Skip to main content

Visualizing Thought

  • Chapter
  • First Online:

Abstract

Depictive expressions of thought predate written language by thousands of years. They have evolved in communities through a kind of informal user testing that has refined them. Analyzing common visual communications reveals consistencies that illuminate how people think as well as guide design; the process can be brought into the laboratory and accelerated. Like language, visual communications abstract and schematize; unlike language, they use properties of the page (e.g., proximity and place: center, horizontal/up-down, vertical/left-right) and the marks on it (e.g., dots, lines, arrows, boxes, blobs, likenesses, symbols) to convey meanings. The visual expressions of these meanings (e.g., individual, category, order, relation, correspondence, continuum, hierarchy) have analogs in language, gesture, and especially in the patterns that are created when people design the world around them, arranging things into piles and rows and hierarchies and arrays, spatial-abstraction-action interconnections termed spractions. The designed world is a diagram.

This paper is reprinted with permission from Topics in Cognitive Science, 2011,3, 499–535.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawala, M., & Stolte, C. (2001). Rendering effective route maps: Improving usability through generalization. Proceedings of SIGGRAPH 2001 (pp. 241–250). New York: ACM.

    Google Scholar 

  2. Ainsworth, S. (2008a). How do animations influence learning? In D. H. Robinson & G. Schraw (Eds.), Recent innovations in educational technology that facilitate student learning (pp. 37–67). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  3. Ainsworth, S. (2008b). How should we evaluate multimedia learning environments?. In J.-F. Rouet, R. Lowe, & W. Schnotz (Eds.), Understanding multimedia comprehension. New York: Springer.

    Google Scholar 

  4. Alperson-Afil, N., Sharon, G., Kislev, M., Melamed, Y., Zohar, I., Ashkenazi, S., Rabinovich, R., Biton, R., Werker, E., Hartman, G., Feibel, C., & Goren-Inbar, N. (2009). Spatial organization of hominin activities at Gesher Benot Ya’aqov, Israel. Science, 326, 1677–1680.

    Google Scholar 

  5. Argyle, M. (1988). Bodily communication. London: Routledge.

    Google Scholar 

  6. Arnheim, R. (1974). Art and visual perception: A psychology of the creative eye. Berkeley: University of California Press.

    Google Scholar 

  7. Arnheim, R. (1977). The dynamics of architectural form. Berkeley: University of California Press.

    Google Scholar 

  8. Arnheim, R. (1988). The power of the center: A study of composition in the visual arts. Berkeley: University of California Press.

    Google Scholar 

  9. Barker, R. G. (1963). The stream of behavior as an empirical problem. In R. G. Barker (Ed.), The stream of behavior (pp. 1–22). New York: Appleton-Century-Crofts.

    Google Scholar 

  10. Barker, R. G., & Wright, H. F. (1954). Midwest and its children: The psychological ecology of an American town. Evanston, IL: Row, Peterson and Company.

    Google Scholar 

  11. Bendix, F., Kosara, R., & Hauser, H. (2006). Parallel sets: Interactive exploration and visual analysis of categori- cal data. IEEE Transactions on Visualization and Computer Graphics, 12, 558–568.

    Google Scholar 

  12. Bertin, J. (1981). Graphics and graphic-information-processing. New York: Walter de Gruyter.

    Google Scholar 

  13. Boroditsky, L. (2000). Metaphoric structuring: Understanding time through spatial metaphors. Cognition, 75, 1–28.

    Google Scholar 

  14. Boroditsky, L. (2001). Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43, 1–22.

    Google Scholar 

  15. Brown, L. (1979). The story of maps. New York: Dover.

    Google Scholar 

  16. Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufman.

    Google Scholar 

  17. Carey, S., Diamond, R., & Woods, B. (1980). Development of face recognition—A maturational component? Developmental Psychology, 16, 257–269.

    Google Scholar 

  18. Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied, 4, 75–100.

    Google Scholar 

  19. Casasanto, D. (2009). Embodiment of abstract concepts: Good and bad in right- and left-handers. Journal of Experimental Psychology: General, 138, 351–367.

    Google Scholar 

  20. Chatterjee, A. (2001). Language and space: Some interactions. Trends in Cognitive Science, 5, 55–61.

    Google Scholar 

  21. Chatterjee, A. (2002). Portrait profiles and the notion of agency. Empirical Studies of the Arts, 20, 33–41.

    Google Scholar 

  22. Chokron, S., & De Agostini, M. (2000). Reading habits influence aesthetic preference. Cognitive Brain Research, 10, 45–49.

    Google Scholar 

  23. Chokron, S., & De Agostini, M. (2002). The influence of handedness on profile and line drawing directionality in children, young, and older normal adults. Brain, Cognition, and Emotion, 48, 333–336.

    Google Scholar 

  24. Clark, H. H. (1973). Space, time, semantics, and the child. In T. E. Moore (Ed.), Cognitive development and the acquisition of language (pp. 27–63). New York: Academic Press.

    Google Scholar 

  25. Clark, H. H. (1996). Using language. Cambridge, England: Cambridge University Press.

    Google Scholar 

  26. Committee on Support for Thinking Spatially. (2006). Learning to think spatially. Washington, DC: The National Academies Press.

    Google Scholar 

  27. Cooper, W. E., & Ross, J. R. (1975). World order. In R. E. Grossman, L. J. San, & T. J. Vance (Eds.), Papers from the parasession on functionalism (pp. 63–111). Chicago: Chicago Linguistic Society.

    Google Scholar 

  28. Corter, J. E., Rho, Y.-J., Zahner, D., Nickerson, J. V., & Tversky, B. (2009). Bugs and biases: Diagnosing misconceptions in the understanding of diagrams. Proceedings of the Cognitive Science Society. Mahwah, NJ.

    Google Scholar 

  29. De Loache, J. S. (2004). Becoming symbol-minded. Trends in Cognitive Science, 8, 66–70.

    Google Scholar 

  30. Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.

    MATH  Google Scholar 

  31. Donald, M. (1991). Origins of the modern mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  32. Dwyer, F. M. (1978). Strategies for improving visual learning. State College, PA: Learning Services.

    Google Scholar 

  33. Elkin, J. (1999). The domain of images. Ithaca, NY: Cornell University Press.

    Google Scholar 

  34. Emmorey, K., Tversky, B., & Taylor, H. A. (2000). Using space to describe space: Perspective in speech, sign, and gesture. Journal of Spatial Cognition and Computation, 2, 157–180.

    Google Scholar 

  35. Engle, R. A. (1998). Not channels but composite signals: Speech, gesture, diagrams and object demonstrations are integrated in multimodal explanations. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings of the twentieth annual conference of the cognitive science society. Mahwah, NJ: Erlbaum.

    Google Scholar 

  36. Fontana, D. (2005). Meditating with mandalas. London: Duncan Baird Publishers.

    Google Scholar 

  37. Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence rom Piraha ̃ language and cognition. Cognition, 108, 819–824.

    Google Scholar 

  38. Franklin, N., & Tversky, B. (1990). Searching imagined environments. Journal of Experimental Psychology: General, 119, 63–76.

    Google Scholar 

  39. Gattis, M. (2002). Structure mapping in spatial reasoning. Cognitive Development, 17, 1157–1183.

    Google Scholar 

  40. Gattis, M. (2004). Mapping relational structure in spatial reasoning. Cognitive Science, 28 (4), 589–610.

    Google Scholar 

  41. Gattis, M., & Holyoak, K. J. (1996). Mapping conceptual to spatial relations in visual reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1–9.

    Google Scholar 

  42. Gelb, I. (1963). A study of writing, 2nd ed. Chicago: University of Chicago Press.

    Google Scholar 

  43. Gelman, R., & Gallistel, R. (1986). The child’s understanding of number. Cambridge, MA: Harvard.

    Google Scholar 

  44. Gobert, J. D. (1999). Expertise in the comprehension of architectural plans. In J. Gero & B. Tversky (Eds.),Visual and spatial reasoning in design (pp. 185–205). Sydney, Australia: Key Centre of Design Computing and Cognition.

    Google Scholar 

  45. Goel, V. (1995). Sketches of thought. Cambridge, MA: MIT Press.

    Google Scholar 

  46. Goldin-Meadow, S. (2003). Hearing gesture: How our hands help us think. Cambridge, MA: Harvard University Press.

    Google Scholar 

  47. Gombrich, E. (1961). Art and illusion. Princeton, NJ: Princeton University Press.

    Google Scholar 

  48. Gombrich, E. (1979). The sense of order: A study in the psychology of decorative art. Oxford, England: Phaidon.

    Google Scholar 

  49. Goodman, N. (1978). Languages of art: An approach to a theory of symbols. New York: Bobbs-Merrill

    Google Scholar 

  50. Gordon, P. (2004). Numerical cognition without words. Evidence from Amazonia. Science, 306, 496–499.

    Google Scholar 

  51. Hartshorne, C., & Weiss, P. (Eds.) (1960). Collected papers of Charles Sanders Peirce. Cambridge, MA: Harvard University Press.

    Google Scholar 

  52. Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1084–1102.

    Google Scholar 

  53. Hegarty, M. (2010). Components of spatial intelligence. In B. H. Ross (Ed.) The psychology of learning and motivation. Vol. 52. Pp. 265–297. San Diego: Academic Press.

    Google Scholar 

  54. Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 2, 325–360.

    Google Scholar 

  55. Hegarty, P., Lemieux, A. F., & McQueen, G. (2010). Graphing the order of the sexes: Constructing, recalling, interpreting, and putting the self in gender difference graphs. Journal of Personality and Social Psychology, 93, 375–391.

    Google Scholar 

  56. Hegarty, M., & Waller, D. (2006). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.),Handbook of visuospatial thinking. Cambridge, England: Cambridge University Press.

    Google Scholar 

  57. Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive Science, 30, 581–592.

    Google Scholar 

  58. Hochberg, J., & Brooks, V. (1962). Pictorial recognition as an unlearned ability: A study of one child’s performance. American Journal of Psychology, 75, 624–628.

    Google Scholar 

  59. Hochberg, J., & Galper, R. E. (1967). Recognition of faces: I. An exploratory study. Psychonomic Science, 6, 156–163.

    Google Scholar 

  60. Horn, R. E. (1998). Visual language. Bainbridge Island, WA: MacroVu, Inc.

    Google Scholar 

  61. Howard, I. P. (1982). Human visual orientation. New York: Wiley.

    Google Scholar 

  62. Hughes, M. (1986). Children and number: Difficulties in learning mathematics. Oxford, England: Blackwell.

    Google Scholar 

  63. Inselberg, A., & Dimsdale, B. (1990). Parallel coordinates: A tool for visualizing multi-dimensional geometry, Visualization ‘90. Proceedings of the First IEEE Conference on Visualizations, 23–26, 361–378.

    Google Scholar 

  64. Ittelson, W. H. (1996). Visual perception of markings. Psychonomic Bulletin & Review, 3, 171–187.

    Google Scholar 

  65. Karmiloff-Smith, A. (1979). Micro-and macro-developmental changes in language acquisition and other representational systems. Cognitive Science, 3, 91–118.

    Google Scholar 

  66. Karmiloff-Smith, A. (1990). Constraints on representational change: Evidence from children’s drawing. Cognition, 34, 1–27.

    Google Scholar 

  67. Kellogg, R. (1969). Analyzing children’s art. Palo Alto, CA: National Press.

    Google Scholar 

  68. Kendon, A. (2004). Gesture: Visible action as utterance. Cambridge, England: Cambridge University Press.

    Google Scholar 

  69. Kessell, A. M., & Tversky, B. (2006). Using gestures and diagrams to think and talk about insight problems. Proceedings of the Meetings of the Cognitive Science Society.

    Google Scholar 

  70. Kessell, A. M., & Tversky, B. (2008). Cognitive methods for visualizing space, time, and agents. In G. Stapleton, J. Howse, & J. Lee (Eds.), Theory and application of diagrams. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  71. Kessell, A. M., & Tversky, B. (2009). Thinking about cycles: Producing sequences but preferring circles.

    Google Scholar 

  72. Kirsh, D. (1995). The intelligent use of space. Artificial Intelligence, 73, 31–68.

    Google Scholar 

  73. Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 3, 185–223.

    Google Scholar 

  74. Kosslyn, S. M. (2006). Graph design for the eye and the mind. Oxford, England: Oxford University Press.

    Google Scholar 

  75. Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: A new characterization of cognitive style. Memory and Cognition, 33, 710–726.

    Google Scholar 

  76. Kulvicki, J. (2006). Pictorial representation. Philosophy Compass, 10, 1–12.

    Google Scholar 

  77. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.

    Google Scholar 

  78. Lakoff, G., & Nunez, R. (2000). Where mathematics comes from. New York: Basic Books.

    MATH  Google Scholar 

  79. Landy, D., & Goldstone, R. L. (2007a). Formal notations are diagrams: Evidence from a production task. Memory & Cognition, 35, 2033–2040.

    Google Scholar 

  80. Landy, D., & Goldstone, R. L. (2007b). How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 720–733.

    Google Scholar 

  81. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Google Scholar 

  82. Lee, K., & Karmiloff-Smith, A. (1996). The development of external symbol systems: The child as a notator. In R. Gelman & T. Kit Fong Au (Eds.), Perceptual and cognitive develoment (pp. 185–211). San Diego: Academic Press.

    Google Scholar 

  83. Lee, P. U., & Tversky, B. (2005). Interplay between visual and spatial: The effects of landmark descriptions on comprehension of route⁄survey descriptions. Spatial Cognition and Computation, 5 (2 & 3), 163–185.

    Google Scholar 

  84. Levinson, S. C. (2003). Space in language and cognition: Explorations in cognitive diversity. Cambridge, England: Cambridge University Press.

    Google Scholar 

  85. Maass, A., Pagani, D., & Berta, E. (2007). How beautiful is the goal and how violent is the fistfight? Spatial bias in the interpretation of human behavior Social Cognition, 25, 833–852.

    Google Scholar 

  86. Maass, A., & Russo, A. (2003). Directional bias in the mental representation of spatial events: Nature or culture? Psychological Science, 14, 296–301.

    Google Scholar 

  87. Mallery, G. (1893⁄1972). Picture writing of the American Indians. (Originally published by Government Printing Office). New York: Dover.

    Google Scholar 

  88. Mayer, R.E. (2001). Multimedia learning. Cambridge, England: Cambridge University Press.

    Google Scholar 

  89. Mayer, R. E., Hegarty, M., Mayer, S. Y., & Campbell, J. (2005). When passive media promote active learning: Static diagrams versus animation in multimedia instruction. Journal of Experimental Psychology: Applied, 11, 256–265.

    Google Scholar 

  90. McCloud, S. (1994). Understanding comics. New York: Harper Collins.

    Google Scholar 

  91. McManus, I. C., & Humphrey, N. (1973). Turning the left cheek. Nature, 243, 271–272.

    Google Scholar 

  92. McNeill, D. (1992). Hand and mind: what gestures reveal about thought. Chicago: University of Chicago Press.

    Google Scholar 

  93. McNeill, D. (2005). Gesture and thought. Chicago: University of Chicago Press.

    Google Scholar 

  94. Morikawa, K., & McBeath, M. (1992). Lateral motion bias associated with reading direction. Vision Research, 32, 1137–1141.

    Google Scholar 

  95. Murch, W. (2001). In the blink of an eye. Beverly Hills, CA: Silman-James Press.

    Google Scholar 

  96. Nachshon, I. (1985). Directional preferences in perception of visual stimuli. International Journal of Neuroscience, 25, 161–174.

    Google Scholar 

  97. Nachshon, I., Argaman, E., & Luria, A. (1999). Effects of directional habits and handedness on aesthetic preference for left and right profiles. Journal of Cross Cultural Psychology, 30, 106–114.

    Google Scholar 

  98. Netz, R. (1999). Linguistic formulae as cognitive tools. Pragmatics and Cognition, 7, 147–176.

    Google Scholar 

  99. Neurath, O. (1936). International picture language: The first rules of isotype. London: Kegan Paul, Trench, Trubner & Co., Ltd.

    Google Scholar 

  100. Nickerson, J. V., Corter, J. E., Tversky, B., Zahner, D., & Rho, Y.-J. (2008). The spatial nature of thought: Understanding information systems design through diagrams. In R. Boland, M. Limayem, & B. Pentland (Eds.), Proceedings of the 29th International Conference on Information Systems.

