Skip to main content

Power Amplifier Fundamentals: Classes

  • Chapter
  • First Online:
Linear CMOS RF Power Amplifiers

Abstract

This chapter analyzes the different PA operation modes. The different PA classes are traditionally classified into two main groups: current source amplifiers, which comprises classes A to C, and switch-type amplifiers, which make up classes E and D. The class F PA is treated separately as it falls between current source and switch-type amplifiers. The following sections describe each operation mode in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cripps SC (1999) RF Power Amplifiers for Wireless Communications. Artech House, Norwood

    Google Scholar 

  2. Kwon DH, Hao L, Yuchun C, Tseng R, Yun C (2010) Digitally Equalized CMOS Transmitter Front-End With Integrated Power Amplifier. IEEE J Solid-State Circ 45(8):1602–1614

    Article  Google Scholar 

  3. Nuyts PAJ, Francois B, Dehaene W, Reynaert P (2012) A CMOS Burst-Mode Transmitter With Watt-Level RF PA and Flexible Fully Digital Front-End. IEEE Trans Circ Syst II: Exp Briefs 59(10):613–617

    Article  Google Scholar 

  4. Qing L, Sun J, YongJu S, Horie K, Itoh N, Yoshimasu T (2011) A high efficiency and high linearity power amplifier utilizing post-linearization technique for 5.8 GHz DSRC applications. In: IEEE topical conf power amplifiers for wireless and radio applications (PAWR 2011), pp 45–48

    Google Scholar 

  5. Yongwang D, Harjani R (2005) A high-efficiency CMOS +22-dBm linear power amplifier. IEEE J Solid-State Circ 40(9):1895–1900

    Article  Google Scholar 

  6. Jian F, Shilei H, Yumei H, Zhiliang H (2010) A 2.4G-Hz CMOS power amplifier. In: IEEE international conference solid-state and integrated circuit technology (ICSICT 2010), pp 659–661

    Google Scholar 

  7. Natarajan K, Walling JS, Allstot DJ (2011) A class-C power amplifier/antenna interface for wireless sensor applications. In: IEEE radio frequency integrated circuits symposium (RFIC 2011), pp 1–4

    Google Scholar 

  8. Gupta R, Ballweber BM, Allstot DJ (2001) Design and optimization of CMOS RF power amplifiers. IEEE J Solid-State Circ 36(2):166–175

    Article  Google Scholar 

  9. Elmala M, Paramesh J, Soumyanath K (2006) A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion. IEEE J Solid-State Circ 41(6):1323–1332

    Article  Google Scholar 

  10. Kang J, Daekyu Y, Kyoungjoon M, Kim B (2006) A ultra-high PAE Doherty amplifier based on 0.13-mm CMOS process. IEEE Microw Wireless Compon Lett 16(9):505–507

    Google Scholar 

  11. Li-Yuan Y, Hsin-Shu C, Yi-Jan C (2008) A 2.4 GHz fully integrated cascode-cascade CMOS Doherty power amplifier. IEEE Microw Wireless Compon Lett 18(3):197–199

    Google Scholar 

  12. Wongkomet N, Tee L, Gray PR (2006) A +31.5 dBm CMOS RF Doherty power amplifier for wireless communications. IEEE J Solid-State Circ 41(12):2852–2859

    Google Scholar 

  13. Kaymaksut E, Reynaert P (2012) Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications. IEEE J Solid-State Circ 47(7):1659–1671

    Article  Google Scholar 

  14. Chen YJE, Chih-Yun L, Tang-Nian L, Heo D (2006) A high-efficient CMOS RF power amplifier with automatic adaptive bias control. IEEE Microw Wireless Compon Lett 16(11):615–617

    Article  Google Scholar 

  15. Albulet M (2001) RF power amplifiers. Noble Publishing, Atlanta

    Google Scholar 

  16. Guanziroli F, Bassoli R, Crippa C, Devecchi D, Nicollini G (2012) A 1 W 104 dB SNR filter-less fully-digital open-loop Class D audio amplifier with EMI reduction. IEEE J Solid-State Circ 47(3):686–698

    Article  Google Scholar 

  17. Dooper L, Berkhout M (2012) A 3.4 W digital-in Class-D audio amplifier in 0.14 mm CMOS. IEEE J Solid-State Circ 47(7):1524–1534

    Google Scholar 

  18. Torres J, Colli-Menchi A, Rojas-Gonzalez MA, Sanchez-Sinencio E (2011) A low-power high-PSRR clock-free current-controlled Class-D audio amplifier. IEEE J Solid-State Circ 46(7):1553–1561

    Article  Google Scholar 

  19. Jingxue L, Gharpurey R (2011) Design and analysis of a self-oscillating Class D audio amplifier employing a hysteretic comparator. IEEE J Solid-State Circ 46(10):2336–2349

    Article  Google Scholar 

  20. Teplechuk MA, Gribben T, Amadi C (2011) True filterless Class-D audio amplifier. IEEE J Solid-State Circ 46(12):2784–2793

    Article  Google Scholar 

  21. Tsai-Pi H, Choi DK, Larson LE, Asbeck PM (2007) CMOS outphasing Class-D amplifier with chireix combiner. IEEE Microw Wireless Compon Lett 17(8):619–621

    Article  Google Scholar 

  22. Wei T, Hongtao X, Ravi A, Lakdawala H, Bochobza-Degani O, Carley LR, Palaskas Y (2012) A transformer-combined 31.5 dBm outphasing power amplifier in 45 nm LP CMOS with dynamic power control for back-off power efficiency enhancement. IEEE J Solid-State Circ 47(7):1646–1658

    Google Scholar 

  23. Landin PN, Fritzin J, Van Moer W, Isaksson M, Alvandpour A (2012) Modeling and digital predistortion of Class-D outphasing rf power amplifiers. IEEE Trans Microw Theory Techn 60(6):1907–1915

    Article  Google Scholar 

  24. Hongtao X, Palaskas Y, Ravi A, Sajadieh M, El-Tanani MA, Soumyanath K (2011) A flip-chip-packaged 25.3 dBm Class-D outphasing power amplifier in 32 nm CMOS for WLAN application. IEEE J Solid-State Circ 46(7):1596–1605

    Google Scholar 

  25. Sungho L, Sangwook N (2010) A CMOS Outphasing Power Amplifier With Integrated Single-Ended Chireix Combiner. IEEE Trans Circ Syst II: Exp Briefs 57(6):411–415

    Article  Google Scholar 

  26. Fritzin J, Jung Y, Landin PN, Handel P, Enqvist M, Alvandpour A (2011) Phase predistortion of a Class-D outphasing RF amplifier in 90 nm CMOS. IEEE Trans Circ Syst II: Exp Briefs 58(10):642–646

    Article  Google Scholar 

  27. Ravi A, Madoglio P, Hongtao X, Chandrashekar K, Verhelst M, Pellerano S, Cuellar L, Aguirre-Hernandez M, Sajadieh M, Zarate-Roldan JE, Bochobza-Degani O, Lakdawala H, Palaskas Y (2012) A 2.4-GHz 20–40-MHz channel WLAN digital outphasing transmitter utilizing a delay-based wideband phase modulator in 32-nm CMOS. IEEE J Solid-State Circ 47(12):3184–3196

    Google Scholar 

  28. Chowdhury D, Lu Y, Alon E, Niknejad AM (2011) An efficient mixed-signal 2.4-GHz polar power amplifier in 65-nm CMOS technology. IEEE J Solid-State Circ 46(8):1796–1809

    Google Scholar 

  29. Nakatani T, Rode J, Kimball DF, Larson LE, Asbeck PM (2012) Digitally-controlled polar transmitter using a watt-class current-mode Class-D CMOS power amplifier and guanella reverse balun for handset applications. IEEE J Solid-State Circ 47(5):1104–1112

    Article  Google Scholar 

  30. Sang-Min Y, Walling JS, Eum-Chan W, Jann B, Allstot DJ (2011) A switched-capacitor RF power amplifier. IEEE J Solid-State Circ 46(12):2977–2987

    Article  Google Scholar 

  31. Jian C, Liang R, Jonsson F, Geng Y, Li-Rong Z (2012) The design of all-digital polar transmitter based on ADPLL and phase synchronized ΔΣ modulator. IEEE J Solid-State Circ 47(5):1154–1164

    Article  Google Scholar 

  32. Reynaert P, Steyaert M (2006) RF power amplifiers for mobile communications. Springer, The Netherlands

    Google Scholar 

  33. Stauth JT, Sanders SR (2008) A 2.4 GHz, 20dBm Class-D PA with single-bit digital polar modulation in 90 nm CMOS. In: IEEE custom integrated circuits conference (CICC 2008) pp 737–740

    Google Scholar 

  34. Sokal NO, Sokal AD (1975) Class E-A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J Solid-State Circ 10(3):168–176

    Article  Google Scholar 

  35. Lee TH (2004) The design of CMOS radio-frequency integrated circuits. Cambridge University Press, United Kingdom

    Google Scholar 

  36. Acar M, Annema AJ, Nauta B (2007) Variable-voltage Class-E power amplifiers. In: IEEE MTT-S international microwave symposium digital (IMS 2007), pp 1095–1098

    Google Scholar 

  37. Zhisheng L, Torfs G, Bauwelinck J, Xin Y, Vandewege J, Van Praet C, Spiessens P, Tubbax H, Stubbe F (2012) A 2.45-GHz + 20-dBm fast switching Class-E power amplifier with 43% PAE and a 18-dB-wide power range in 0.18-μm CMOS. IEEE Trans Circ Syst II: Exp. Briefs 59(4):224–228

    Google Scholar 

  38. Lee O, An KH, Kim H, Lee DH, Han J, Yang KS, Lee CH, Kim H, Laskar J (2010) Analysis and design of fully integrated high-power parallel-circuit Class-E CMOS power amplifiers. IEEE Trans Circ Syst I: Reg Pap 57(3):725–734

    Article  MathSciNet  Google Scholar 

  39. Muh-Dey W, Kalim D, Erguvan D, Sheng-Fuh C, Negra R (2012) Investigation of wideband load transformation networks for Class-E switching-mode power amplifiers. IEEE Trans Microw Theory Techn 60(6):1916–1927

    Article  Google Scholar 

  40. Apostolidou M, Van der Heijden MP, Leenaerts DMW, Sonsky J, Heringa A, Volokhine I (2009) A 65 nm CMOS 30 dBm Class-E RF power amplifier with 60% PAE and 40% PAE at 16 dB back-off. IEEE J Solid-State Circ 44(5):1372–1379

    Article  Google Scholar 

  41. Changkun P, Jeonghu H, Haksun K, Songcheol H (2008) A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region. IEEE Trans Microw Theory Techn 56(4):782–792

    Google Scholar 

  42. Yonghoon S, Sungho L, Cho E, Jaejun L, Sangwook N (2010) A CMOS Class-E power amplifier with voltage stress relief and enhanced efficiency. IEEE Trans Microw Theory Techn 58(2):310–317

    Article  Google Scholar 

  43. Brama R, Larcher L, Mazzanti A, Svelto F (2008) A 30.5 dBm 48% PAE CMOS Class-E PA with integrated balun for RF applications. IEEE J Solid-State Circ 43(8):1755–1762

    Google Scholar 

  44. Sira D, Thomsen P, Larsen T (2010) Output power control in Class-E power amplifiers. IEEE Microw Wireless Compon Lett 20(4):232–234

    Article  Google Scholar 

  45. Dong-Ho L, Changkun P, Jeonghu H, Kim Y, Songcheol H, Chang-Ho L, Laskar J (2008) A load-shared CMOS power amplifier with efficiency boosting at low power mode for polar transmitters. IEEE Trans Microw Theory Techn 56(7):1565–1574

    Article  Google Scholar 

  46. Hongtak L, Changkun P, Songcheol H (2009) A quasi-four-pair Class-E CMOS RF power amplifier with an integrated passive device transformer. IEEE Trans Microw Theory Techn 57(4):752–759

    Article  Google Scholar 

  47. Godoy PA, SungWon C, Barton TW, Perreault DJ, Dawson JL (2012) A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS. IEEE J Solid-State Circ 47(10):2372–2384

    Google Scholar 

  48. Reynaert P, Steyaert MSJ (2005) A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE. IEEE J Solid-State Circ 40(12):2598–2608

    Google Scholar 

  49. Walling JS, Taylor SS, Allstot DJ (2009) A Class-G supply modulator and Class-E PA in 130 nm CMOS. IEEE J Solid-State Circ 44(9):2339–2347

    Article  Google Scholar 

  50. Singhal N, Pamarti S (2010) A digital envelope combiner for switching power amplifier linearization. IEEE Trans Circ Syst II: Exp Briefs 57(4):270–274

    Article  Google Scholar 

  51. Walling JS, Lakdawala H, Palaskas Y, Ravi A, Degani O, Soumyanath K, Allstot DJ (2009) A Class-E PA with pulse-width and pulse-position modulation in 65 nm CMOS. IEEE J Solid-State Circ 44(6):1668–1678

    Article  Google Scholar 

  52. Raab FH (2001) Maximum efficiency and output of class-F power amplifiers. IEEE Trans Microw Theory Techn 49(6):1162–1166

    Article  Google Scholar 

  53. Huang Min Z, A’’ain AKB, Kordesch AV (2007) Two stage integrated Class-F RF power amplifier. In: Int symposium integrated circuits (ISIC 2007), pp 108–110

    Google Scholar 

  54. Carls J, Ellinger F, Joerges U, Krcmar M (2009) Highly-efficient CMOS C-band Class-F power amplifier for low supply voltages. IET Electron Lett 45(24):1240–1241

    Article  Google Scholar 

  55. Fortes F, do Rosario MJ (2001) A second harmonic Class-F power amplifier in standard CMOS technology. IEEE Trans Microw Theory Techn 49(6):1216–1220

    Google Scholar 

  56. Hsien-Yuan L, Jhih-Hong C, Hwann-Kaeo C, Shin-Ming W (2009) Harmonic control network for 2.6 GHz CMOS Class-F power amplifier. In: IEEE international symposium circuits and systems (ISCAS 2009), pp 1321–1324

    Google Scholar 

  57. Kuo TC, Lusignan BB (2001) A 1.5 W class-F RF power amplifier in 0.2 mm CMOS technology. In: IEEE international digital technology papers solid-state circuits conference (ISSCC 2001), pp 154–155, 442

    Google Scholar 

  58. Shirvani A, Su DK, Wooley BA (2002) A CMOS RF power amplifier with parallel amplification for efficient power control. IEEE J Solid-State Circ 37(6):684–693

    Article  Google Scholar 

  59. Hamedi-Hagh S, Salama CAT (2004) CMOS wireless phase-shifted transmitter. IEEE J Solid-State Circ 39(8):1241–1252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Solar Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Solar Ruiz, H., Berenguer Pérez, R. (2014). Power Amplifier Fundamentals: Classes. In: Linear CMOS RF Power Amplifiers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8657-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8657-2_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8656-5

  • Online ISBN: 978-1-4614-8657-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics