Skip to main content

Neuropathologies and Networks

  • Living reference work entry
  • First Online:
  • 172 Accesses

Synonyms

Network disorders

Definition

Brain disorders often coincide with changes in the white and gray matter organization. When we view the gray matter brain regions as nodes of a network, the white matter fiber tracts become the edges. Changes in the nodes or edges of a network can be a sign of brain network disorders. Edge changes might affect spatial features such as the distance between connected nodes or the three-dimensional trajectory of fibers and topological features such as the fiber strength given by the extent of myelination or the thickness of fiber tracts. Such local changes can affect the global modular hierarchical, small-world, or rich-club organization.

Detailed Description

Types of Brain Networks

For brain networks, nodes could be neurons or cortical areas and edges could be axons or fiber tracts. Thus, edges could refer to the structural connectivityof a neural network. Alternatively, edges could signify correlations between the activity patterns of nodes...

This is a preview of subscription content, log in via an institution.

References

  • Alexander-Bloch AF, Vertes PE, Stidd R, Lalonde F, Clasen L, Rapoport J, Giedd J, Bullmore ET, Gogtay N (2013) The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb Cortex 23:127–138

    Google Scholar 

  • Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohr IJ, Kenny E, Blamire A, O’Brien JT, Thomas A, Richardson J, Kaiser M (2013) Resting-state functional connectivity in late-life depression: higher global connectivity and more long distance connections. Front Psychiatr 3:116

    Article  Google Scholar 

  • Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424

    Article  CAS  PubMed  Google Scholar 

  • Chavez M, Valencia M, Navarro V, Latora V, Martinerie J (2010) Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett 104:118701

    Article  CAS  PubMed  Google Scholar 

  • Collin G, Sporns O, Mandl RC, van den Heuvel MP (2013) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex doi: 10.1093/cercor/bht064, http://cercor.oxfordjournals.org/content/early/2013/04/02/cercor.bht064.abstract

  • de Haan W, Pijnenburg YAL, Strijers RLM, van der Made Y, van der Flier WM, Scheltens P, Stam CJ (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci 10:101

    Article  PubMed Central  PubMed  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    Article  PubMed  Google Scholar 

  • Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99:7821–7826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2:e22

    Article  PubMed Central  PubMed  Google Scholar 

  • Hilgetag CC, Burns GAPC, O’Neill MA, Scannell JW, Young MP (2000a) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B 355:91–110

    Article  CAS  Google Scholar 

  • Hilgetag CC, O’Neill MA, Young MP (2000b) Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond B 355:71–89

    Article  CAS  Google Scholar 

  • Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57:892–907

    Article  PubMed  Google Scholar 

  • Kaiser M, Görner M, Hilgetag CC (2007) Functional criticality in clustered networks without inhibition. New J Phys 9:110

    Article  Google Scholar 

  • Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2:e95

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front Neuroinform 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC, van Ooyen A (2009) A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cereb Cortex 19:3001–3010

    Article  PubMed  Google Scholar 

  • Kaiser M, Varier S (2011) Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. Network Comput Neural 22:143–147

    Google Scholar 

  • Laughlin SB, de Ruyter Van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain 131:945–961

    Article  PubMed  Google Scholar 

  • Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200

    Article  PubMed Central  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66

    Article  PubMed  Google Scholar 

  • Milgram S (1967) The small-world problem. Psychol Today 1:60–67

    Google Scholar 

  • Mishra AM, Bai H, Gribizis A, Blumenfeld H (2011) Neuroimaging biomarkers of epileptogenesis. Neurosci Lett 497:194–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  CAS  PubMed  Google Scholar 

  • Raj A, Kuceyeski A, Weiner M (2012) A network diffusion model of disease progression in dementia. Neuron 73:1204–1215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331

    Article  PubMed  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  • Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS One 2:e1049

    Article  PubMed Central  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  CAS  PubMed  Google Scholar 

  • Vaessen MJ, Braakman HM, Heerink JS, Jansen JF, Debeij-van Hall MH, Hofman PA, Aldenkamp AP, Backes WH (2013) Abnormal modular organization of functional networks in cognitively impaired children with frontal lobe epilepsy. Cereb Cortex 23:1997–2006

    Google Scholar 

  • van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA 109:11372–11377

    Google Scholar 

  • van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29:7619–7624

    Article  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-World’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Woodward ND, Rogers B, Heckers S (2011) Functional resting-state networks are differentially affected in schizophrenia. Schizophr Res 130:86–93

    Google Scholar 

  • Xie T, He Y (2011) Mapping the Alzheimer’s brain with connectomics. Front Psychiatr/Front Res Found 2:77

    Google Scholar 

  • Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1

    PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q, Lu G (2011) Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134:2912–2928

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kaiser, M. (2014). Neuropathologies and Networks. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_740-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_740-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics