Skip to main content

Network Theory in Neuroscience

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:17

    Google Scholar 

  • Achard S, Duke T, Bullmore E (2006a) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 103:19518–19523

    PubMed Central  PubMed  Google Scholar 

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006b) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72

    PubMed  CAS  Google Scholar 

  • Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    PubMed  CAS  Google Scholar 

  • Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore ET (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147

    PubMed Central  PubMed  Google Scholar 

  • Amaral LAN, Scala A, Barthélemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci U S A 97:11149–11152

    PubMed Central  PubMed  CAS  Google Scholar 

  • Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96:114102

    PubMed  Google Scholar 

  • Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469:93–153

    Google Scholar 

  • Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bassett DS, Bullmore ET, Verchinksi BA, Mattay VS, Weinberger DR et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput Biol 6:e1000748

    PubMed Central  PubMed  Google Scholar 

  • Bassett DS, Wymbs N, Porter MA, Mucha P, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108:7641–7646

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bialonski S (2012) Inferring complex networks from time series of dynamical systems: pitfalls, misinterpretations, and possible solutions. arxiv:1208.0800

    Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    Google Scholar 

  • Boersma M, Smit DJ, de Bie HM, Van Baal GC, Boomsma DI, de Geus EJ, Delemarre-van de Waal HA, Stam CJ (2011) Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp 32:413–425

    PubMed  Google Scholar 

  • Breakspear M (2002) Nonlinear phase desynchronization in human electroencephalographic data. Hum Brain Mapp 15:175–198

    PubMed  Google Scholar 

  • Büchel C, Friston KJ (2000) Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13:871–882

    PubMed  Google Scholar 

  • Bucolo M, Fazzino S, La Rosa M, Fortuna L (2003) Small-world networks of fuzzy chaotic oscillators. Chaos Solitons Fractals 17:557–565

    Google Scholar 

  • Buldú JM, Bajo R, Maestú F, Castellanos N, Leyva I, Gil P, Sendiña-Nadal I, Almendral JA, Nevado A, del Pozo F, Boccaletti S (2011) Reorganization of functional networks in mild cognitive impairment. PLoS One 6:e19584

    PubMed Central  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–348

    PubMed  CAS  Google Scholar 

  • Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18:2374–2381

    PubMed Central  PubMed  Google Scholar 

  • Cohen R, Havlin S (2010) Complex networks: structure, robustness, and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting richclub ordering in complex networks. Nat Phys 2:110–115

    CAS  Google Scholar 

  • De Vico Fallani F, Latora V, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Colosimo A, Babiloni F (2008) Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. J Phys A 41:224014

    Google Scholar 

  • Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S, Fotopoulos S (2010) Tracking brain dynamics via time-dependent network analysis. J Neurosci Methods 193:145–155

    PubMed  Google Scholar 

  • Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    PubMed  Google Scholar 

  • Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    PubMed  CAS  Google Scholar 

  • Fletcher P, McKenna J, Friston K, Frith C, Dolan R (1999) Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage 9:337–342

    PubMed  CAS  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174

    Google Scholar 

  • Friston KJ (2000) The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B 355:215–236

    CAS  Google Scholar 

  • Gallos LK, Makse HA, Sigman M (2012) A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc Natl Acad Sci USA 109:2825–2830

    PubMed Central  PubMed  CAS  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536

    PubMed Central  PubMed  Google Scholar 

  • Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    PubMed Central  PubMed  Google Scholar 

  • Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2:e597

    PubMed Central  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    PubMed Central  PubMed  Google Scholar 

  • Harriger L, van den Heuvel M, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One 7:e46497

    PubMed Central  PubMed  CAS  Google Scholar 

  • He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419

    PubMed  Google Scholar 

  • Hilgetag CC, Burns GAPC, O’Neill MA, Scannell JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B 355:91–110

    CAS  Google Scholar 

  • Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3:e0002051

    PubMed  Google Scholar 

  • Hutchison RW, Womelsdorf T, Gati JS, Everling S, Menon RS (2012) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34:2154–2177

    PubMed  Google Scholar 

  • Iturria-Medina Y, Canales-Rodríguez EJ, Melie-García L, Valdés-Hernández PA, Martínez-Montes E, Alemán-Gómez Y, Sánchez-Bornot JM (2007) Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36:645–660

    PubMed  CAS  Google Scholar 

  • Jirsa VK, Kelso JAS (2000) Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E 62:8462–8465

    CAS  Google Scholar 

  • Just M, Cherkassky V, Keller TA, Minshew N (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821

    PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2004) Edge vulnerability in neural and metabolic networks. Biol Cybern 90:311–317

    PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long- distance projections in neural systems. PLoS Comput Biol 2:e95

    PubMed Central  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front Neuroinform 4:8

    PubMed Central  PubMed  Google Scholar 

  • Kaiser M, Martin R, Andreas P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192

    PubMed  Google Scholar 

  • Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31:8259–8270

    PubMed  CAS  Google Scholar 

  • Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761

    PubMed  CAS  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    PubMed  CAS  Google Scholar 

  • Laughlin SB, Sejnowski TJ (2003) Communication in neural networks. Science 301:1870–1874

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, Liu Q, Zeng S, Luo Q (2010) Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330:1404–1408

    PubMed  CAS  Google Scholar 

  • Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473:167–173

    PubMed  CAS  Google Scholar 

  • Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore ET (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487

    PubMed Central  PubMed  CAS  Google Scholar 

  • Menzies L, Achard S, Chamberlain SR, Fineberg N, Chen CH, del Campo N, Sahakian BJ, Robbins TW, Bullmore E (2007) Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain 130:3223–3236

    PubMed  Google Scholar 

  • Meunier D, Lambiotte R, Fornito A, Ersche K, Bullmore ET (2009a) Hierarchical modularity in human brain functional networks. Front Neuroinform 3:37

    PubMed Central  PubMed  Google Scholar 

  • Meunier D, Achard S, Morcom A, Bullmore ET (2009b) Age-related changes in modular organization of human brain functional networks. Neuroimage 44:715–723

    PubMed  Google Scholar 

  • Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200

    PubMed Central  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66

    PubMed  Google Scholar 

  • Milgram S (1967) The small-world problem. Psychol Today 1:61–67

    Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    PubMed  CAS  Google Scholar 

  • Miltner WHR, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis of associative learning. Nature 397:434–436

    PubMed  CAS  Google Scholar 

  • Netoff TI, Clewley R, Arno S, Keck T, White JA (2004) Epilepsy in small-world networks. J Neurosci 24:8075–8083

    PubMed  CAS  Google Scholar 

  • Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    PubMed  CAS  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256

    Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8696

    PubMed Central  PubMed  CAS  Google Scholar 

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, New York

    Google Scholar 

  • Pan RK, Chatterjee N, Sinha S (2010) Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system. PLoS One 5:e9240

    PubMed Central  PubMed  Google Scholar 

  • Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118:918–927

    PubMed  CAS  Google Scholar 

  • Radicchi F, Ramasco JJ, Barrat A, Fortunato S (2008) Complex networks renormalization: flows and fixed points. Phys Rev Lett 101:148701

    PubMed  Google Scholar 

  • Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397:430–433

    PubMed  CAS  Google Scholar 

  • Rozenfeld HD, Song C, Makse HA (2010) The small world-fractal transition in complex networks: a renormalization group approach. Phys Rev Lett 104:025701

    PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    PubMed  Google Scholar 

  • Sales-Pardo M, Guimerà R, Moreira AA, Amaral LAN (2007) Extracting the hierarchical organization of complex systems. Proc Natl Acad Sci USA 104:15224–15229

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342

    PubMed  Google Scholar 

  • Sarpeshkar R (1997) Efficient precise computation with noisy components: extrapolating from an electronic cochlea to the brain. Unpublished doctoral dissertation, California Institute of Technology

    Google Scholar 

  • Scannell JW, Burns GAPC, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299

    PubMed  CAS  Google Scholar 

  • Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K (2008) Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18:033119

    PubMed  Google Scholar 

  • Shanahan M (2012) The brain’s connective core and its role in animal cognition. Philos Trans R Soc B 367:2704–2714

    Google Scholar 

  • Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological characterization of in vitro neuronal networks. Phys Rev E 66:021905

    Google Scholar 

  • Singer W (1995) Putative functions of temporal correlations in neocortical processing. In: Koch C, Davis J (eds) Large-scale neuronal theories of the brain. MIT Press, Cambridge, pp 202–237

    Google Scholar 

  • Song C, Havlin S, Makse HA (2005) Self-similarity of complex networks. Nature 433:392–395

    PubMed  CAS  Google Scholar 

  • Song C, Havlin S, Makse HA (2006) Origins of fractality in the growth of complex networks. Nat Phys 2:275–281

    CAS  Google Scholar 

  • Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2:1910–1918

    CAS  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    PubMed  CAS  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74

    PubMed  CAS  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    PubMed  Google Scholar 

  • Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS One 2:e1049

    PubMed Central  PubMed  Google Scholar 

  • Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123:1067–1087

    PubMed  CAS  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    PubMed  CAS  Google Scholar 

  • Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224

    PubMed  CAS  Google Scholar 

  • Stephan KE, Friston KJ (2007) Models of effective connectivity in neural systems. In: Jirsa VK, McIntosh AR (eds) Handbook of brain connectivity. Springer, Berlin, pp 303–325

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–271

    PubMed  CAS  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure, of brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tononi G, Edelman GM, Sporns O (1998) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484

    PubMed  CAS  Google Scholar 

  • Valencia M, Martinerie J, Dupont S, Chavez M (2008) Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys Rev E 77:050905(R)

    Google Scholar 

  • Van den Heuvel MP, Starn CJ, Boersma M, Hulshoff Pol HE (2008) Small-world and scale-free organization of voxel based resting-state functional connectivity in the human brain. Neuroimage 43:528–539

    PubMed  Google Scholar 

  • Van den Heuvel MP, Kahn R, Goni J, Sporns O (2012) A high-cost, high efficiency backbone for global brain communication. Proc Natl Acad Sci USA 109:11372–11377

    PubMed Central  PubMed  Google Scholar 

  • van Putten MJAM, Stam CJ (2001) Application of a neural complexity measure to multichannel EEG. Phys Lett A 281:131–141

    Google Scholar 

  • Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001066

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vértes PE, Alexander-Bloch AF, Gogtay N, Giedd JN, Rapoport JL, Bullmore ET (2012) Simple models of human brain functional networks. Proc Natl Acad Sci USA 109:5868–5873

    PubMed Central  PubMed  Google Scholar 

  • Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    PubMed  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B 314:1–340

    CAS  Google Scholar 

  • Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal synchrony. Cereb Cortex 18:2891–2901

    PubMed Central  PubMed  Google Scholar 

  • Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1

    PubMed Central  PubMed  Google Scholar 

  • Zanin M, Sousa P, Papo D, Bajo R, García-Prieto J, del Pozo F, Menasalvas E, Boccaletti S (2012) Optimizing functional network representation of multivariate time series. Sci Rep 2:630

    PubMed Central  PubMed  Google Scholar 

  • Zhou C, Zemanová L, Zamora G, Hilgetag CC, Kurths J (2006) Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 97:238103

    PubMed  Google Scholar 

Further Reading

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    PubMed  Google Scholar 

  • Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424

    PubMed  CAS  Google Scholar 

  • Braitenberg V, Schüz A (1998) A statistics and geometry of neuronal connectivity. Springer, Berlin

    Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    PubMed  CAS  Google Scholar 

  • Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331

    PubMed  Google Scholar 

  • Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Papo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Papo, D., Buldú, J.M., Boccaletti, S. (2014). Network Theory in Neuroscience. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_713-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_713-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics