hsieh, Po-Yi Wu, Chewnpu Jou, Chang M-F (2011) A V-band self-healing power amplifier with adaptive feedback bias control in 65 nm CMOS. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2011), pp 1–4

    Google Scholar 

  49. Kim Seungwoo, Lee Kyungho, Lee Jongwoo, Kim B, Kee SD, Aoki I, Rutledge DB (2005) An optimized design of distributed active transformer. IEEE Trans Microw Theory Techn 53(1):380–388

    Article  Google Scholar 

  50. Lee Hongtak, Park Changkun, Hong Songcheol (2009) A Quasi-Four-Pair Class-E CMOS RF power amplifier with an integrated passive device transformer. IEEE Trans Microw Theory Techn 57(4):752–759

    Article  Google Scholar 

  51. Zhao D, He Y, Li L, Joos D, Philibert W, Reynaert P (2011) A 60 GHz 14 dBm power amplifier with a transformer-based power combiner in 65 nm CMOS. Int J Microw Wireless Techn 3(2):99

    Google Scholar 

  52. Aoki I, Kee SD, Rutledge DB, Hajimiri A (2002) Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. IEEE J Solid-State Circuits 37(3):371–383

    Article  Google Scholar 

  53. Pfeiffer UR, Goren D (2007) A 20 dBm fully-integrated 60 GHz SiGe power amplifier with automatic level control. IEEE J Solid-State Circuits 42(7):1455–1463

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Solar Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Solar Ruiz, H., Berenguer Pérez, R. (2014). CMOS Performance Issues. In: Linear CMOS RF Power Amplifiers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8657-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8657-2_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8656-5

  • Online ISBN: 978-1-4614-8657-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics