Skip to main content

Introduction to Dendritic Morphology

  • Chapter
  • First Online:
Book cover The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

Abstract

Dendrites play an important role in neuronal function and connectivity. This chapter introduces the first section of the book focusing on the morphological features of dendritic tree structures and the role of dendritic trees in the circuit. We provide an overview of quantitative procedures for data collection, analysis, and modeling of dendrite shape. Our main focus lies on the description of morphological complexity and how one can use this description to unravel neuronal function in dendritic trees and neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251

    Article  PubMed  CAS  Google Scholar 

  • Ascoli GA, Krichmar JL (2000) L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 33:1003–1011

    Article  Google Scholar 

  • Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441–8453

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Marks WB, Ulfhake B (1992) A parsimonious description of motoneuron dendritic morphology using computer simulation. J Neurosci 12:2403–2416

    PubMed  CAS  Google Scholar 

  • Cannon R, Turner D, Pyapali G, Wheal H (1998) An on-line archive of reconstructed hippocampal neurons. J Neurosci Methods 84:49–54

    Article  PubMed  CAS  Google Scholar 

  • Cannon R, Wheal H, Turner D (1999) Dendrites of classes of hippocampal neurons differ in structural complexity. J Comp Neurol 633:619–633

    Article  Google Scholar 

  • Capowski JJ (1989) Computer techniques in neuroanatomy. Plenum Press, New York

    Book  Google Scholar 

  • Chklovskii DB, Koulakov AA (2004) Maps in the brain: what can we learn from them? Annu Rev Neurosci 27:369–392

    Article  PubMed  CAS  Google Scholar 

  • Costa LDF, Barbosa MS, Coupez V (2005) On the potential of the excluded volume and autocorrelation as neuromorphometric descriptors. Phys Stat Mech Appl 348:317–326

    Article  Google Scholar 

  • Costa LDF, Manoel ETM (2003) A percolation approach to neural morphometry and connectivity. Neuroinformatics 1:65–80

    Article  Google Scholar 

  • Costa LDF, Zawadzki K, Miazaki M et al (2010) Unveiling the neuromorphological space. Front Comput Neurosci 4:150

    Article  Google Scholar 

  • Cuntz H, Borst A, Segev I (2007) Optimization principles of dendritic structure. Theor Biol Med Model 4:21

    Article  PubMed  Google Scholar 

  • Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol 6:e1000877

    Article  PubMed  Google Scholar 

  • Cuntz H, Forstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comput Biol 4:e1000251

    Article  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Article  PubMed  Google Scholar 

  • Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588

    PubMed  CAS  Google Scholar 

  • Eberhard JP, Wanner A, Wittum G (2006) NeuGen: a tool for the generation of realistic morphology of cortical neurons and neural networks in 3D. Neurocomputing 70:327–342

    Article  Google Scholar 

  • Fernández E, Jelinek H (2001) Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24:309–321

    Article  PubMed  Google Scholar 

  • Furtak SC, Moyer JR, Brown TH (2007) Morphology and ontogeny of rat perirhinal cortical neurons. J Comp Neurol 505:493–510

    Article  PubMed  Google Scholar 

  • Glaser JR, Glaser EM (1990) Neuron imaging with neurolucida—a PC-based system for image combining microscopy. Comput Med Imaging Graph 14:307–317

    Article  PubMed  CAS  Google Scholar 

  • Gleeson P, Crook S, Cannon RC et al (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6:e1000815

    Article  PubMed  Google Scholar 

  • Helmstaedter M, Briggman KL, Denk W (2011) High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Hentschel HG, Fine A (1996) Diffusion-regulated control of cellular dendritic morphogenesis. Proc Biol Sci 263:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction—diffusion models in realistic morphologies. BMC Syst Biol 6:36

    Article  PubMed  Google Scholar 

  • Heumann H, Wittum G (2009) The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics 7:179–190

    Article  PubMed  Google Scholar 

  • Hillman D (1979) Neuronal shape parameters and substructures as a basis of neuronal form. The Neurosciences, Fourth Study Program. MIT Press, Cambridge, MA, pp 477–498

    Google Scholar 

  • Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17–45

    Article  PubMed  CAS  Google Scholar 

  • Jan Y-N, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11:316–328

    Article  PubMed  CAS  Google Scholar 

  • Jelinek HF, Fernández E (1998) Neurons and fractals: how reliable and useful are calculations of fractal dimensions? J Neurosci Methods 81:9–18

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991

    Article  PubMed  CAS  Google Scholar 

  • Kerr RA, Bartol TM, Kaminsky B et al (2008) Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J Sci Comput 30:3126

    Article  PubMed  Google Scholar 

  • Kim Y, Sinclair R, Chindapol N et al (2012) Geometric theory predicts bifurcations in minimal wiring cost trees in biology are flat. PLoS Comput Biol 8:e1002474

    Article  PubMed  CAS  Google Scholar 

  • Klyachko VA, Stevens CF (2003) Connectivity optimization and the positioning of cortical areas. Proc Natl Acad Sci USA 100:7937–7941

    Article  PubMed  CAS  Google Scholar 

  • Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    Article  PubMed  CAS  Google Scholar 

  • Koene R, Tijms B, Van Hees P et al (2009) NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics 7:195–210

    Article  PubMed  Google Scholar 

  • Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  PubMed  CAS  Google Scholar 

  • Lindsay KA, Maxwell DJ, Rosenberg JR, Tucker G (2007) A new approach to reconstruction models of dendritic branching patterns. Math Biosci 205:271–296

    Article  PubMed  Google Scholar 

  • Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  PubMed  CAS  Google Scholar 

  • Longair MH, Baker DA, Armstrong JD (2011) Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27:2453–2454

    Article  PubMed  CAS  Google Scholar 

  • Luczak A (2006) Spatial embedding of neuronal trees modeled by diffusive growth. J Neurosci Methods 157:132–141

    Article  PubMed  Google Scholar 

  • Luczak A (2010) Measuring neuronal branching patterns using model-based approach. Front Comput Neurosci 4:10

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  PubMed  CAS  Google Scholar 

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Article  PubMed  CAS  Google Scholar 

  • Marks WB, Burke RE (2007) Simulation of motoneuron morphology in three dimensions. II. Building complete neurons. J Comp Neurol 716:701–716

    Article  Google Scholar 

  • Memelli H, Torben-Nielsen B, Kozloski J (2013) Self-referential forces are sufficient to explain different dendritic morphologies. Front Neuroinform 7:1–12

    Article  PubMed  Google Scholar 

  • Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3:362–370

    Article  PubMed  CAS  Google Scholar 

  • Migliore M, Shepherd GM (2005) An integrated approach to classifying neuronal phenotypes. Nat Rev Neurosci 6:810–818

    Article  PubMed  CAS  Google Scholar 

  • Migliore M, Morse TM, Davison AP et al (2003) ModelDB. Neuroinformatics 1:135–139

    Article  PubMed  Google Scholar 

  • Moolman DL, Vitolo OV, Vonsattel J-PG, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387

    Article  PubMed  CAS  Google Scholar 

  • Myatt DR, Hadlington T, Ascoli GA, Nasuto SJ (2012) Neuromantic—from semi-manual to semi-automatic reconstruction of neuron morphology. Front Neuroinform 6:4

    Article  PubMed  Google Scholar 

  • Nagel J, Delandre C, Zhang Y et al (2012) Fascin controls neuronal class-specific dendrite arbor morphology. Development 139:2999–3009

    Article  PubMed  CAS  Google Scholar 

  • Nowakowski RS, Hayes NL, Egger MD (1992) Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Res 576:152–156

    Article  PubMed  CAS  Google Scholar 

  • Oberlaender M, Boudewijns ZSRM, Kleele T et al (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci USA 108:4188–4193

    Article  PubMed  CAS  Google Scholar 

  • Oberlaender M, De Kock CPJ, Bruno RM et al (2012) Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb Cortex 22:2375–2391

    Article  PubMed  Google Scholar 

  • Peng H, Ruan Z, Long F et al (2010) V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol 28:348–353

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Payne B (1993) Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb Cortex 3:69–78

    Article  PubMed  CAS  Google Scholar 

  • Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, New York

    Book  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motorneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy S, Hill SL, King JG et al (2012) Intrinsic morphological diversity of thick‐tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections. J Physiol 590:737–752

    PubMed  CAS  Google Scholar 

  • Rocchi MBL, Sisti D, Albertini MC, Teodori L (2007) Current trends in shape and texture analysis in neurology: aspects of the morphological substrate of volume and wiring transmission. Brain Res Rev 55:97–107

    Article  PubMed  Google Scholar 

  • Ropireddy D, Scorcioni R, Lasher B et al (2011) Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations. Brain Struct Funct 216:1–15

    Article  PubMed  Google Scholar 

  • Samsonovich AV, Ascoli GA (2003) Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. J Neurosci Res 71:173–187

    Article  PubMed  CAS  Google Scholar 

  • Scorcioni R, Polavaram S, Ascoli GA (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866–876

    Article  PubMed  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    PubMed  CAS  Google Scholar 

  • Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11:474–489

    Article  PubMed  CAS  Google Scholar 

  • Smith TG, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology–dimensions, lacunarity and multifractals. J Neurosci Methods 69:123–136

    Article  PubMed  Google Scholar 

  • Soltesz I (2005) Diversity in the neuronal machine: order and variability in interneuronal microcircuits. Oxford University Press, New York, USA

    Google Scholar 

  • Srivastava DP, Woolfrey KM, Jones KA et al (2012) An autism-associated variant of Epac2 reveals a role for Ras/Epac2 signaling in controlling basal dendrite maintenance in mice. PLoS Biol 10:e1001350

    Article  PubMed  CAS  Google Scholar 

  • Tamori Y (1993) Theory of dendritic morphology. Phys Rev E 48:3124–3129

    Article  Google Scholar 

  • Torben-Nielsen B, Stiefel KM (2010) An inverse approach for elucidating dendritic function. Front Comput Neurosci 4:128

    Article  PubMed  Google Scholar 

  • Torben-Nielsen B, Vanderlooy S, Postma E (2008) Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics 6:257–277

    Article  PubMed  Google Scholar 

  • Toroczkai Z (2001) Topological classification of binary trees using the Horton-Strahler index. Phys Rev E 65:1–10

    Article  Google Scholar 

  • Uylings HB, Ruiz-Marcos A, van Pelt J (1986) The metric analysis of three-dimensional dendritic tree patterns: a methodological review. J Neurosci Methods 18:127–151

    Article  PubMed  CAS  Google Scholar 

  • Uylings HBM, Smit GJ (1975) The three-dimensional branching structure of cortical pyramidal cells. Brain Res 87:55–60

    Article  PubMed  CAS  Google Scholar 

  • Van Elburg RAJ, Van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol 6:e1000781

    Article  PubMed  Google Scholar 

  • van Pelt J, Schierwagen A (2004) Morphological analysis and modeling of neuronal dendrites. Math Biosci 188:147–155

    Article  PubMed  Google Scholar 

  • van Pelt J, Uylings HBM (2011) The flatness of bifurcations in 3D dendritic trees: an optimal design. Front Comput Neurosci 5:54

    PubMed  Google Scholar 

  • van Pelt J, Uylings HB, Verwer RW et al (1992) Tree asymmetry—a sensitive and practical measure for binary topological trees. Bull Math Biol 54:759–784

    Article  PubMed  Google Scholar 

  • Verwer RW, van Pelt J (1983) A new method for the topological analysis of neuronal tree structures. J Neurosci Methods 8:335–351

    Article  PubMed  CAS  Google Scholar 

  • Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937

    PubMed  CAS  Google Scholar 

  • Wang Y, Gupta A, Toledo-Rodriguez M et al (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395–410

    Article  PubMed  Google Scholar 

  • Wassle H, Peichl L, Boycott BB (1981) Dendritic territories of cat retinal ganglion cells. Nature 292:344–345

    Article  PubMed  CAS  Google Scholar 

  • Wen Q, Chklovskii DB (2008) A cost-benefit analysis of neuronal morphology. J Neurophysiol 99:2320–2328

    Article  PubMed  Google Scholar 

  • Wen Q, Stepanyants A, Elston GN et al (2009) Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proc Natl Acad Sci USA 106:12536–12541

    Article  PubMed  CAS  Google Scholar 

  • Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403

    Article  CAS  Google Scholar 

  • Zubler F, Douglas R (2009) A framework for modeling the growth and development of neurons and networks. Front Comput Neurosci 3:25

    Article  PubMed  Google Scholar 

  • Zubler F, Hauri A, Whatley AM, Douglas R (2011) An instruction language for self-construction in the context of neural networks. Front Comput Neurosci 5:57

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Torben-Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Torben-Nielsen, B., Cuntz, H. (2014). Introduction to Dendritic Morphology. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_1

Download citation

Publish with us

Policies and ethics