Skip to main content

Microbial Transformation of Trace Elements in Soils in Relation to Bioavailability and Remediation

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 225))

Abstract

The term “trace elements” generally includes elements (both metals and metalloids) that occur in natural and perturbed environments in small amounts and that, when present in sufficient bioavailable concentrations, are toxic to living organisms (Adriano 2001). This group includes both biologically essential [e.g., cobalt (Co), copper (Cu), chromium (Cr), manganese (Mn), and zinc (Zn)] and nonessential [e.g., cadmium (Cd), lead (Pb), and mercury (Hg)] elements. The essential elements (for plant, animal, or human nutrition) are required in low concentrations and hence are known as “micro nutrients.” The nonessential elements are phytotoxic and/or zootoxic and are widely known as “toxic elements” (Adriano 2001). Both groups are toxic to plants, animals, and/or humans at exorbitant concentrations (Alloway 1990; Adriano 2001). Heavy metal(loid)s, which include elements with an atomic density greater than 6 g cm#3 [with the exception of arsenic (As), boron (B), and selenium (Se)] are also considered to be trace elements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achá D, Hintelmann H, Yee J (2011) Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere 82:911–916

    Article  CAS  Google Scholar 

  • Achá D, Iñiguez V, Roulet M, Guimarães JRD, Luna R, Alanoca L, Sanchez S (2005) Sulfate-­reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Appl Environ Microbiol 71:7531–7535

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79

    CAS  Google Scholar 

  • Akagi H, Malm O, Branches FJP, Kinjo Y, Kashima Y, Guimares TRD, Oliveira RB, Haraguchi K, Pfeiffer WC, Takizawa Y, Kato H (1995) Human exposure to mercury due to gold mining in the Tapajos River Basin, Amazon, Brazil: speciation of mercury in human hair, blood and urine. Water Air Soil Pollut 80:85–94

    Article  CAS  Google Scholar 

  • Al Rmalli SW, Dahmani AA, Abuein MM, Gleza AA (2008) Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). J Hazard Mater 152:955–959

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Allard B, Arsenie I (1991) Abiotic reduction of mercury by humic substances in aquatic system—an important process for the mercury cycle. Water Air Soil Pollut 56:457–464

    Article  CAS  Google Scholar 

  • Alloway B (1990) 2 Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie and Son Ltd., Glasgow

    Google Scholar 

  • Alves M, Gonzalez BCG, De Carvalho GR, Castenheira JM, Pereira SMC, Vasconcelos LAT (1993) Chromium removal in tannery wastewaters—polishing by Pinus sylvestris bark. Water Res 27:1333–1338

    Article  CAS  Google Scholar 

  • Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479

    Article  CAS  Google Scholar 

  • Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025

    Article  CAS  Google Scholar 

  • Anderson LCD, Bruland KW (1991) Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environ Sci Technol 25:420–427

    Article  CAS  Google Scholar 

  • Aposhian HV, Zakharyan RA, Avram MD, Kopplin MJ, Wollenberg ML (2003) Oxidation and detoxification of trivalent arsenic species. Toxicol Appl Pharmacol 193:1–8

    Article  CAS  Google Scholar 

  • Apte AD, Tare V, Bose P (2006) Extent of oxidation of Cr (III) to Cr (VI) under various conditions pertaining to natural environment. J Hazard Mater 128:164–174

    Article  CAS  Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe (III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162:178–185

    Article  CAS  Google Scholar 

  • Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soil from a constructed wetland. J Environ Qual 26:666–672

    Article  CAS  Google Scholar 

  • Bachate SP, Khapare RM, Kodam KM (2012) Oxidation of arsenite by two β-proteobacteria isolated from soil. Appl Microbiol Biotechnol 93:2135–2145

    Article  CAS  Google Scholar 

  • Bäckström M, Dario M, Karlsson S, Allard B (2003) Effects of a fulvic acid on the adsorption of mercury and cadmium on goethite. Sci Total Environ 304:257–268

    Article  CAS  Google Scholar 

  • Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    Article  CAS  Google Scholar 

  • Bahlmann E, Ebinghaus R, Ruck W (2006) Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils. J Environ Manage 81:114–125

    Article  CAS  Google Scholar 

  • Baker MD, Inniss WE, Mayfield CI (1983) Effect of pH on the methylation of mercury and arsenic by sediment microorganisms. Environ Technol Lett 4:89–100

    Article  CAS  Google Scholar 

  • Banks M, Schwab A, Henderson C (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264

    Article  CAS  Google Scholar 

  • Bañuelos GS, Li ZQ (2007) Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environ Pollut 150:306–312

    Article  CAS  Google Scholar 

  • Baralkiewicz D, Gramowska H, Gołdyn R, Wasiak W, Kowalczewska-Madura K (2007) Inorganic and methyl-mercury speciation in sediments of the Swarzędzkie Lake. Chem Ecol 23:93–103

    Article  CAS  Google Scholar 

  • Barnhart J (1997) Chromium chemistry and implications for environmental fate and toxicity. Soil Sediment Contam 6:561–568

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic (III)‐oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Article  CAS  Google Scholar 

  • Bender J, Lee RF, Phillips P (1995) A review of the uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol 14:113–118

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Estimation of mercury-sulfide speciation and bioavailability in sediment and porewaters. Environ Toxicol Chem 18:951–957

    Article  CAS  Google Scholar 

  • Berman M, Bartha R (1986) Levels of chemical versus biological methylation of mercury in sediments. Bull Environ Contam Toxicol 36:401–404

    Article  CAS  Google Scholar 

  • Bhandari N, Reeder RJ, Strongin DR (2011) Photoinduced oxidation of arsenite to arsenate on ferrihydrite. Environ Sci Technol 45:2783–2789

    Article  CAS  Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supply. Int J Water Resour Dev 13:79–92

    Article  Google Scholar 

  • Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr (III) from aqueous solution using algal biomass Spirogyra spp. J Hazard Mater 145:142–147

    Article  CAS  Google Scholar 

  • Bisinoti MC, Junior E, Jardim WF (2007) Seasonal behavior of mercury species in waters and sediments from the Negro River Basin, Amazon, Brazil. J Braz Chem Soc 18:544–553

    Article  CAS  Google Scholar 

  • Biswas KC, Barton LL, Tsui WL, Shuman K, Gillespie J, Eze CS (2011) A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods 86:140–144

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31:3348–3357

    Article  CAS  Google Scholar 

  • Bluskov S, Arocena J, Omotoso O, Young J (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediation 7:153–165

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  • Bogdanova E, Minakhin L, Bass I, Volodin A, Hobman JL, Nikiforov V (2001) Class II broad-­spectrum mercury resistance transposons in gram-positive bacteria from natural environments. Res Microbiol 152:503–514

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Natesan R, Koo BJ (2003a) Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ Qual 32:120–128

    CAS  Google Scholar 

  • Bolan NS, Adriano DC, Naidu R (2003b) Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–44

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Gibbs J (2012) Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant Soil (DOI 10.1007/s11104-012-1506-y)

    Google Scholar 

  • Bolan NS, Mahimairaja S, Megharaj M, Naidu R, Adriano DC (2006) Biotransformation of ­arsenic in soil and aquatic environments: bioavailability and bioremediation. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO, Melbourne, pp 433–453

    Google Scholar 

  • Bolan NS, Thiagarajan S (2001) Retention and plant availability of chromium in soils as affected by lime and organic matter amendments. Aust J Soil Res 39:1091–1104

    Article  CAS  Google Scholar 

  • Boszke L, Kowalski A, Glosinska G, Szarek R, Siepak J (2003) Environmental factors affecting speciation of mercury in the bottom sediments; an overview. Pol J Environ Stud 12:5–14

    CAS  Google Scholar 

  • Bowell R (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9:279–286

    Article  CAS  Google Scholar 

  • Branzini A, Zubillaga M (2010) Assessing phytotoxicity of heavy metals in remediated soil. Int J Phytoremediation 12:335–342

    Article  CAS  Google Scholar 

  • Bridou R, Monperrus M, Gonzalez PR, Guyoneaud R, Amouroux D (2011) Simultaneous determination of mercury methylation and demethylation capacities of various sulfate‐reducing bacteria using species‐specific isotopic tracers. Environ Toxicol Chem 30:337–344

    Article  CAS  Google Scholar 

  • Brock TD, Madigan MT (1991) Biology of microorganisms. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Brown S, Chaney R, Angle JS, Ryan JA (1998) The phytoavailability of cadmium to lettuce in long-term biosolid amended soil. J Environ Qual 27:1071–1078

    Article  CAS  Google Scholar 

  • Calderone S, Frankenberger W, Parker D, Karlson U (1990) Influence of temperature and organic amendments on the mobilization of selenium in sediments. Soil Biol Biochem 22:615–620

    Article  CAS  Google Scholar 

  • Camargo FA, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cellfree extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ (2004) Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ Pollut 132:435–442

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126:157–167

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Jugsujinda A, Sirisukhodom S, Anurakpongsatorn P, Burló F, DeLaune RD, Patrick WH Jr (1999) The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil. Environ Int 25:613–618

    Article  CAS  Google Scholar 

  • Casiot C, Bruneel O, Personne JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci Total Environ 320:259–267

    Article  CAS  Google Scholar 

  • Chakraborty S, Bardelli F, Charlet L (2010) Reactivities of Fe(II) on calcite: selenium reduction. Environ Sci Technol 44:1288–1294

    Article  CAS  Google Scholar 

  • Chen CP, Juang KW, Lin TH, Lee DY (2010) Assessing the phytotoxicity of chromium in Cr (VI)-spiked soils by Cr speciation using XANES and resin extractable Cr(III) and Cr(VI). Plant Soil 334:299–309

    Article  CAS  Google Scholar 

  • Chen NC, Kanazawa S, Horiguchi T (2000) Chromium(VI) reduction in wheat rhizosphere. Pedosphere 10:31–36

    Google Scholar 

  • Chen SL, Wilson DB (1997) Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation 8:97–103

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    Article  CAS  Google Scholar 

  • Chiu CC, Cheng CJ, Lin TH, Juang KW, Lee DY (2009) The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils. J Hazard Mater 161:1239–1244

    Article  CAS  Google Scholar 

  • Chiu VQ, Hering JG (2000) Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species. Environ Sci Technol 34:2029–2034 Choi SC, Bartha R (1994) Environmental factors affecting mercury methylation in estuarine ­sediments. Bull Environ Contam Toxicol 53:805–812

    Article  CAS  Google Scholar 

  • Choppala G (2011) Reduction and bioavailability of chromium in soils. Doctoral thesis, University of South Australia, Australia

    Google Scholar 

  • Choppala GK, Bolan NS, Megharaj M, Chen Z, Naidu R (2012) The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual 41:1175–1184

    Article  CAS  Google Scholar 

  • Christen K (2001) Chickens, manure, and arsenic. Environ Sci Technol 35:184A–185A

    Article  CAS  Google Scholar 

  • Ciesielski T, Pastukhov MV, Szefer P (2010) Bioaccumulation of mercury in the pelagic food chain of the Lake Baikal. Chemosphere 78:1378–1384

    Article  CAS  Google Scholar 

  • Cifuentes F, Lindemann W, Barton L (1996) Chromium sorption and reduction in soil with implications to bioremediation. Soil Sci 161:233

    Article  CAS  Google Scholar 

  • Cossich ES, da Silva EA, Tavares CRG, Filho LC, Ravagnani TMK (2004) Biosorption of chromium (III) by biomass of seaweed Sargassum sp. in a fixed-bed column. Adsorption 10:129–138

    Article  CAS  Google Scholar 

  • Costa M, Liss P (1999) Photoreduction of mercury in sea water and its possible implications for Hg0 air-sea fluxes. Mar Chem 68:87–95

    Article  CAS  Google Scholar 

  • Crowley DE, Dungan RS (2002) Metals: microbial processes affecting metals, Encyclopedia of environmental microbiology. Wiley, New York, pp 1878–1893

    Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–729

    Article  CAS  Google Scholar 

  • Danielsson S, Hedman J, Miller A, Bignert A (2011) Mercury in Perch from Norway, Sweden and Finland—geographical patterns and temporal trends. Report nr 8:2011, Department of contaminant research, Swedish museum of natural history, Stockholm, Sweden

    Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Ind J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Das SK, Guha AK (2009) Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: kinetics and transmission electron microscopic study. J Hazard Mater 167:685–691

    Article  CAS  Google Scholar 

  • de Lacerda L (2003) Updating global Hg emissions from small-scale gold mining and assessing its environmental impacts. Environ Geol 43:308–314

    Google Scholar 

  • de Lacerda LD, Salomons W (1998) Mercury from gold and silver mining: a chemical time bomb? Springer Verlag, Berlin

    Book  Google Scholar 

  • Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ (2011) A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci USA 108:13480–13485

    Article  CAS  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418

    Article  CAS  Google Scholar 

  • Dhillon K, Dhillon S, Dogra R (2010) Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 78:548–556

    Article  CAS  Google Scholar 

  • Dostalek P, Patzak M, Matejka P (2004) Influence of specific growth limitation on biosorption of heavy metals by Saccharomyces cerevisiae. Int Biodeterior Biodegradation 54:203–207

    Article  CAS  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Article  CAS  Google Scholar 

  • Drahota P, Rohovec J, Filippi M, Mihaljevic M, Rychlovský P, Cervený V, Pertold Z (2009) Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Sci Total Environ 407:3372–3384

    Article  CAS  Google Scholar 

  • Drexel RT, Haitzer M, Ryan JN, Aiken GR, Nagy KL (2002) Mercury (II) sorption to two Florida Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peat. Environ Sci Technol 36:4058–4064

    Article  CAS  Google Scholar 

  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10:1–10

    CAS  Google Scholar 

  • Duester L, Vink JM, Hirner AV (2008) Methylantimony and -arsenic species in sediment pore water tested with the sediment or fauna incubation experiment. Environ Sci Technol 42:5866–5871

    Article  CAS  Google Scholar 

  • Dungan RS, Frankenberger Jr. WT (2000) Factors affecting the volatilization of dimethylselenide by Enterobacter cloacae SLD1a-1 Soil Biol Biochem 32:1353–1358 Dursun AY (2006) A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead (II) ions onto pretreated Aspergillus niger. Biochem Eng J 28:187–195

    Article  CAS  Google Scholar 

  • Eary LE, Rai D (1991) Chromate reduction by subsurface soils under acidic conditions. Soil Sci Soc Am J 55:676

    Article  CAS  Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217

    Article  Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology, 3rd edn. Dekker, New York

    Google Scholar 

  • Elbaz-Poulichet F, Dupuy C, Cruzado A, Velasquez Z, Achterberg EP, Braungardt CB (2000) Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto river, Spain). Water Res 34:3222–3230

    Article  CAS  Google Scholar 

  • Emett MT, Khoe GH (2001) Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Res 35:649–656

    Article  CAS  Google Scholar 

  • Fergusson JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Res 6:1259–1274

    Article  Google Scholar 

  • Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464

    Article  CAS  Google Scholar 

  • Franco DV, Da Silva LM, Jardim WF (2009) Chemical reduction of hexavalent chromium present in contaminated soil using a packed‐bed column reactor. CLEAN 37:858–865

    CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (2001) Bioremediation of selenium‐contaminated sediments and water. Biofactors 14:241–254

    Article  CAS  Google Scholar 

  • Frankenberger W, Arshad M (2002) Volatilization of arsenic. In: Frankenberger W (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380

    Google Scholar 

  • Frankenberger WT Jr, Karlson U (1994a) Soil management factors affecting volatilization of selenium from dewatered sediments. Geomicrobiol J 12:265–278

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Karlson U (1994b) Microbial volatilization of selenium from soils and sediments. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 369–387

    Google Scholar 

  • Frankenberger WT, Arshad M, Siddique T, Han SK, Okeke BC, Zhang Y (2005) Bacterial diversity in selenium reduction of agricultural drainage water amended with rice straw. J Environ Qual 34:217–226

    Google Scholar 

  • Frankenberger WT, Losi ME (1995) Application of bioremediation in the cleanup of heavy elements and metalloids. In: Skipper HD, Turco RF (eds) Bioremediation: science and applications, Soil science special publication No. 43. Soil Science Society of America Inc, Madison, WI, pp 173–210

    Google Scholar 

  • Fulladosa E, Murat JC, Martinez M, Villaescusal I (2004) Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Arch Environ Contam Toxicol 46:176–182

    CAS  Google Scholar 

  • Gadd G (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    Article  CAS  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Cell Mol Life Sci 46:834–840

    Article  CAS  Google Scholar 

  • Gadd GM (2008) Fungi and their role in the biosphere. In: Jorgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Amsterdam, pp 1709–1717

    Chapter  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gao S, Tanji KK (1995) Model for biomethylation and volatilization of selenium from agricultural evaporation ponds. J Environ Qual 24:191–197

    Article  CAS  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-­Fe0 nanoparticles. Chemosphere 75:825–830

    Article  CAS  Google Scholar 

  • Geoffrey M, Gadd G (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  Google Scholar 

  • Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-­reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Poll 71:131–169 Goh KH, Lim TT (2005) Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Appl Geochem 20:229–239

    Article  CAS  Google Scholar 

  • Gong C, Donahoe RJ (1997) An experimental study of heavy metal attenuation and mobility in sandy loam soils. Appl Geochem 12:243–254

    Article  CAS  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723

    Article  CAS  Google Scholar 

  • Green-Ruiz C (2006) Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour Technol 97:1907–1911

    Article  CAS  Google Scholar 

  • Guo L, Frankenberger WT Jr, Jury WA (1999) Evaluation of simultaneous reduction and transport of selenium in saturated soil columns. Water Resour Res 35:663–669

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006) Photodecomposition of methylmercury in an arctic Alaskan lake. Environ Sci Technol 40:1212–1216

    Article  CAS  Google Scholar 

  • Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633

    Article  CAS  Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic (V) with Lessonia nigrescens. Min Eng 19:486–490

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    Article  CAS  Google Scholar 

  • Hasan S, Ranjan D, Talat M (2010) Agro-industrial waste ‘wheat bran’ for the biosorptive remediation of selenium through continuous up-flow fixed-bed column. J Hazard Mater 181:1134–1142

    Article  CAS  Google Scholar 

  • Haswell SJ, O’Neill P, Bancroft KC (1985) Arsenic speciation in soil-pore waters from mineralized and unmineralized areas of south-west England. Talanta 32:69–72

    Article  CAS  Google Scholar 

  • Haygarth PM, Fowler D, Sturup S, Davison BM, Tones KC (1994) Determination of gaseous and particulate selenium over a rural grassland in the UK. Atmos Environ 28:3655–3663

    Article  CAS  Google Scholar 

  • He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873

    Article  CAS  Google Scholar 

  • Hechun P, Guangshen L, Zhiyun Y, Yetang H (1996) Acceleration of selenate reduction by alternative drying and wetting of soils. Chin J Geochem 15:278–284

    Article  Google Scholar 

  • Heeraman D, Claassen V, Zasoski R (2001) Interaction of lime, organic matter and fertilizer on growth and uptake of arsenic and mercury by Zorro fescue (Vulpia myuros L.). Plant Soil 234:215–231

    Article  CAS  Google Scholar 

  • Herbel MJ, Blum JS, Oremland RS, Borglin SE (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602

    Article  CAS  Google Scholar 

  • Heyes A, Mason RP, Kim EH, Sunderland E (2006) Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. Mar Chem 102:134–147

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  Google Scholar 

  • Higgins TE, Halloran A, Dobbins M, Pittignano A (1998) In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue. J Air Waste Manage Assoc 48:1100–1106

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough G, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Horton RN, Apel WA, Thompson VS, Sheridan PP (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol 6:5. doi:10.1186/1471-2180-6-5

    Article  CAS  Google Scholar 

  • Hsu L, Wang S, Lin Y, Wang M, Chiang P, Liu J, Kuan W, Chen C, Tzou Y (2010) Cr(VI) removal on fungal biomass of Neurospora crassa: the importance of dissolved organic carbons derived from the biomass to Cr (VI) reduction. Environ Sci Technol 44:6202–6208

    Article  CAS  Google Scholar 

  • Hsu NH, Wang SL, Lin YC, Sheng GD, Lee JF (2009) Reduction of Cr(VI) by crop-residue-derived black carbon. Environ Sci Technol 43:8801–8806

    Article  CAS  Google Scholar 

  • Huang JH, Voegelin A, Pombo SA, Lazzaro A, Zeyer J, Kretzschmar R (2011) Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environ Sci Technol 44:6202–6208

    Google Scholar 

  • Ibrahim ASS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA (2011) Isolation and characterization of novel potent Cr(VI) reducing alkaliphilic Amphibacillus sp. KSUCr3 from hypersaline soda lakes. Electron J Biotechnol 4:1–14

    Google Scholar 

  • Ikram M, Faisal M (2010) Comparative assessment of selenite (SeIV) detoxification to elemental selenium (Se0) by Bacillus sp. Biotechnol Lett 32:1255–1259

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343

    Article  CAS  Google Scholar 

  • Jackson TA (1989) The influence of clay minerals, oxides, and humic matter on the methylation and demethylation of mercury by micro‐organisms in freshwater sediments. Appl Organomet Chem 3:1–30

    Article  CAS  Google Scholar 

  • James BR (2001) Remediation-by-reduction strategies for chromate-contaminated soils. Environ Geochem Health 23:175–179

    Article  CAS  Google Scholar 

  • James BR, Bartlett RJ (1983) Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12:177–181 Jardine P, Fendorf S, Mayes M, Larsen I, Brooks S, Bailey W (1999) Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ Sci Technol 33:2939–2944

    Article  CAS  Google Scholar 

  • Jones C, Anderson H, McDermott K, Inskeep T (2000) Rates of microbially mediated arsenate reduction and solubilization. Soil Sci Soc Am J 64:600

    Article  CAS  Google Scholar 

  • Karlson U, Frankenberger WT Jr, Spencer WF (1994) Physico-chemical properties of dimethyl selenide. J Chem Eng Data 39:608–610

    Article  CAS  Google Scholar 

  • Kelly C, Rudd JWM, Holoka M (2003) Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 37:2941–2946

    Article  CAS  Google Scholar 

  • Kim JGD, Chusuei JB, Deng CC (2002) Oxidation of chromium(III) to (VI) by manganese oxides. Soil Sci Soc Am J 66:306–315

    Article  CAS  Google Scholar 

  • Kim MJ (2010) Effects of pH, adsorbate/adsorbent ratio, temperature and ionic strength on the adsorption of arsenate onto soil. Geochem Explor Env A 10:407–412

    Article  CAS  Google Scholar 

  • Knauer K, Behra R, Hemond H (1999) Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient. Aquat Toxicol 46:221–230

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M (2010) A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmos Chem Phys Discuss 10:1417–1426

    CAS  Google Scholar 

  • Kodukula PS, Patterson JW, Surampalli RY (1994) Sorption and precipitation of metals in activated-­sludge. Biotechnol Bioeng 43:874–880

    Article  CAS  Google Scholar 

  • Kosolapov D, Kuschk P, Vainshtein M, Vatsourina A, Wiessner A, Kästner M, Müller R (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411

    Article  CAS  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  CAS  Google Scholar 

  • Kumagai Y, Sumi D (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47:243–262

    Article  CAS  Google Scholar 

  • Lambertsson L, Nilsson M (2006) Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environ Sci Technol 40:1822–1829

    Article  CAS  Google Scholar 

  • Landrot G, Ginder-Vogel M, Sparks DL (2009) Kinetics of chromium (III) oxidation by manganese (IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS). Environ Sci Technol 44:143–149

    Article  CAS  Google Scholar 

  • Lawson S, Macy JM (1995) Bioremediation of selenite in oil refinery waste-water. Appl Microbiol Biotechnol 43:762–765

    Article  Google Scholar 

  • Ledin M, Krantz-Rulcker C, Allard B (1999) Microorganisms as metal sorbents: comparison with other soil constituents in multi-compartment systems. Soil Biol Biochem 31:1639–1648

    Article  Google Scholar 

  • Lee DY, Shih YN, Zheng HC, Chen CP, Juang KW, Lee JF, Tsui L (2006) Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant Soil 281:87–96

    Article  CAS  Google Scholar 

  • Lehr CR (2003) Microbial methylation and volatilization of arsenic. PhD thesis, Department of chemistry, The University of British Columbia, Canada

    Google Scholar 

  • Leita L, Margon A, Sinicco T, Mondini C (2011) Glucose promotes the reduction of hexavalent chromium in soil. Geoderma 164:122–127

    Article  CAS  Google Scholar 

  • Lens P, Van Hullebusch E, Astratinei V (2006) Bioconversion of selenate in methanogenic anaerobic granular sludge. J Environ Qual 35:1873–1883

    Article  CAS  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  Google Scholar 

  • Liebert CA, Wireman J, Smith T, Summers AO (1997) Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63:1066–1076

    CAS  Google Scholar 

  • Lortie L, Gould W, Rajan S, McCready R, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044

    CAS  Google Scholar 

  • Loseto LL, Siciliano SD, Lean DRS (2004) Methylmercury production in high Arctic wetlands. Environ Toxicol Chem 23:17–23

    Article  CAS  Google Scholar 

  • Losi M, Amrhein C, Frankenberger W Jr (1994) Factors affecting chemical and biological reduction of hexavalent chromium in soil. Environ Toxicol Chem 13:1727–1735

    Article  CAS  Google Scholar 

  • Losi ME, Frankenberger WT Jr (1997a) Reduction of selenium oxyanions by Enterobacter cloacae strain SLD1a‐1: reduction of selenate to selenite. Environ Toxicol Chem 16:1851–1858

    CAS  Google Scholar 

  • Losi ME, Frankenberger WT (1997b) Bioremediation of selenium in soil and water. Soil Sci 162:692–702

    Article  CAS  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552

    Article  CAS  Google Scholar 

  • Lovley DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93

    Article  CAS  Google Scholar 

  • Mabrouk MEM (2008) Statistical optimization of medium components for chromate reduction by halophilic Streptomyces sp. MS-2. Afr J Microbiol Res 2:103–109

    Google Scholar 

  • Maher W, Butler E (1988) Arsenic in the marine environment. Appl Organomet Chem 2:191–214

    Article  CAS  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano D, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Maiers D, Wichlacz P, Thompson D, Bruhn D (1988) Selenate reduction by bacteria from a selenium-­rich environment. Appl Environ Microbiol 54:2591–2593

    CAS  Google Scholar 

  • Manning BA, Fendorf SE, Bostick B, Suarez DL (2002) Arsenic(III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981

    Article  CAS  Google Scholar 

  • Marechal JC, Ahmed S, Engerrand C, Galeazzi L, Touchard F (2006) Threatened groundwater resources in rural India: an example of monitoring. Asian J Water Environ Pollut 3:15–21

    CAS  Google Scholar 

  • Marinari S, Masciandaro G, Ceccanti B, Grego S (2000) Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresour Technol 72:9–17

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marvin-Dipasquale M, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft D, Gilmour CC (2000) Methyl-mercury degradation pathways: a comparison among three mercury-­impacted ecosystems. Environ Sci Technol 34:4908–4916

    Article  CAS  Google Scholar 

  • Mason RP, Rolfhus KR, Fitzgerald WF (1995) Methylated and elemental mercury cycling in the surface and deep waters of the North Atlantic. Water Air Soil Pollut 80:665–677

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1990) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 24:91–96

    Article  CAS  Google Scholar 

  • Mehrotra AS, Sedlak DL (2005) Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Environ Sci Technol 39:2564–2570

    Article  CAS  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  Google Scholar 

  • Melo J, D’Souza S (2004) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 92:151–155

    Article  CAS  Google Scholar 

  • Michalke K, Wickenheiser E, Mehring M, Hirner A, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    Article  CAS  Google Scholar 

  • Miskimmin BM, Rudd JWM, Kelly CA (1992) Influences of DOC, pH, and microbial respiration rates of mercury methylation and demethylation in lake water. Can J Fish Aquat Sci 49:17–22

    Article  CAS  Google Scholar 

  • Miyata N, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    Article  CAS  Google Scholar 

  • Mohanty K, Jha M, Meikap B, Biswas M (2006) Biosorption of Cr (VI) from aqueous solutions by Eichhornia crassipes. Chem Eng J 117:71–77

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005a) Induced plant uptake and transport of mercury in the presence of sulphur‐containing ligands and humic acid. New Phytol 166:445–454

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Nomura R, Ghomshei M, Meech JA (2005b) Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-­contaminated mine tailings. Plant Soil 275:233–246

    Article  CAS  Google Scholar 

  • Mosher BW, Duce RA (1987) Global atmospheric selenium budget. J Geophys Res 92:13289–13298

    Article  CAS  Google Scholar 

  • Munthe J, Xiao Z, Lindqvist O (1991) The aqueous reduction of divalent mercury by sulfite. Water Air Soil Pollut 56:621–630

    Article  CAS  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134

    Article  CAS  Google Scholar 

  • Murugesan G, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97:483–487

    Article  CAS  Google Scholar 

  • Musante A (2008) The role of mercury speciation in its methylation by methylcobalamin (­vitamin-­B12). Bachelor thesis, Wheaton College, Norton, MA

    Google Scholar 

  • Myneni S, Tokunaga TK, Brown GE Jr (1997) Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science 278:1106–1109

    Article  CAS  Google Scholar 

  • Nakayasu K, Fukushima M, Sasaki K, Tanaka S, Nakamura H (1999) Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors. Environ Toxicol Chem 18:1085–1090

    CAS  Google Scholar 

  • Navratilova J, Raber G, Fisher SJ, Francesconi KA (2011) Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic. Environ Chem 8:44–51

    Article  CAS  Google Scholar 

  • Ndung’u K, Friedrich S, Gonzalez AR, Flegal AR (2010) Chromium oxidation by manganese (hydr) oxides in a California aquifer. Appl Geochem 25:377–381

    Article  CAS  Google Scholar 

  • Newman DK, Beveridge TJ, Morel FMM (1997) Precipitation of As2S3 by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028 Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Niu CH, Volesky B, Cleiman D (2007) Biosorption of arsenic(V) with acid-washed crab shells. Water Res 41:2473–2478

    Article  CAS  Google Scholar 

  • Oiffer L, Siciliano SD (2009) Methyl mercury production and loss in Arctic soil. Sci Total Environ 407:1691–1700

    Article  CAS  Google Scholar 

  • Oliver DS, Brockman FJ, Bowman RS, Kieft TL (2003) Microbial reduction of hexavalent ­chromium under vadose zone conditions. J Environ Qual 32:317–324 Opperman DJ, Piater LA, Van Heerden E (2008) A novel chromate reductase from Thermus ­scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082

    Article  CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343

    CAS  Google Scholar 

  • Öztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous ­solution by Streptomyces coelicolor A3(2). Colloids Surf B Biointerfaces 34:105–111

    Article  CAS  Google Scholar 

  • Pacyna E, Pacyna J, Pirrone N (2001) European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35:2987–2996

    Article  CAS  Google Scholar 

  • Pal S, Vimala Y (2011) Bioremediation of chromium from fortified solutions by Phanerochaete chrysosporium (MTCC 787). J Bioremed Biodegradation 2:127

    Google Scholar 

  • Park D, Yun YS, Park JM (2004) Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ Sci Technol 38:4860–4864

    Article  CAS  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011a) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185:549–574

    Article  CAS  Google Scholar 

  • Park JH, Bolan NS, Megharaj M, Naidu R (2011b) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836

    Article  CAS  Google Scholar 

  • Park JH, Bolan NS, Megharaj M, Naidu R, Chung JW (2011c) Bacterial-assisted immobilization of lead in soils: implications for remediation. Pedologist 54:162–174

    CAS  Google Scholar 

  • Parvathi K, Nagendran R (2008) Functional groups on waste beer yeast involved in chromium biosorption from electroplating effluent. World J Microbiol Biotechnol 24:2865–2870

    Article  CAS  Google Scholar 

  • Paul J, Beauchamp E (1989) Effect of carbon constituents in manure on denitrification in soil. Can J Soil Sci 69:49–61

    Article  Google Scholar 

  • Pécheyran C, Quetel CR, Lecuyer FMM, Donard OFX (1998) Simultaneous determination of volatile metal (Pb, Hg, Sn, In, Ga) and nonmetal species (Se, P, As) in different atmospheres by cryofocusing and detection by ICPMS. Anal Chem 70:2639–2645

    Article  Google Scholar 

  • Pédrot M, Dia A, Davranche M, Bouhnik-Le Coz M, Henin O, Gruau G (2008) Insights into colloid-­mediated trace element release at the soil/water interface. J Colloid Interface Sci 325:187–197

    Article  CAS  Google Scholar 

  • Peitzsch M, Kremer D, Kersten M (2010) Microfungal alkylation and volatilization of selenium adsorbed by goethite. Environ Sci Technol 44:129–135

    Article  CAS  Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A (ed) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTech Publishers, Rijeka, pp 605–632

    Google Scholar 

  • Prasad KS, Srivastava P, Subramanian V, Paul J (2011) Biosorption of As (III) ion on Rhodococcus sp. WB-12: biomass characterization and kinetic studies. Separ Sci Technol 46:2517–2525

    Article  CAS  Google Scholar 

  • Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci USA 106:5213–5217

    Article  CAS  Google Scholar 

  • Qureshi S, Richards BK, McBride MB, Baveye P, Steenhuis TS (2003) Temperature and microbial activity effects on trace element leaching from metalliferous peats. J Environ Qual 32:2067–2075

    Article  CAS  Google Scholar 

  • Ramial P, John WMR, Furutam A, Xun L (1985) The effect of pH on methyl mercury production and decomposition in lake sediments. Can J Fish Aquat Sci 42:685–692

    Article  Google Scholar 

  • Ranjard L, Prigent-Combaret C, Nazaret S, Cournoyer B (2002) Methylation of inorganic and organic selenium by the bacterial thiopurine methyltransferase. J Bacteriol 184:3146–3149

    Article  CAS  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55:319–331

    Article  CAS  Google Scholar 

  • Reategui M, Maldonado H, Ly M, Guibal E (2010) Mercury(II) biosorption using Lessonia sp Kelp. Appl Biochem Biotechnol 162:805–822

    Article  CAS  Google Scholar 

  • Rech S, Macy J (1992) The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J Bacteriol 174:7316–7320

    CAS  Google Scholar 

  • Regnell O, Tunlid A (1991) Laboratory study of chemical speciation of mercury in lake sediment and water under aerobic and anaerobic conditions. Appl Environ Microbiol 57:789–795

    CAS  Google Scholar 

  • Rendina A, Barros M, de lorio A (2006) Phytoavailability and solid-phase distribution of chromium in a soil amended with organic matter. Bull Environ Contam Toxicol 76:1031–1037

    Article  CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Robinson B, Bolan NS, Mahimairaja S, Clothier B (2006) Solubility, mobility and bioaccumulation of trace elements: abiotic processes in the rhizosphere. In: Prasad M, Sajwan K, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, London, pp 97–110

    Google Scholar 

  • Rocha JC, Junior ÉS, Zara LF, Rosa AH, dos Santos A, Burba P (2000) Reduction of mercury (II) by tropical river humic substances (Rio Negro)—A possible process of the mercury cycle in Brazil. Talanta 53:551–559

    Article  CAS  Google Scholar 

  • Rochette EA, Bostick BC, Li GC, Fendorf S (2000) Kinetics of arsenate reduction by dissolved sulfide. Environ Sci Technol 34:4714–4720 Rock ML, James BR, Helz GR (2001) Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environ Sci Technol 35:4054–4059

    Article  CAS  Google Scholar 

  • Rodríguez Martín-Doimeadios R, Tessier E, Amouroux D, Guyoneaud R, Duran R, Caumette P, Donard O (2004) Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Mar Chem 90:107–123

    Article  CAS  Google Scholar 

  • Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20:227–235

    Article  CAS  Google Scholar 

  • Rogers R (1976) Methylation of mercury in agricultural soils. J Environ Qual 5:454–458

    Article  CAS  Google Scholar 

  • Rogers RD, MacFarlane JC (1978) Factors influencing the volatilization of mercury from soil. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring and Support Laborator, Las Vegas

    Google Scholar 

  • Rosen BP, Silver S (1987) Ion transport in prokaryotes. Academic, San Diego, CA

    Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil–plant systems. Wiley, New York, pp 63–152

    Google Scholar 

  • Roy V, Amyot M, Carignan R (2009) Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients. Environ Sci Technol 43:5605–5611

    Article  CAS  Google Scholar 

  • Rubinos DA, Iglesias L, Díaz-Fierros F, Barral MT (2011) Interacting effect of ph, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquat Geochem 17:281–306

    Article  CAS  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    CAS  Google Scholar 

  • Sağlam N, Say R, Denizli A, Patır S, Arıca MY (1999) Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem 34:725–730

    Article  Google Scholar 

  • Salomons W, Stigliani W (1995) Biogeodynamics of pollutants. Springer, Berlin, p 257

    Book  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Sass H, Ramamoorthy S, Yarwood C, Langner H, Schumann P, Kroppenstedt R, Spring S, Rosenzweig R (2009) Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal (loid)-contaminated freshwater sediment. Int J Syst Evol Microbiol 59:2208–2214

    Article  CAS  Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption processes for heavy metal removal. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 329–362

    Google Scholar 

  • Schlüter K (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39:249–271

    Article  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822

    Article  CAS  Google Scholar 

  • Schwesig D, Matzner E (2001) Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe. Biogeochemistry 53:181–200

    Article  CAS  Google Scholar 

  • Sharma S, Bansal A, Dogra R, Dhillon SK, Dhillon KS (2011) Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in northwestern India. J Plant Nutr Soil Sci 174:269–275

    Article  CAS  Google Scholar 

  • Shrestha B, Lipe S, Johnson KA, Zhang TQ, Retzlaff W, Lin ZQ (2006) Soil hydraulic manipulation and organic amendment for the enhancement of selenium volatilization in a soil-­pickleweed system. Plant Soil 288:189–196

    Article  CAS  Google Scholar 

  • Singh G, Brar M, Malhi S (2007) Decontamination of chromium by farm yard manure application in spinach grown in two texturally different Cr-contaminated soils. J Plant Nutr 30:289–308

    Article  CAS  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am 54:1619–1625

    Article  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 66:149–195

    Article  Google Scholar 

  • Smith WA, Apel WA, Petersen JN, Peyton BM (2002) Effect of carbon and energy source on bacterial chromate reduction. Biorem J 6:205–215

    Article  CAS  Google Scholar 

  • Smolders E, Buekers J, Oliver I, McLaughlin MJ (2004) Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field contaminated soils. Environ Toxicol Chem 23:2633–2640

    Article  CAS  Google Scholar 

  • Song X, Heyst BV (2005) Volatilization of mercury from soils in response to simulated precipitation. Atmos Environ 39:7494–7505

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke P, Garg S (2002) Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Sukumar M (2010) Reduction of hexavalent chromium by Rhizopus Oryzae. Afr J Environ Sci Technol 4:412–418

    CAS  Google Scholar 

  • Sun X, Wang Q, Ma H, Wang Z, Yang S, Zhao C, Xu L (2011) Effects of plant rhizosphere on mercury methylation in sediments. J Soils Sediments 11:1062–1069

    Article  CAS  Google Scholar 

  • Surowitz KG, Titus JA, Pfister RM (1984) Effects of cadmium accumulation on growth and respiration of a cadmium-sensitive strain of Bacillus subtilis and a selected cadmium resistant mutant. Arch Microbiol 140:107–112

    Article  CAS  Google Scholar 

  • Suseela K, Sivaparvathi M, Nandy SC (1987) Removal of chromium from tannery effluent using powdered leaves. Leather Sci (Madras) 34:149–156

    Article  CAS  Google Scholar 

  • Svecova L, Spanelova M, Kubal M, Guibal E (2006) Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Sep Purif Technol 52:142–153

    Article  CAS  Google Scholar 

  • Tan T, Beydoun D, Amal R (2003) Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A 159:273–280

    Article  CAS  Google Scholar 

  • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165

    Article  CAS  Google Scholar 

  • Tarze A, Dauplais M, Grigoras I, Lazard M, Ha-Duong NT, Barbier F, Blanquet S, Plateau P (2007) Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J Biol Chem 282:8759–8767

    Article  CAS  Google Scholar 

  • Templeton AS, Trainor TP, Spormann AM, Brown GE Jr (2003) Selenium speciation and partitioning within Burkholderia cepacia biofilms formed on α-Al2O3 surfaces. Geochim Cosmochim Acta 67:3547–3557

    Article  CAS  Google Scholar 

  • Thayer JS, Brinckman FE (1982) The biological methylation of metals and metal-loids. Adv Organomet Chem 20:313–356

    CAS  Google Scholar 

  • Thompson-Eagle E, Frankenberger WT Jr, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413

    CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT Jr (1990) Site volatilization of selenium with alternative sources of protein for microbial deselenification at evaporation ponds. J Environ Qual 19:125–129

    Article  CAS  Google Scholar 

  • Thompson-Eagle ET, Franakenberger WT Jr (1992) Bioremediation of soils contaminated with selenium. In: Lal R, Stewart BA (eds) Advances in soil science. Springer, New York, pp 261–310

    Google Scholar 

  • Tseng JK, Bielefeldt AR (2002) Low-temperature chromium (VI) biotransformation in soil with varying electron acceptors. J Environ Qual 31:1831–1841

    Article  CAS  Google Scholar 

  • Tüzen M, Özdemir M, Demirbaş A (1998) Heavy metal bioaccumulation by cultivated Agaricus bisporus from artificially enriched substrates. Z Lebensm Unters Forsch 206:417–419

    Article  Google Scholar 

  • Tuzen M, Sari A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158:200–206

    Article  CAS  Google Scholar 

  • Ucun H, Bayhan YK, Kaya Y, Cakici A, Faruk Algur O (2002) Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour Technol 85:155–158

    Article  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293

    Article  CAS  Google Scholar 

  • Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Model experiments on the microbial removal of chromium from contaminated groundwater. Water Res 37:1401–1405

    Article  CAS  Google Scholar 

  • Vera SM, Werth CJ, Sanford RA (2001) Evaluation of different polymeric organic materials for creating conditions that favor reductive processes in groundwater. Biorem J 5:169–181

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Apel WA, Petersen JN (2002) Chromate/nitrite interactions in Shewanella oneidensis MR‐1: evidence for multiple hexavalent chromium [Cr (VI)] reduction mechanisms dependent on physiological growth conditions. Biotechnol Bioeng 78:770–778

    Article  CAS  Google Scholar 

  • Vieira M, Oisiovici R, Gimenes M, Silva M (2008) Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour Technol 99:3094–3099

    Article  CAS  Google Scholar 

  • Volesky B, Holan Z (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  • Von Canstein H, Kelly S, Li Y, Wagner-Döbler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837

    Article  CAS  Google Scholar 

  • Wang D, Qing C, Guo T, Guo Y (1997) Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water Air Soil Pollut 95:35–43

    CAS  Google Scholar 

  • Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221–222:1–18

    Google Scholar 

  • Wang S, Mulligan CN (2006) Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. J Hazard Mater 138:459–470

    Article  CAS  Google Scholar 

  • Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safety 67:75–81

    Article  CAS  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Article  Google Scholar 

  • Warwick P, Inam E, Evans N (2005) Arsenic’s interaction with humic acid. Environ Chem 2:119–124

    Article  CAS  Google Scholar 

  • Watras CJ, Bloom NS (1992) Mercury and methyl mercury in individual zooplankton: implications for bioaccumulation. Limnol Oceanogr 37:1313–1318

    Article  Google Scholar 

  • Weber FA, Hofacker A, Voegelin A, Kretzschmar A (2010) Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environ Sci Technol 44:116–122

    Article  CAS  Google Scholar 

  • Whalin L, Kim EH, Mason R (2007) Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar Chem 107:278–294

    Article  CAS  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegradation 35:17–40

    Article  CAS  Google Scholar 

  • Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696

    Article  CAS  Google Scholar 

  • Wiener JG, Gilmour CC, Krabbenhoft DP (2003) Mercury strategy for the bay-delta ecosystem: a unifying framework for science, adaptive management, and ecological restoration. Report to the California Bay Delta authority, Sacramento, California, USA

    Google Scholar 

  • Wilkie JA, Hering JG (1998) Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol 32:657–662

    Article  CAS  Google Scholar 

  • Williams JW, Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Microb Technol 12:530–537

    Article  Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269

    Article  CAS  Google Scholar 

  • Xu X, McGrath S, Zhao F (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  Google Scholar 

  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    Article  CAS  Google Scholar 

  • Yamamura S, Watanabe M, Kanzaki M, Soda S, Ike M (2008) Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone. Environ Sci Technol 42:6154–6159

    Article  CAS  Google Scholar 

  • Yang T, Chen ML, Hu XW, Wang ZW, Wang JH, Dasgupta PK (2010) Thiolated eggshell ­membranes sorb and speciate inorganic selenium. Analyst 136:83–89

    Article  CAS  Google Scholar 

  • Yavuz H, Denizli A, Gungunes H, Safarikova M, Safarik I (2006) Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol 52:253–260

    Article  CAS  Google Scholar 

  • Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  CAS  Google Scholar 

  • Yin Y, Impellitteri CA, You SJ, Allen HE (2002) The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils. Sci Total Environ 287:107–119

    Article  CAS  Google Scholar 

  • Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215

    Article  CAS  Google Scholar 

  • Yun YS, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35:4353–4358

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143:8–14

    Article  CAS  Google Scholar 

  • Zazo JA, Paull JS, Jaffe PR (2008) Influence of plants on the reduction of hexavalent chromium in wetland sediments. Environ Pollut 156:29–35

    Article  CAS  Google Scholar 

  • Zeng F, Chen S, Miao Y, Wu F, Zhang G (2008) Changes of organic acid exudation and rhizosphere pH in rice plant under chromium stress. Environ Pollut 155:284–289

    Article  CAS  Google Scholar 

  • Zeroual Y, Moutaouakkil A, Zohra Dzairi F, Talbi M, Ung Chung P, Lee K, Blaghen M (2003) Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresour Technol 90:349–351

    Article  CAS  Google Scholar 

  • Zhang H, Lindberg SE, Marsik FJ, Keeler GJ (2001) Mercury air/surface exchange kinetics of background soils of the Tahquamenon river watershed in the Michigan Upper Peninsula. Water Air Soil Pollut 126:151–169

    Article  CAS  Google Scholar 

  • Zhang J, Bishop PL (2002) Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement. J Hazard Mater 92:199–212

    Article  CAS  Google Scholar 

  • Zhang T, Hsu-Kim H (2010) Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci 3:473–476

    Article  CAS  Google Scholar 

  • Zhang Y, Frankenberger WT (2003) Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Sci Total Environ 305:207–216

    Article  CAS  Google Scholar 

  • Zhang YQ, Frankenberger WT (1999) Effects of soil moisture, depth, and organic amendments on selenium volatilization. J Environ Qual 28:1321–1326

    Article  CAS  Google Scholar 

  • Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Postdoctoral fellowship program (PJ008650042012) at National Academy of Agricultural Science, Rural Development Administration, Republic of Korea, ­supported Dr Kunhikrishnan’s contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanthi S. Bolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bolan, N.S., Choppala, G., Kunhikrishnan, A., Park, J., Naidu, R. (2013). Microbial Transformation of Trace Elements in Soils in Relation to Bioavailability and Remediation. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 225. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6470-9_1

Download citation

Publish with us

Policies and ethics