    Google Scholar 

  101. Norman, D. A. (1993). Things that make us smart. Reading, MA: Addison-Wesley.

    Google Scholar 

  102. Novick, L. R. (2001) Spatial diagrams: Key instruments in the toolbox for thought. In D. L. Medin (ed.), The psychology of learning and motivation, Vol. 40. (pp. 279–325). New York: Academic Press.

    Google Scholar 

  103. Novick, L. R., & Catley, K. M. (2007). Understanding phylogenies in biology: The influence of a Gestalt percep- tual principle. Journal of Experimental Psychology: Applied, 13, 197–223.

    Google Scholar 

  104. Novick, L. R., & Hurley, S. M. (2001). To matrix, network, or hierarchy, that is the question. Cognitive Psychology, 42, 158–216.

    Google Scholar 

  105. Novick, L. R., Hurley, S. M., & Francis, M. (1999). Evidence for abstract, schematic knowledge of three spatial diagram representations. Memory and Cognition, 27, 288–308.

    Google Scholar 

  106. Novick, L. R., Shade, C. K., & Catley, K. M. (2011). Linear versus branching depictions of evolutionary history: Implications for design. Topics in Cognitive Science, 3, 536–539.

    Google Scholar 

  107. Paivio, A. (1986). Mental representations. New York: Oxford.

    Google Scholar 

  108. Pinker, S. (1990). A theory of graph comprehension. In R. Freedle (Ed.), Artificial intelligence and the future of testing (pp. 73–126). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  109. Rock, I. (1973). Orientation and form. New York: Academic Press.

    Google Scholar 

  110. Sakhuja, T., Gupta, G. C., Singh, M., & Vaid, J. (1996). Reading habits affect asymmetries in facial affect judgements: A replication. Brain and Cognition, 32, 162–165.

    Google Scholar 

  111. Santiago, J., Lupianez, J., Perez, E., & Funes, M. J. (2007). Time (also) flies from left to right. Psychonomic Bulletin & Review, 14, 512–516.

    Google Scholar 

  112. Santiago, J., Roman, A., Ouellet, M., Rodrıguez, N., & Perez-Azor, P. (2008). In hindsight, life flows from left to right. Psychological Research. DOI: 10.1007/s00426-008-0220-0

    Google Scholar 

  113. Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human-Computer Studies, 45, 185–213.

    Google Scholar 

  114. Schmandt-Besserat, D. (1992). Before writing, Volume 1: From counting to cuneiform. Austin: University of Texas Press.

    Google Scholar 

  115. Schnotz, W., & Lowe, R. K. (2007). A unified view of learning from animated and static graphics. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research and design implications. New York: Cambridge University Press.

    Google Scholar 

  116. Schon, D. A. (1983). The reflective practitioner. New York: Harper Collins.

    Google Scholar 

  117. Schwartz, D. (1995). The emergence of abstract representations in dyad problem solving. The Journal of the Learning Sciences, 4, 321–354.

    Google Scholar 

  118. Shah, P., & Carpenter, P. A. (1995). Conceptual limitations in comprehending line graphs. Journal of Experimental Psychology: General, 124, 43–61.

    Google Scholar 

  119. Shah, P., & Freedman, E. (2010). Bar and line graph comprehension: An interaction of top-down and bottom-up processes. Topics in Cognitive Science.

    Google Scholar 

  120. Shah, P., Freedman, E., & Vekiri, I. (2005). The comprehension of quantitative information in graphical displays. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 426–476). New York: Cambridge University Press.

    Google Scholar 

  121. Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. Journal of Educational Psychology, 91, 690–702.

    Google Scholar 

  122. Shepard, R. N., & Hurwitz, S. (1984). Upward direction, mental rotation, and discrimination of left and right urns in maps. Cognition, 18, 161–193.

    Google Scholar 

  123. Shepard, R. N., & Podgorny, P. (1978). Cognitive processes that resemble perceptual processes. In W. Estes (Ed.), Handbook of learning and cognitive processes, Vol. 5. (pp. 189–237). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  124. Sholl, M. J. (1987). Cognitive maps as orienting schema. Journal of Experimental Psychology: Learning, Memory and Cognition, 13, 615–628.

    Google Scholar 

  125. Small, J. P. (1997). Wax tablets of the mind. New York: Routledge, Paul.

    Google Scholar 

  126. Smallman, H. S., St. John, M., Onck, H. M., & Cowen, M. (2001). “Symbicons”: A hybrid symbology that combines the best elements of symbols and icons. Proceedings of the 54th annual meeting of the human factors and ergonomics society (pp. 110–114).

    Google Scholar 

  127. Smith, M. C., & Magee, L. E. (1980). Tracing the time course of picture-word processing. Journal of Experimental Psychology: General, 109, 373–392.

    Google Scholar 

  128. Stafford, B. (2007). Echo objects: The cognitive work of images. Chicago: University of Chicago Press.

    Google Scholar 

  129. Stasko, J., & Lawrence, A. (1998). Empirically assessing algorithm animations as learning aids. In J. Stasko, J. Domingue, M. H. Brown, & B. A. Price (Eds.), Software visualization (pp. 419–438). Cambridge, MA: MIT Press.

    Google Scholar 

  130. Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive Science, 19, 97–140.

    Google Scholar 

  131. Suitner, C., & Maass, A. (2007). Positioning bias in portraits and self-portraits: Do female artists make different choices? Empirical Studies of the Arts, 25, 71–95.

    Google Scholar 

  132. Suwa, M., & Tversky, B. (1996). What architects see in their sketches: Implications for design tools. In Human factors in computing systems: Conference companion (pp. 191–192). New York: ACM.

    Google Scholar 

  133. Suwa, M., & Tversky, B. (2001). Constructive perception in design. In J. S. Gero & M. L. Maher (Eds.), Computational and cognitive models of creative design V (pp. 227–239). Sydney, Australia: University of Sydney.

    Google Scholar 

  134. Suwa, M., & Tversky, B. (2003). Constructive perception: A skill for coordinating perception and conception. In Proceedings of the Cognitive Science Society Meetings.

    Google Scholar 

  135. Suwa, M., Tversky, B., Gero, J., & Purcell, T. (2001). Seeing into sketches: Regrouping parts encourages new interpretations. In J. S. Gero, B. Tversky, & T. Purcell (Eds.), Visual and spatial reasoning in design(pp. 207–219). Sydney, Australia: Key Centre of Design Computing and Cognition.

    Google Scholar 

  136. Talmy, L. (1983). How language structures space. In H. L. Pick Jr & L. P. Acredolo (Eds.), Spatial orientation: Theory, research and application (pp. 225–282). New York: Plenum.

    Google Scholar 

  137. Talmy, L. (2000). Toward a cognitive semantics, Vols 1 & 2. Cambridge, MA: MIT Press.

    Google Scholar 

  138. Taylor, H. A., & Tversky, B. (1992a). Descriptions and depictions of environments. Memory and Cognition, 20, 483–496.

    Google Scholar 

  139. Taylor, H. A., & Tversky, B. (1992b). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31, 261–282.

    Google Scholar 

  140. Taylor, H. A., & Tversky, B. (1997). Indexing events in memory: Evidence for index preferences. Memory, 5, 509–542.

    Google Scholar 

  141. Tolchinsky-Landsmann, L., & Levin, I. (1987). Writing in four- to six-year-olds: Representation of semantic and phonetic similarities and differences. Journal of Child Language, 14, 127–144.

    Google Scholar 

  142. Tomasello, M. (2008). Origins of human communication. Cambridge, MA: MIT Press.

    Google Scholar 

  143. Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.

    Google Scholar 

  144. Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics Press.

    Google Scholar 

  145. Tufte, E. R. (1997). Visual explanations. Cheshire, CT: Graphics Press.

    MATH  Google Scholar 

  146. Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13, 407–433.

    Google Scholar 

  147. Tversky, B. (1995). Cognitive origins of graphic conventions. In F. T. Marchese (Ed.), Understanding images (pp. 29–53). New York: Springer-Verlag.

    Google Scholar 

  148. Tversky, B. (2000). Some ways that maps and graphs communicate. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition II: Integrating abstract theories, empirical studies, formal methods, and practical applications (pp. 72–79). New York: Springer.

    Google Scholar 

  149. Tversky, B. (2001). Spatial schemas in depictions. In M. Gattis (Ed.), Spatial schemas and abstract thought (pp. 79–111). Cambridge, MA: MIT Press.

    Google Scholar 

  150. Tversky, B. (2003). Navigating by mind and by body. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial Cognition III: Routes and navigation, human memory and learning, spatial representation and spatial reasoning (pp. 1–10). Berlin: Springer Verlag.

    Google Scholar 

  151. Tversky, B. (2004). Semantics, syntax, and pragmatics of graphics. In K. Holmqvist & Y. Ericsson (Eds.), Language and visualisation (pp. 141–158). Lund, Sweden: Lund University Press.

    Google Scholar 

  152. Tversky, B. (2005). Functional significance of visuospatial representations. In P. Shah & A. Miyake (Eds.), Handbook of higher-level visuospatial thinking (pp. 1–34). Cambridge, England: Cambridge University Press.

    Google Scholar 

  153. Tversky, B., Agrawala, M., Heiser, J., Lee, P. U., Hanrahan, P., Phan, D., Stolte, C., & Daniele, M.-P. (2007). Cognitive design principles for generating visualizations. In G. Allen (Ed.), Applied spatial cognition: From research to cognitive technology (pp. 53–73). Mahwah, NJ: Erlbaum.

    Google Scholar 

  154. Tversky, B., Corter, J. E., Nickerson, J. V., Zahner, D., & Rho, Y. J. (2008a). Transforming descriptions and diagrams to sketches in information system design. In G. Stapleton, J. Howse, & J. Lee (Eds.), Theory and application of diagrams. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  155. Tversky, B., Heiser, J., Lee, P., & Daniel, M.-P. (2009). Explanations in gesture, diagram, and word. In K. R. Coventry, T. Tenbrink, & J. A. Bateman (Eds.), Spatial language and dialogue (pp. 119–131). Oxford, England: Oxford University Press.

    Google Scholar 

  156. Tversky, B., Heiser, J., Lozano, S., MacKenzie, R., & Morrison, J. (2007). Enriching animations. In R. Lowe & W. Schnotz (Eds.), Learning with animation. Cambridge, England: Cambridge University Press.

    Google Scholar 

  157. Tversky, B., Kugelmass, S., & Winter, A. (1991). Cross-cultural and developmental trends in graphic produc- tions. Cognitive Psychology, 23, 515–557.

    Google Scholar 

  158. Tversky, B., & Lee, P. U. (1998). How space structures language. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition: An interdisciplinary approach to representation and processing of spatial knowledge (pp. 157–175). Berlin: Springer-Verlag.

    Google Scholar 

  159. Tversky, B., & Lee, P. U. (1999). Pictorial and verbal tools for conveying routes. In C. Freksa & D. M. Mark (Eds.), Spatial information theory: Cognitive and computational foundations of geographic information science (pp. 51–64). Berlin: Springer.

    Google Scholar 

  160. Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247–262.

    Google Scholar 

  161. Tversky, B., & Suwa, M. (2009). Thinking with sketches. In A. Markman (Ed.), Tools for innovation. Oxford, England: Oxford University Press.

    Google Scholar 

  162. Tversky, B., Suwa, M., Agrawala, M., Heiser, J., Stolte, C., Hanrahan, P., Phan, D., Klingner, J., Daniel, M.-P., Lee, P., & Haymaker, J. (2003). Sketches for design and design of sketches. In U. Lindemann (Ed.), Human behavior in design: Individuals, teams, tools (pp. 79–86). Berlin: Springer.

    Google Scholar 

  163. Tversky, B., Zacks, J. M., & Hard, B. M. (2008). The structure of experience. In T. Shipley & J. M. Zacks (Eds.), Understanding events. (pp. 436–464). Oxford, England: Oxford University.

    Google Scholar 

  164. Tversky, B., Zacks, J., Lee, P. U., & Heiser, J. (2000). Lines, blobs, crosses, and arrows: Diagrammatic commu- nication with schematic figures. In M. Anderson, P. Cheng, & V. Haarslev (Eds.), Theory and application of diagrams (pp. 221–230). Berlin: Springer.

    Google Scholar 

  165. Vaid, J., & Singh, M. (1989). Asymmetries in the perception of facial effects: Is there an influence of reading habits? Neuropsychologia, 27, 1277–1286.

    Google Scholar 

  166. Vaid, J., Singh, M., Sakhuja, T., & Gupta, G. C. (2002). Stroke direction asymmetry in figure drawing: Influence of handedness and reading ⁄ writing habits. Brain and Cognition, 48, 597–602.

    Google Scholar 

  167. Wainer, H. (1992). Understanding graphs and tables. Educational Researcher, 21, 14

    Google Scholar 

  168. Walton, K. (1990). Mimesis as make-believe. Cambridge, MA: Harvard University Press.

    Google Scholar 

  169. Ware, C. (2008). Visual thinking for design. Burlington, MA: Morgan Kaufman.

    Google Scholar 

  170. Westendorp, P., & van der Waarde, K. (2000 ⁄ 2001). Icons: Support or substitute? Information Design Journal, 10, 91–94.

    Google Scholar 

  171. Wiesner, D. (2001). The three pigs. New York: Clarion.

    Google Scholar 

  172. Wilkins, D. P. (1997). Alternative representations of space: Arrernte narratives in sand and sign. In M. Biermans & J.v.d. Weijer (Eds.), Proceedings of the CLS opening academic year 1997–1998 (pp. 133–162). Nijmegen, The Netherlands: Nijmegen ⁄ Tilburg Center for Language Studies.

    Google Scholar 

  173. Winn, W. D. (1987). Charts, graphs and diagrams in educational materials. In D. M. Willows & H. A. Haughton (Eds.), The psychology of illustration. New York: Springer-Verlag.

    Google Scholar 

  174. Woodward, D., & Lewis, G. M. (1998). History of cartography. Vol. 2. Book 3: Cartography in the traditional Africa, America, Arctic, Australian, and Pacific societies. Chicago: University of Chicago Press.

    Google Scholar 

  175. Zacks, J., Levy, E., Tversky, B., & Schiano, D. J. (1998). Reading bar graphs: Effects of depth cues and graphical context. Journal of Experimental Psychology: Applied, 4, 119–138.

    Google Scholar 

  176. Zacks, J., & Tversky, B. (1999). Bars and lines: A study of graphic communication. Memory and Cognition, 27, 1073–1079

    Google Scholar 

  177. Zacks, J., & Tversky, B. (2001). Event structure in perception and conception. Psychological Bulletin, 127, 3–21.

    Google Scholar 

  178. Zacks, J., Tversky, B., & Iyer, G. (2001). Perceiving, remembering and communicating structure in events. Journal of Experimental Psychology: General, 136, 29–58.

    Google Scholar 

  179. Zebian, S. (2005). Linkages between number, concepts, spatial thinking, and directionality of writing: The SNARC effect and the REVERSE SNARC effect in English and monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5, 165–190.

    Google Scholar 

Download references

Acknowledgments

The author is indebted to many colleagues, collaborators, and commentators, including Maneesh Agrawala, Jon Bresman, Herb Clark, Danny Cohen, Jim Corter, Stu Card, Felice Frankel, Nancy Franklin, Pat Hanrahan, Mary Hegarty, Julie Heiser, Angela Kessell, Paul Lee, Julie Morrison, Jeff Nickerson, Jane Nisselson, Laura Novick, Ben Shneiderman, Penny Small, Masaki Suwa, Holly Taylor, Jeff Zacks, and Doris Zahner. The author is also indebted to the following grants for facilitating the research and⁄or preparing the manu- script: National Science Foundation HHC 0905417, IIS-0725223, IIS-0855995, and REC 0440103, the Stanford Regional Visualization and Analysis Center, and Office of Naval Research NOOO14-PP-1-O649, N000140110717, and N000140210534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Tversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tversky, B. (2014). Visualizing Thought. In: Huang, W. (eds) Handbook of Human Centric Visualization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7485-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7485-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7484-5

  • Online ISBN: 978-1-4614-7485-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics