Skip to main content

Cytokines in Inflammatory Bowel Disease

  • Chapter
  • First Online:
Molecular Genetics of Inflammatory Bowel Disease

Abstract

Erroneous communication between the innate and adaptive immune systems through cytokines results in exaggerated or attenuated immune response. It is not known whether the pathologic immune response in inflammatory bowel disease has its origin in a dysbalance of pro- and anti-inflammatory cytokine release or whether it is secondary in subsequence of a defective intestinal barrier or the destructive power of aggressive microbiota in the gut lumen.

Many cytokines have been found upregulated in patients with inflammatory bowel diseases in correlation with disease activity. A central role seem to play cytokines that coordinate the T helper cell response. Although big scientific efforts have been made until today, only TNF blockers reached the clinical routine and many anti-cytokine strategies were only effective in rodent models of colitis. This chapter gives an overview about relevant pathomechanisms in mucosal immunology of the gut and focuses on the key cytokines that have been identified as targets for novel therapeutic strategies in human IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eissner G, Kolch W, Scheurich P (2004) Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev 15(5):353–366, Epub 2004/09/29

    PubMed  CAS  Google Scholar 

  2. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10(1):45–65

    PubMed  CAS  Google Scholar 

  3. Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P et al (1994) Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology 106(6):1455–1466

    PubMed  CAS  Google Scholar 

  4. Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT (1993) Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut 34(12):1705–1709

    PubMed  CAS  Google Scholar 

  5. Neurath MF, Meyer zum Buschenfelde KH (1996) Protective and pathogenic roles of cytokines in inflammatory bowel diseases. J Investig Med 44(9):516–521

    PubMed  CAS  Google Scholar 

  6. Reimund JM, Wittersheim C, Dumont S, Muller CD, Baumann R, Poindron P et al (1996) Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol 16(3):144–150

    PubMed  CAS  Google Scholar 

  7. Sartor RB (1994) Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology 106(2):533–539

    PubMed  CAS  Google Scholar 

  8. MacDonald TT, Hutchings P, Choy MY, Murch S, Cooke A (1990) Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol 81(2):301–305, Epub 1990/08/01

    PubMed  CAS  Google Scholar 

  9. Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA et al (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340(18):1398–1405

    PubMed  CAS  Google Scholar 

  10. Lugering A, Schmidt M, Lugering N, Pauels HG, Domschke W, Kucharzik T (2001) Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology 121(5):1145–1157

    PubMed  CAS  Google Scholar 

  11. ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ (2002) Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 50(2):206–211

    PubMed  Google Scholar 

  12. Shen C, Assche GV, Colpaert S, Maerten P, Geboes K, Rutgeerts P et al (2005) Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther 21(3):251–258

    PubMed  CAS  Google Scholar 

  13. Sandborn WJ, Feagan BG, Stoinov S, Honiball PJ, Rutgeerts P, Mason D et al (2007) Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med 357(3):228–238, Epub 2007/07/20

    PubMed  CAS  Google Scholar 

  14. Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R et al (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis 13(11):1323–1332

    PubMed  Google Scholar 

  15. Atreya R, Zimmer M, Bartsch B, Waldner MJ, Atreya I, Neumann H et al (2011) Antibodies against tumor necrosis factor (TNF) induce T-cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14(+) macrophages. Gastroenterology 141(6):2026–2038

    PubMed  CAS  Google Scholar 

  16. Rutgeerts P, Van Assche G, Vermeire S (2006) Review article: Infliximab therapy for inflammatory bowel disease—seven years on. Aliment Pharmacol Ther 23(4):451–463

    PubMed  CAS  Google Scholar 

  17. Afif W, Loftus EV Jr, Faubion WA, Kane SV, Bruining DH, Hanson KA et al (2010) Clinical utility of measuring infliximab and human anti-chimeric antibody concentrations in patients with inflammatory bowel disease. Am J Gastroenterol 105(5):1133–1139

    PubMed  CAS  Google Scholar 

  18. Hanauer SB, Wagner CL, Bala M, Mayer L, Travers S, Diamond RH et al (2004) Incidence and importance of antibody responses to infliximab after maintenance or episodic treatment in Crohn's disease. Clin Gastroenterol Hepatol 2(7):542–553, Epub 2004/06/30

    PubMed  CAS  Google Scholar 

  19. Baert F, Noman M, Vermeire S, Van Assche G, D’ Haens G, Carbonez A et al (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348(7):601–608

    PubMed  CAS  Google Scholar 

  20. Maser EA, Villela R, Silverberg MS, Greenberg GR (2006) Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn's disease. Clin Gastroenterol Hepatol 4(10):1248–1254

    PubMed  CAS  Google Scholar 

  21. Farrell RJ, Alsahli M, Jeen YT, Falchuk KR, Peppercorn MA, Michetti P (2003) Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn’s disease: a randomized controlled trial. Gastroenterology 124(4):917–924

    PubMed  CAS  Google Scholar 

  22. Van Bockstaele F, Holz JB, Revets H (2009) The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs 10(11):1212–1224

    PubMed  Google Scholar 

  23. Semerano L, Assier E, Delavallee L, Boissier MC (2011) Kinoid of human tumor necrosis factor-alpha for rheumatoid arthritis. Expert Opin Biol Ther 11(4):545–550, Epub 2011/03/10

    PubMed  CAS  Google Scholar 

  24. Cappello M, Keshav S, Prince C, Jewell DP, Gordon S (1992) Detection of mRNAs for macrophage products in inflammatory bowel disease by in situ hybridisation. Gut 33(9):1214–1219, Epub 1992/09/01

    PubMed  CAS  Google Scholar 

  25. Mayer L. Inflammatory Bowel Disease, 5th ed., Kirsner JB ed., Philadelphia: W. B. Saunders Company 2000;280–296

    Google Scholar 

  26. Fantini MC, Monteleone G, Macdonald TT (2007) New players in the cytokine orchestra of inflammatory bowel disease. Inflamm Bowel Dis 13(11):1419–1423

    PubMed  Google Scholar 

  27. Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1756–1767

    PubMed  CAS  Google Scholar 

  28. Pender SL, MacDonald TT (2004) Matrix metalloproteinases and the gut—new roles for old enzymes. Curr Opin Pharmacol 4(6):546–550

    PubMed  CAS  Google Scholar 

  29. Atreya I, Atreya R, Neurath MF (2008) NF-kappaB in inflammatory bowel disease. J Intern Med 263(6):591–596

    PubMed  CAS  Google Scholar 

  30. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S et al (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446(7135):557–561, Epub 2007/03/16

    PubMed  CAS  Google Scholar 

  31. Gross V, Andus T, Caesar I, Roth M, Scholmerich J (1992) Evidence for continuous stimulation of interleukin-6 production in Crohn’s disease. Gastroenterology 102(2):514–519

    PubMed  CAS  Google Scholar 

  32. Hyams JS, Fitzgerald JE, Treem WR, Wyzga N, Kreutzer DL (1993) Relationship of functional and antigenic interleukin 6 to disease activity in inflammatory bowel disease. Gastroenterology 104(5):1285–1292

    PubMed  CAS  Google Scholar 

  33. Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S et al (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med 6(5):583–588

    PubMed  CAS  Google Scholar 

  34. Louis E, Belaiche J, van Kemseke C, Franchimont D, de Groote D, Gueenen V et al (1997) A high serum concentration of interleukin-6 is predictive of relapse in quiescent Crohn’s disease. Eur J Gastroenterol Hepatol 9(10):939–944

    PubMed  CAS  Google Scholar 

  35. Van Kemseke C, Belaiche J, Louis E (2000) Frequently relapsing Crohn’s disease is characterized by persistent elevation in interleukin-6 and soluble interleukin-2 receptor serum levels during remission. Int J Colorectal Dis 15(4):206–210

    PubMed  Google Scholar 

  36. Hosokawa T, Kusugami K, Ina K, Ando T, Shinoda M, Imada A et al (1999) Interleukin-6 and soluble interleukin-6 receptor in the colonic mucosa of inflammatory bowel disease. J Gastroenterol Hepatol 14(10):987–996, Epub 1999/10/26

    PubMed  CAS  Google Scholar 

  37. Jostock T, Mullberg J, Ozbek S, Atreya R, Blinn G, Voltz N et al (2001) Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem 268(1):160–167

    PubMed  CAS  Google Scholar 

  38. Mitsuyama K, Toyonaga A, Sasaki E, Ishida O, Ikeda H, Tsuruta O et al (1995) Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut 36(1):45–49

    PubMed  CAS  Google Scholar 

  39. de Jong YP, Abadia-Molina AC, Satoskar AR, Clarke K, Rietdijk ST, Faubion WA et al (2001) Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol 2(11):1061–1066

    PubMed  Google Scholar 

  40. Holub MC, Mako E, Devay T, Dank M, Szalai C, Fenyvesi A et al (1998) Increased interleukin-6 levels, interleukin-6 receptor and gp130 expression in peripheral lymphocytes of patients with inflammatory bowel disease. Scand J Gastroenterol Suppl 228:47–50

    PubMed  CAS  Google Scholar 

  41. Ina K, Itoh J, Fukushima K, Kusugami K, Yamaguchi T, Kyokane K et al (1999) Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a Bcl-2/Bax mucosal imbalance. J Immunol 163(2):1081–1090

    PubMed  CAS  Google Scholar 

  42. Ishiguro Y (1999) Mucosal proinflammatory cytokine production correlates with endoscopic activity of ulcerative colitis. J Gastroenterol 34(1):66–74, Epub 1999/04/16

    PubMed  CAS  Google Scholar 

  43. Iimura M, Nakamura T, Shinozaki S, Iizuka B, Inoue Y, Suzuki S et al (2000) Bax is downregulated in inflamed colonic mucosa of ulcerative colitis. Gut 47(2):228–235

    PubMed  CAS  Google Scholar 

  44. Mitsuyama K, Sata M, Rose-John S (2006) Interleukin-6 trans-signaling in inflammatory bowel disease. Cytokine Growth Factor Rev 17(6):451–461

    PubMed  CAS  Google Scholar 

  45. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A et al (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126(4):989–996, discussion 47

    PubMed  CAS  Google Scholar 

  46. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117(3):514–521

    PubMed  CAS  Google Scholar 

  47. Strober W, Fuss IJ, Blumberg RS (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20:495–549

    PubMed  CAS  Google Scholar 

  48. Meng G, Zhang F, Fuss I, Kitani A, Strober W (2009) A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30(6):860–874

    PubMed  CAS  Google Scholar 

  49. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189

    PubMed  CAS  Google Scholar 

  50. Prehn JL, Thomas LS, Landers CJ, Yu QT, Michelsen KS, Targan SR (2007) The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol 178(7):4033–4038

    PubMed  CAS  Google Scholar 

  51. Kamada N, Hisamatsu T, Honda H, Kobayashi T, Chinen H, Takayama T et al (2010) TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn’s disease. Inflamm Bowel Dis 16(4):568–575

    PubMed  Google Scholar 

  52. Meylan F, Song YJ, Fuss I, Villarreal S, Kahle E, Malm IJ et al (2011) The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol 4(2):172–185

    PubMed  CAS  Google Scholar 

  53. Takedatsu H, Michelsen KS, Wei B, Landers CJ, Thomas LS, Dhall D et al (2008) TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 135(2):552–567

    PubMed  CAS  Google Scholar 

  54. Schreiber TH, Wolf D, Tsai MS, Chirinos J, Deyev VV, Gonzalez L et al (2010) Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest 120(10):3629–3640

    PubMed  CAS  Google Scholar 

  55. Bamias G, Martin C III, Marini M, Hoang S, Mishina M, Ross WG et al (2003) Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol 171(9):4868–4874

    PubMed  CAS  Google Scholar 

  56. Prehn JL, Mehdizadeh S, Landers CJ, Luo X, Cha SC, Wei P et al (2004) Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clin Immunol 112(1):66–77

    PubMed  CAS  Google Scholar 

  57. Duchmann R, Lochs H, Kruis W (1999) Morbus Crohn, Colitis ulcerosa. Wenn Bakterien die Darmwand attackieren.... [Crohn disease, ulcerative colitis. When bacteria attack the intestinal wall....]. MMW Fortschritte der Medizin 141(51–52):48–51. Epub 2000/08/19

    Google Scholar 

  58. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W (1995) Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 182(5):1281–1290

    PubMed  CAS  Google Scholar 

  59. Davidson NJ, Hudak SA, Lesley RE, Menon S, Leach MW, Rennick DM (1998) IL-12, but not IFN-gamma, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J Immunol 161(6):3143–3149

    PubMed  CAS  Google Scholar 

  60. Fuss IJ, Marth T, Neurath MF, Pearlstein GR, Jain A, Strober W (1999) Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology 117(5):1078–1088

    PubMed  CAS  Google Scholar 

  61. Neurath MF, Finotto S, Fuss I, Boirivant M, Galle PR, Strober W (2001) Regulation of T-cell apoptosis in inflammatory bowel disease: to die or not to die, that is the mucosal question. Trends Immunol 22(1):21–26

    PubMed  CAS  Google Scholar 

  62. Goriely S, Neurath MF, Goldman M (2008) How microorganisms tip the balance between interleukin-12 family members. Nat Rev Immunol 8(1):81–86

    PubMed  CAS  Google Scholar 

  63. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25(2):309–318

    PubMed  CAS  Google Scholar 

  64. Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D et al (2004) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 351(20):2069–2079

    PubMed  CAS  Google Scholar 

  65. Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S et al (2008) A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology 135(4):1130–1141

    PubMed  CAS  Google Scholar 

  66. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13(5):715–725

    PubMed  CAS  Google Scholar 

  67. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8(4):345–350

    PubMed  CAS  Google Scholar 

  68. Ivanov II, Zhou L, Littman DR (2007) Transcriptional regulation of Th17 cell differentiation. Semin Immunol 19(6):409–417

    PubMed  CAS  Google Scholar 

  69. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10(3):314–324

    PubMed  CAS  Google Scholar 

  70. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T et al (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8(12):1390–1397

    PubMed  CAS  Google Scholar 

  71. Hue S, Ahern P, Buonocore S, Kullberg MC, Cua DJ, McKenzie BS et al (2006) Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 203(11):2473–2483

    PubMed  CAS  Google Scholar 

  72. Burakoff R, Barish CF, Riff D, Pruitt R, Chey WY, Farraye FA et al (2006) A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohn’s disease. Inflamm Bowel Dis 12(7):558–565

    PubMed  Google Scholar 

  73. Dideberg V, Kristjansdottir G, Milani L, Libioulle C, Sigurdsson S, Louis E et al (2007) An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet 16(24):3008–3016, Epub 2007/09/21

    PubMed  CAS  Google Scholar 

  74. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205(5):1063–1075

    PubMed  CAS  Google Scholar 

  75. Leppkes M, Becker C, Ivanov II, Hirth S, Wirtz S, Neufert C et al (2009) RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136(1):257–267

    PubMed  CAS  Google Scholar 

  76. O'Connor W Jr, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y et al (2009) A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10(6):603–609

    PubMed  Google Scholar 

  77. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 12(5):382–388

    PubMed  Google Scholar 

  78. Moseley TA, Haudenschild DR, Rose L, Reddi AH (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 14(2):155–174

    PubMed  CAS  Google Scholar 

  79. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ et al (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33(2):279–288, Epub 2010/08/25

    PubMed  CAS  Google Scholar 

  80. Reinisch W, de Villiers W, Bene L, Simon L, Racz I, Katz S et al (2010) Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis 16(2):233–242

    PubMed  Google Scholar 

  81. Reinisch W, Hommes DW, Van Assche G, Colombel JF, Gendre JP, Oldenburg B et al (2006) A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut 55(8):1138–1144

    PubMed  CAS  Google Scholar 

  82. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861

    PubMed  CAS  Google Scholar 

  83. Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B et al (2010) Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. J Immunol 185(1):679–687

    PubMed  CAS  Google Scholar 

  84. Lee YK, Mukasa R, Hatton RD, Weaver CT (2009) Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 21(3):274–280

    PubMed  CAS  Google Scholar 

  85. Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E et al (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9(6):650–657

    PubMed  CAS  Google Scholar 

  86. Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F et al (1997) Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 112(4):1169–1178

    PubMed  CAS  Google Scholar 

  87. Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT (2001) Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest 108(4):601–609

    PubMed  CAS  Google Scholar 

  88. Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S et al (2005) Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn’s disease but not in ulcerative colitis. Inflamm Bowel Dis 11(1):16–23

    PubMed  Google Scholar 

  89. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T et al (2010) TGF-beta induces IL-9 production from human Th17 cells. J Immunol 185(1):46–54

    PubMed  CAS  Google Scholar 

  90. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453(7198):1051–1057

    PubMed  CAS  Google Scholar 

  91. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    PubMed  CAS  Google Scholar 

  92. Stephens GL, Swerdlow B, Benjamin E, Coyle AJ, Humbles A, Kolbeck R et al (2011) IL-9 is a Th17-derived cytokine that limits pathogenic activity in organ-specific autoimmune disease. Eur J Immunol 41(4):952–962

    PubMed  CAS  Google Scholar 

  93. Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F et al (2008) Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 134(4):1038–1048

    PubMed  CAS  Google Scholar 

  94. Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio BG, Caruso R et al (2005) Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology 128(3):687–694

    PubMed  CAS  Google Scholar 

  95. Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT et al (2007) IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 178(2):732–739

    PubMed  CAS  Google Scholar 

  96. Monteleone G, Caruso R, Fina D, Peluso I, Gioia V, Stolfi C et al (2006) Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut 55(12):1774–1780

    PubMed  CAS  Google Scholar 

  97. Caruso R, Fina D, Peluso I, Stolfi C, Fantini MC, Gioia V et al (2007) A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3alpha, by gut epithelial cells. Gastroenterology 132(1):166–175

    PubMed  CAS  Google Scholar 

  98. Izcue A, Hue S, Buonocore S, Arancibia-Carcamo CV, Ahern PP, Iwakura Y et al (2008) Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28(4):559–570

    PubMed  CAS  Google Scholar 

  99. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD et al (2012) Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61(12):1693–1700

    PubMed  CAS  Google Scholar 

  100. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118(2):534–544

    PubMed  CAS  Google Scholar 

  101. Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206(7):1465–1472

    PubMed  CAS  Google Scholar 

  102. Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM et al (2006) IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 290(4):G827–G838

    PubMed  CAS  Google Scholar 

  103. Cox JH, Kljavin NM, Ramamoorthi N, Diehl L, Batten M, Ghilardi N (2011) IL-27 promotes T cell-dependent colitis through multiple mechanisms. J Exp Med 208(1):115–123

    PubMed  CAS  Google Scholar 

  104. Wirtz S, Tubbe I, Galle PR, Schild HJ, Birkenbach M, Blumberg RS et al (2006) Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J Exp Med 203(8):1875–1881

    PubMed  CAS  Google Scholar 

  105. Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM et al (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11):6164–6172

    PubMed  CAS  Google Scholar 

  106. Leaphart CL, Dai S, Gribar SC, Richardson W, Ozolek J, Shi XH et al (2008) Interferon-gamma inhibits enterocyte migration by reversibly displacing connexin43 from lipid rafts. Am J Physiol Gastrointest Liver Physiol 295(3):G559–G569

    PubMed  CAS  Google Scholar 

  107. Leaphart CL, Qureshi F, Cetin S, Li J, Dubowski T, Baty C et al (2007) Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes. Gastroenterology 132(7):2395–2411

    PubMed  CAS  Google Scholar 

  108. Tong Q, Vassilieva EV, Ivanov AI, Wang Z, Brown GT, Parkos CA et al (2005) Interferon-gamma inhibits T84 epithelial cell migration by redirecting transcytosis of beta1 integrin from the migrating leading edge. J Immunol 175(6):4030–4038

    PubMed  CAS  Google Scholar 

  109. The_MHC_Consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. The MHC sequencing consortium. Nature 401(6756):921–923, Epub 1999/11/30

    Google Scholar 

  110. Colgan SP, Parkos CA, Matthews JB, D'Andrea L, Awtrey CS, Lichtman AH et al (1994) Interferon-gamma induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol 267(2 Pt 1):C402–C410

    PubMed  CAS  Google Scholar 

  111. Ruemmele FM, Gurbindo C, Mansour AM, Marchand R, Levy E, Seidman EG (1998) Effects of interferon gamma on growth, apoptosis, and MHC class II expression of immature rat intestinal crypt (IEC-6) cells. J Cell Physiol 176(1):120–126

    PubMed  CAS  Google Scholar 

  112. Diegelmann J, Olszak T, Goke B, Blumberg RS, Brand S (2012) A novel role for interleukin-27 (IL-27) as mediator of intestinal epithelial barrier protection mediated via differential signal transducer and activator of transcription (STAT) protein signaling and induction of antibacterial and anti-inflammatory proteins. J Biol Chem 287(1):286–298

    PubMed  CAS  Google Scholar 

  113. Sasaoka T, Ito M, Yamashita J, Nakajima K, Tanaka I, Narita M et al (2011) Treatment with IL-27 attenuates experimental colitis through the suppression of the development of IL-17-producing T helper cells. Am J Physiol Gastrointest Liver Physiol 300(4):G568–G576

    PubMed  CAS  Google Scholar 

  114. Wirtz S, Billmeier U, McHedlidze T, Blumberg RS, Neurath MF (2011) Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141(5):1875–1886

    PubMed  CAS  Google Scholar 

  115. Jacobo EM, Dario FM, Kathleen SH (2000) Behavioral and psychological signs and symptoms of dementia: a practicing psychiatrist’s viewpoint. Dialogues Clin Neurosci 2(2):139–155, Epub 2000/06/01

    Google Scholar 

  116. Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F et al (2006) Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis 12(1):9–15

    PubMed  Google Scholar 

  117. Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC et al (2005) Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 129(1):50–65

    PubMed  CAS  Google Scholar 

  118. Matsuoka K, Inoue N, Sato T, Okamoto S, Hisamatsu T, Kishi Y et al (2004) T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn’s disease. Gut 53(9):1303–1308

    PubMed  CAS  Google Scholar 

  119. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S et al (2004) Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 113(10):1490–1497

    PubMed  CAS  Google Scholar 

  120. Mannon PJ, Hornung RL, Yang Z, Yi C, Groden C, Friend J et al (2011) Suppression of inflammation in ulcerative colitis by interferon-beta-1a is accompanied by inhibition of IL-13 production. Gut 60(4):449–455

    PubMed  CAS  Google Scholar 

  121. Hoyer KK, Dooms H, Barron L, Abbas AK (2008) Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 226:19–28

    PubMed  CAS  Google Scholar 

  122. Balzano A, Bove A, Leonardi E, Bevilacqua N, Grande G, Ascierto PA et al (1997) The soluble interleukin-2 receptor as an indicator of clinical evolution in patients with ulcerative colitis. Eur J Gastroenterol Hepatol 9(2):173–177

    PubMed  CAS  Google Scholar 

  123. Nielsen OH, Ciardelli T, Wu Z, Langholz E, Kirman I (1995) Circulating soluble interleukin-2 receptor alpha and beta chain in inflammatory bowel disease. Am J Gastroenterol 90(8):1301–1306

    PubMed  CAS  Google Scholar 

  124. Van Assche G, Dalle I, Noman M, Aerden I, Swijsen C, Asnong K et al (2003) A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol 98(2):369–376

    PubMed  Google Scholar 

  125. Creed TJ, Norman MR, Probert CS, Harvey RF, Shaw IS, Smithson J et al (2003) Basiliximab (anti-CD25) in combination with steroids may be an effective new treatment for steroid-resistant ulcerative colitis. Aliment Pharmacol Ther 18(1):65–75

    PubMed  CAS  Google Scholar 

  126. Creed TJ, Probert CS, Norman MN, Moorghen M, Shepherd NA, Hearing SD et al (2006) Basiliximab for the treatment of steroid-resistant ulcerative colitis: further experience in moderate and severe disease. Aliment Pharmacol Ther 23(10):1435–1442

    PubMed  CAS  Google Scholar 

  127. Van Assche G, Sandborn WJ, Feagan BG, Salzberg BA, Silvers D, Monroe PS et al (2006) Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut 55(11):1568–1574

    PubMed  Google Scholar 

  128. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181

    PubMed  CAS  Google Scholar 

  129. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    PubMed  CAS  Google Scholar 

  130. Colombel JF, Rutgeerts P, Malchow H, Jacyna M, Nielsen OH, Rask-Madsen J et al (2001) Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 49(1):42–46

    PubMed  CAS  Google Scholar 

  131. Fedorak RN, Gangl A, Elson CO, Rutgeerts P, Schreiber S, Wild G et al (2000) Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119(6):1473–1482

    PubMed  CAS  Google Scholar 

  132. Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S et al (2000) Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 119(6):1461–1472

    PubMed  CAS  Google Scholar 

  133. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP et al (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759, Epub 2006/05/24

    PubMed  CAS  Google Scholar 

  134. Vermeire S, Rutgeerts P, D’haens G et al (2010) A Phase 2a Randomized placebo-controlled double-blind multi-center dose escalation study to evaluate the safety, tolerability, pharmacodynamics and effi cacy of AG011 in patients with moderately active ulcerative colitis. Digestive Disease Week. New Orleans, LA, USA

    Google Scholar 

  135. Trepicchio WL, Wang L, Bozza M, Dorner AJ (1997) IL-11 regulates macrophage effector function through the inhibition of nuclear factor-kappaB. J Immunol 159(11):5661–5670

    PubMed  CAS  Google Scholar 

  136. Kiessling S, Muller-Newen G, Leeb SN, Hausmann M, Rath HC, Strater J et al (2004) Functional expression of the interleukin-11 receptor alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells. J Biol Chem 279(11):10304–10315

    PubMed  CAS  Google Scholar 

  137. Peterson RL, Wang L, Albert L, Keith JC Jr, Dorner AJ (1998) Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease. Lab Invest 78(12):1503–1512

    PubMed  CAS  Google Scholar 

  138. Qiu BS, Pfeiffer CJ, Keith JC Jr (1996) Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats. Dig Dis Sci 41(8):1625–1630

    PubMed  CAS  Google Scholar 

  139. Sands BE, Winston BD, Salzberg B, Safdi M, Barish C, Wruble L et al (2002) Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn’s disease. Aliment Pharmacol Ther 16(3):399–406

    PubMed  CAS  Google Scholar 

  140. Herrlinger KR, Witthoeft T, Raedler A, Bokemeyer B, Krummenerl T, Schulzke JD et al (2006) Randomized, double blind controlled trial of subcutaneous recombinant human interleukin-11 versus prednisolone in active Crohn’s disease. Am J Gastroenterol 101(4):793–797

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus F. Neurath M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Engel, M.A., Neurath, M.F. (2013). Cytokines in Inflammatory Bowel Disease. In: D'Amato, M., Rioux, J. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8256-7_15

Download citation

Publish with us

Policies and ethics