Skip to main content

Dealing with Environmental Stresses: Role of Polyamines in Stress Responses

  • Chapter
  • First Online:
Crop Improvement

Abstract

Extreme environmental conditions including drought, high- and low-temperatures, high salinity, mineral deficiency and heavy metal toxicity severely affect crop loss worldwide. Improvement of plants for enhanced resistance to adverse climatic conditions is a key issue in sustainable crop production, strengthening the global food safety. Understanding stress tolerance mechanisms of plants are a prime importance in crop improvement. Among the array of components involved, plant polyamines (PAs) are identified as one such group of components that play an important role in diverse environmental stress responses. PAs are small organic cations containing two or more amino groups. These are growth regulators present widely in all living organisms with varying quantities ranging from micromolar to milimolar. In plants, the most abundantly found PAs are di-amine putrescine, tri-amine spermidine and tetra-amine spermine. Accumulation of long chain and conjugated forms of PA occur under some environmental and growth conditions. Biosynthesis, transport, degradation and conjugation determine the level of PAs and vary throughout a plant life cycle. Catabolism of PAs by amine oxidases is trivial in the regulation of cellular levels of PAs. Apart from the essential functions in growth and development, PAs play a key role in environmental stress responses such as drought, chilling, salinity, mineral deficiencies such as potassium, nitrogen and magnesium deficiency, heavy metal toxicity, mechanical injuries and defence signalling against pathogens. Differential transcriptional regulation of several stress-related genes in PA-overexpressed transgenic plants suggests potential signalling function of PAs in stress responses. Genetic manipulation of crop plants for altered regulation of PA biosynthesis/catabolism may lead to improved stress tolerance potential. This article summarizes the recent findings on the involvement of PAs in abiotic stress responses in plants and possible means of manipulating PAs in the crop plants for enhanced stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcázar R, Cuevas JC, Patrόn M, Altabella T, Tiburcio AF (2006a) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    Article  CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patrόn M, Fernando P, Carraso A, Tiburcio AF, Altabella T (2006b) Involvement of polyamines in plant responses to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas JC, Bitrian M, Tiburcio AF, Altabella T (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    Article  CAS  Google Scholar 

  • Alcázar R, Bitrian M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250

    Article  PubMed  CAS  Google Scholar 

  • Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  PubMed  CAS  Google Scholar 

  • An LZ, Liu GX, Zhang MX, Chen T, Liu YH, Feng HY, Xu SJ, Qiang WY, Wang XL (2004) Effect of enhanced UV-B radiation on polyamine content and membrane permeability in cucumber leaves. Russ J Plant Physiol 51:658–662

    Article  CAS  Google Scholar 

  • An Z, Jing W, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    Article  PubMed  CAS  Google Scholar 

  • Angelini R, Tisi A, Rea G, Chen MM, Botta M, Federico R, Cona A (2008) Involvement of polyamine oxidase in wound healing. Plant Physiol 146:162–177

    Article  PubMed  CAS  Google Scholar 

  • Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher LF (1997) Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. Plant Growth Regul 21:153–163

    Article  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  PubMed  CAS  Google Scholar 

  • Basu R, Ghosh B (1991) Polyamines in various rice genotypes with respect to NaCl salinity. Physiol Plant 82:575–581

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Comba ME, TomaroML (2000) Relationship between polyamines and paraquat toxicity in sunflower leaf discs. Plant Growth Regul 31:215–224

    Article  CAS  Google Scholar 

  • Bertoldi D, Tassoni A, Martinelli L, Bagni N (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    Article  PubMed  CAS  Google Scholar 

  • Borrell A, Culiañez-Macià FA, Altabella T, Besford RT, Flores D, Tiburcio AF (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109:771–776

    PubMed  CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann JH (1989) Polyamine as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Bortolotti C, Cordeiro A, Alcazar R, Borrell A, Culiañez-Macià FA, Tiburcio AF, Altabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120:84–92

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Buchanan B, Gruissem W, Jones R (2000) Biochemistry and molecular biology in plants. American Society of Plant Physiologists, Maryland, pp 1–90

    Google Scholar 

  • Camacho-Cristóbal JJ, Maldonado JM, Gonzláez-Fontes A (2005) Boron deficiency increases putrescine levels in tobacco plants. J Plant Physiol 162:921–928

    Article  PubMed  CAS  Google Scholar 

  • Campestre MP, Bordenave CD, Origone AC, Menéndez AB, Ruiz OA, Rodríguez AA, Maiale SJ (2011) Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. J Plant Physiol 168:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Capell T, Escobar C, Liu H, Burtin D, Lepri O, Christou P (1998) Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Gen 97:246–254

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 10:9909–9914

    Article  Google Scholar 

  • Cervelli M, Cona A, Angelini R, Polticelli F, Federico R, Mariottini P (2001) A barley polyamine oxidase isoform with distinct structural features and subcellular localization. Eur J Biochem 268:3816–3830

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhayay MK, Tiwari BS, Chattopadhayay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Zou YJ, Ding SL, Zhang JJ, Yu XL, Cao JS, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Sun RR, Wang FY, Peng Z, Kong FL, Wu J, Cao JS, Lu G (2012) Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. J Zhejiang Univ Sci B 13:283–297

    Article  PubMed  CAS  Google Scholar 

  • Choudhary A, Singh RP (2000) Cadmium-induced changes in diamine oxidase activity and polyamine levels in Vigna radiata Wilczek seedlings. J Plant Physiol 156:704–710

    Article  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defense. Trends Plant Sci 11:80–88

    Article  PubMed  CAS  Google Scholar 

  • Cowley T, Walters DR (2005) Local and systemic changes in arginine decarboxylase activity, putrescine levels and putrescine catabolism in wounded oilseed rape. New Phytol 165:807–811

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220

    Article  PubMed  CAS  Google Scholar 

  • Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R (2012) Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Sci 182:49–58

    Article  PubMed  CAS  Google Scholar 

  • Delis D, Dimou M, Flemetakis IE, Aivalakis G, Katinakis P (2006) A root- and hypocotyl-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings. J Exp Bot 57:101–111

    Article  PubMed  CAS  Google Scholar 

  • Durmus N, Kadioglu A (2005) Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiol Plant 27:515–522

    Article  CAS  Google Scholar 

  • El-Shintinawy F (2000) Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica 38:615–620

    Article  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  PubMed  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  PubMed  CAS  Google Scholar 

  • Grene R (2002) Oxidative stress and acclimation mechanisms in plants. In Arabidopsis Book. American Society of Plant Biologists, Rockville, pp 1–20

    Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci 164:293–299

    Article  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  PubMed  CAS  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  PubMed  CAS  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  PubMed  CAS  Google Scholar 

  • Hassannejad S, Bernard F, Mirzajani F, Gholami M (2012) SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol Biochem 51:40–46

    Article  PubMed  CAS  Google Scholar 

  • He L, Nada K, Tachibana S (2002) Effects of spd pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). J Jpn Soc Hort Sci 71:490–498

    Article  CAS  Google Scholar 

  • Houdusse F, Zamarreno AM, Garnica M, Garcia-Mina J (2005) The importance of nitrate in ameliorating the effects of ammonium and urea nutrition on plant development: the relationships with free polyamines and plant proline contents. Func Plant Biol 32:1057–1067

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, Zhang H, Zhao J (2012) Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress. Plant Physiol Biochem 57:200–209

    Article  PubMed  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  PubMed  CAS  Google Scholar 

  • Imai R, Ali A, Pramanik MDHR, Nakaminami K, Sentoku N, Kato H (2004) A distinctive class of spermidine synthase is involved in chilling response in rice. J Plant Physiol 161:883–886

    Article  PubMed  CAS  Google Scholar 

  • Janowitz T, Kneifel H, Piotrowski M (2003) Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett 544:258–261

    Article  PubMed  CAS  Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Biol Plant 43:1–11

    Article  CAS  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants-a changing perspective. Physiol Plant 116:281–292

    Article  CAS  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I , Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kaunisto S, Sarjala T (1997) Critical needle potassium concentrations indicated by diamine putrescine in Norway spruce growing on peat soils. Silva Fennica 31:383–390

    Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  PubMed  CAS  Google Scholar 

  • Kubis J, Krzywanski Z (1989) The dynamics of polyamine accumulation in spring wheat leaves during increasing water stress. Acta Physiol Plant 11:157–164

    CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CR, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007a) Advances in polyamine research. J Plant Res 120:345–350

    Article  CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007b) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:251–252

    Article  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Kuthanová A, Gemperlová L, Zelenková S, Eder J, Macháčková I, Opatrný Z, Cvikrová M (2004) Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiol Biochem 42:149–156

    Article  PubMed  CAS  Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H Jr (1991) Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95:882–889

    Article  PubMed  CAS  Google Scholar 

  • Lee YP, Babakov A, de Boer B, Zuther E, Hincha DK (2012) Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions. BMC Plant Biol 12:131

    Article  PubMed  CAS  Google Scholar 

  • Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162:662–668

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, Chen SY (2000) Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theor Appl Genet 100:782–788

    Article  CAS  Google Scholar 

  • Lie K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    Article  Google Scholar 

  • Lin CH, Kao CH (1999) Excess copper induces an accumulation of putrescine in rice leaves. Bot Bull Acad Sin 40:213–218

    CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci 160:323–329

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Huihua F, Bei O, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotech 24:117–126

    Article  CAS  Google Scholar 

  • Løvaas E (1997) Antioxidative and metal-chelating effects of polyamines. Adv Pharmacol 38:119–149

    Article  PubMed  Google Scholar 

  • Lutz C, Navakoudis E, Seidlitz HK, Kotzabasis K (2005) Simulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine changes for UV-B protection. Biochim Biophys Acta 1710:24–33

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP, Clair SB (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Research 90:101–115

    Article  Google Scholar 

  • Marco F, Alcázar R, Tiburcio AF, Carrasco P (2011) Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS 15:775–781

    Article  PubMed  CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Reg 34:135–148

    Article  CAS  Google Scholar 

  • Michael AJ, Furze JM, Rhodes MJC, Burtin D (1996) Molecular cloning and functional identifcation of a plant ornithine decarboxylase cDNA. Biochem J 314:241–248

    PubMed  CAS  Google Scholar 

  • Moller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13:781–791

    Article  PubMed  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008a) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008b) Plant polyamine catabolism: The state of the art. Plant Signal Behav 3:1061–1066

    Article  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008c) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamineoxidase responsible for a fullback-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  CAS  Google Scholar 

  • Mutlu F, Bozcuk S (2005) Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance. Russ J Plant Physiol 52:29–34

    Article  CAS  Google Scholar 

  • Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferruzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045

    Article  PubMed  CAS  Google Scholar 

  • Nayyar H (2005) Putrescine increases floral retention, pod set and seed yield in cold stressed chickpea. J Agron Crop Sci 191:340–345

    Article  CAS  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur S, Singh S, Kumar S, Singh KJ, Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max L. Merrill.) to water deficit stress. Bot Bull Acad Sin 46:333–338

    CAS  Google Scholar 

  • Oracz K, Bouteau HM, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    Article  PubMed  CAS  Google Scholar 

  • Panicot M, Minguet EG, Ferrando A, Alcázar R, Blázquez MA, Carbonell J, Altabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropyl transferases complexes in Arabidopsis. Plant Cell 14:2539–2551

    Article  PubMed  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression and vascular development. Plant Physiol 138:2174–2184

    Article  PubMed  CAS  Google Scholar 

  • Perez-Amador MA, Leόn J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound responses in Arabidopsis. Plant Physiol 130:1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Petrivalský M, Brauner F, Luhová L, Gagneul D, Sebela M (2007) Aminoaldehyde dehydrogenase activity during wound healing of mechanically injured pea seedlings. J Plant Physiol 164:1410–1418

    Article  PubMed  CAS  Google Scholar 

  • Pieruzzi FP, Dias LL, Balbuena TS, Santa-Catarina C, dos Santos AL, Floh EI (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345

    Article  PubMed  CAS  Google Scholar 

  • Piotrowski M, Janowitz T, Kneifel H (2003) Plant C–N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J Biol Chem 278:1708–1712

    Article  PubMed  CAS  Google Scholar 

  • Raab MM, Weinstein LH (1990) Polyamine and ethylene metabolism in Triticum aestivum (var. vona). In HE Flores, RN Arteca, JC Shannon (eds) Polyamines and ethylene: biochemistry, physiology, and interactions. American Society of Plant Physiologists, Rockville, pp 408–410

    Google Scholar 

  • Rea R, Laurenzi M, Tranquili E, D’Ovidio R, Federico R, Angelini R (1998) Developmentally and wound-regulated expression of the gene encoding a cell wall copper amine oxidase in chickpea seedlings. FEBS Lett 23:177–182

    Article  Google Scholar 

  • Rea R, Metoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defence responses to wounding and Ascochyta rabiei invasion. Plant Physiol 128:865–875

    Article  PubMed  CAS  Google Scholar 

  • Renaut J, Hoffmann L, Hausman JF (2005) Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol Plant 125:82–94

    Article  CAS  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    Article  PubMed  CAS  Google Scholar 

  • Rowland-Bamford AJ, Borland AM, Lea PJ, Mansfield TA (1989) The role of arginine decarboxylase in modulating the sensitivity of barley to ozone. Environ Pollut 61:95–106

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Ghosh, B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol Plant 98:196–200

    Article  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  PubMed  CAS  Google Scholar 

  • Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+ -ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gόmez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sarjala T, Kaunisto S (2002) Potassium nutrition and free polyamines of Betula pendula Roth and Betula pubescens Ehrh. Plant Soil 238:141–149

    Article  Google Scholar 

  • Sebela M, Radová A, Angellini R, Tavladoraki P, Frébort I, Pec P (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207

    Article  PubMed  CAS  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193–194:130–135

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–440

    Article  PubMed  CAS  Google Scholar 

  • Shevyakova NI, Il’ina EN, Stetsenko LA, Kuznetsov VV (2011) Nickel accumulation in rape shoots (Brassica napus L.) increased by putrescine. Int J Phytoremediation 13:345–356

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Fu X-Z, Peng T, Huang X-S, Fan Q-J, Liu J-H (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–922

    Article  PubMed  CAS  Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, Handro W, Scherer GFE, Handro W, Guerra M, Floh EIS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryonic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98

    Article  CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235:283–303

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Burrit D, Bannister P (2001) Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regul 35:289–294

    Article  CAS  Google Scholar 

  • Soyka S, Heyer AG (1999) Arabidopsis knockout mutation of ADC2 gene reveals inducibility by osmotic stress. FEBS Lett 458:219–223

    Article  PubMed  CAS  Google Scholar 

  • Tadolini B (1988) Polyamine inhibition of lipid peroxidation. Biochem J 249:33–36

    PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Association Inc. USA, pp 671–703

    Google Scholar 

  • Takahashi T, Kakehi J (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Kakehi J, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53:606–616

    Article  PubMed  CAS  Google Scholar 

  • Tang CF, Liu YG, Zeng GM, Li X, Xu WH, Li CF, Yuan XZ (2005) Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L. under Cd2 + stress. J Integ Plant Biol 47:428–434

    Article  CAS  Google Scholar 

  • Tavladoraki P, Schininà ME, Cecconi F, Di Agostino S, Manera F, Rea G, Mariottini P, Federico R, Angelini R (1998) Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett 426:62–66

    Article  PubMed  CAS  Google Scholar 

  • Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA, Polticelli F, Angelini R, Federico R (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 141:1519–1532

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio AF, Altabella T, Borrel A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100:664–674

    Article  CAS  Google Scholar 

  • Tipping AJ, McPherson MJ (1995) Cloning and molecular analysis of the pea seedling copper amine oxidase. J Biol Chem 270:16939–16946

    Article  PubMed  CAS  Google Scholar 

  • Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215

    Article  PubMed  CAS  Google Scholar 

  • Torrigiani P, Altamura MM, Pasqua G, Monacelli B, Serafini-Fracassini D, Bagni N (1987) Free and conjugated polyamines during de novo floral and vegetative bud formation in thin cell layers of tobacco. Physiol Plant 70:453–460

    Article  CAS  Google Scholar 

  • Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Salem-fnayou AB, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Urano K, YoshibaY, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Buuren ML, Guidi L, Fornal S, Ghetti F, Franceschetti M, Soldatini GF, Bagni N (2002) Ozone-response mechanisms in tobacco: implications of polyamine metabolism. New Phytol 156:389–398

    Article  CAS  Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmosp Environ 43:604–618

    Article  CAS  Google Scholar 

  • Walter DR (2003) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115

    Article  CAS  Google Scholar 

  • Wang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16

    Article  PubMed  CAS  Google Scholar 

  • Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxilase by potassium deficiency stress. Plant Physiol 111:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Wimalasekara R, Scherer GFE (2010) Polyamines and cytokinin: is nitric oxide biosynthesis the key to overlapping functions? In: Hayat S, Mori M, Pichtel J, Ahmad A (eds) Nitric oxide in plant physiology. Wiley-Vch, Weinheim pp 65–76

    Google Scholar 

  • Wimalasekara R, Tebartz F, Scherer GFE (2011a) Polyamines, polyamine oxidases, and nitric oxide (NO) in development, biotic and abiotic stresses. Plant Sci 181:593–603

    Article  CAS  Google Scholar 

  • Wimalasekara R, Villar C, Begum T, Scherer GFE (2011b) COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678

    Article  CAS  Google Scholar 

  • Xing SG, Jun YB, Hau ZW, Liang LY (2007) Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr.roots. Plant Physiol Biochem 45:560–566

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salinity stress in Arabidopsis. FEBS Lett 580:67783–6788

    Article  CAS  Google Scholar 

  • Yoshimoto K, Noutoshi Y, Hayashi K, Shirasu K, Takahashi T, Motose H (2012) A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana. Plant Cell Physiol 53:635–645

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Galston AW (1984) Physiological control of arginine decarboxylase activity and potassium-deficient oat shoots. Plant Physiol 76:331–335

    Article  PubMed  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amorόs A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zhang X, Shen L, Li F, Meng D, Sheng J (2011) Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J Agric Food Chem 59:9351–9357

    Article  PubMed  CAS  Google Scholar 

  • Zhao FG, Qin P (2004) Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regul 42:97–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinukshi Wimalasekara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wimalasekara, R., Scherer, G. (2013). Dealing with Environmental Stresses: Role of Polyamines in Stress Responses. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_17

Download citation

Publish with us

Policies and ethics