Skip to main content

Role of Serotonin in Angiogenesis in Diabetes

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is a monoaminergic neurotransmitter synthesized from tryptophan, which is one of the essential amino acids, by mostly enterochromaffin cells in the gut. 5-HT receptors (15 subtypes) are distributed in tissues throughout the body and have diverse effects and play a crucial role in central and peripheral functions. The cardiovascular system is no exception; most of the 5-HT receptor subtypes have been shown to exist and be involved in cardiovascular regulation in both physiological and pathological conditions. Particularly in the vasculature, 5-HT is known to regulate vascular tonus and vascular cell proliferation by the balance of smooth muscle and endothelial 5-HT receptors. Under pathological conditions like diabetes mellitus (DM) and peripheral artery disease (PAD), serum 5-HT level is known to increase and is the hallmark of both pathological conditions. In these conditions, contractile activity of smooth muscle 5-HT2A receptor is increased; thus, 5-HT-mediated vasodilation and endothelial proliferation are inhibited, leading to diminished angiogenesis and peripheral circulation. However, blockade of 5-HT2A by clinically available drugs in a diabetic state enhances angiogenesis and vasodilation. As selective 5-HT2A blocker is widely used to treat PAD patients in clinical practice, the enhancement of angiogenesis, in addition to inhibition of vasoconstriction, might provide a unique treatment combination for therapeutic angiogenesis under a diabetic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    PubMed  CAS  Google Scholar 

  2. Merritt JH, Chamness AF, Allen SJ (1978) Studies on blood-brain barrier permeability after microwave-radiation. Radiat Environ Biophys 15:367–377

    PubMed  CAS  Google Scholar 

  3. Barter R, Pearse AG (1955) Mammalian enterochromaffin cells as the source of serotonin (5-hydroxytryptamine). J Pathol Bacteriol 69:25–31

    PubMed  CAS  Google Scholar 

  4. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    PubMed  CAS  Google Scholar 

  5. Leathwood PD (1987) Tryptophan availability and serotonin synthesis. Proc Nutr Soc 46:143–156

    PubMed  CAS  Google Scholar 

  6. Markus CR, Olivier B, de Haan EH (2002) Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am J Clin Nutr 75:1051–1056

    PubMed  CAS  Google Scholar 

  7. Booij L, Merens W, Markus CR, Van der Does AJ (2006) Diet rich in alpha-lactalbumin improves memory in unmedicated recovered depressed patients and matched controls. J Psychopharmacol 20:526–535

    PubMed  CAS  Google Scholar 

  8. Walther DJ, Peter JU, Bashammakh S et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    PubMed  CAS  Google Scholar 

  9. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680

    PubMed  CAS  Google Scholar 

  10. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    PubMed  CAS  Google Scholar 

  11. Hoyer D, Clarke DE, Fozard JR (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  12. Weiss O (1896) Ueber die Wirkungen von Blutserum-Injectionen ins Blut. Archiv Ges Physiol Menschen Thie LXV:215–230

    Google Scholar 

  13. Ramage AG, Villalon CM (2008) 5-Hydroxytryptamine and cardiovascular regulation. Trends Pharmacol Sci 29(9):472–481

    PubMed  CAS  Google Scholar 

  14. Doggrell SA (2003) The role of 5-HT on the cardiovascular and renal systems and the clinical potential of 5-HT modulation. Expert Opin Investig Drugs 12:805–823

    PubMed  CAS  Google Scholar 

  15. Mylecharane EJ (1990) Mechanisms involved in serotonin-induced vasodilatation. Blood Vessels 27:116–126

    PubMed  CAS  Google Scholar 

  16. Haugen G, Mellembakken J, Stray-Pedersen S (1997) Characterization of the vasodilatatory response to serotonin in human umbilical arteries perfused in vitro. The influence of the endothelium. Early Hum Dev 47:185–193

    PubMed  CAS  Google Scholar 

  17. Watts SW, Morrison SF, Davis RP, Barman SM (2012) Serotonin and blood pressure regulation. Pharmacol Rev 64:359–388

    PubMed  CAS  Google Scholar 

  18. Nilsson T, Longmore J, Shaw D et al (1999) Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol 372:49–56

    PubMed  CAS  Google Scholar 

  19. Gilmore B, Michael M (2011) Treatment of acute migraine headache. Am Fam Physician 83:271–280

    PubMed  Google Scholar 

  20. Vanhoutte PM (1998) Endothelial dysfunction and vascular disease. Verh K Acad Geneeskd Belg 60:251–266

    CAS  Google Scholar 

  21. Auch-Schwelk W, Paetsch I, Krackhardt F et al (2000) Modulation of contractions to ergonovine and methylergonovine by nitric oxide and thromboxane A2 in the human coronary artery. J Cardiovasc Pharmacol 36:631–639

    PubMed  CAS  Google Scholar 

  22. Ellis ES, Byrne C, Murphy OE et al (1995) Mediation by 5-hydroxytryptamine2B receptors of endothelium-dependent relaxation in rat jugular vein. Br J Pharmacol 114:400–404

    PubMed  CAS  Google Scholar 

  23. Centurion D, Sanchez-Lopez A, Ortiz MI et al (2000) Mediation of 5-HT-induced internal carotid vasodilatation in GR127935- and ritanserin-pretreated dogs by 5-HT7 receptors. Naunyn Schmiedebergs Arch Pharmacol 362:169–176

    PubMed  CAS  Google Scholar 

  24. Golino P, Piscione F, Willerson JT et al (1991) Divergent effects of serotonin on coronary-­artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med 324:641–648

    PubMed  CAS  Google Scholar 

  25. Ishida T, Kawashima S, Hirata K et al (2001) Serotonin-induced hypercontraction through 5-hydroxytryptamine 1B receptors in atherosclerotic rabbit coronary arteries. Circulation 103:1289–1295

    PubMed  CAS  Google Scholar 

  26. Criqui MH, Langer RD, Fronek A et al (1992) Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 326:381–386

    PubMed  CAS  Google Scholar 

  27. Criqui MH (2001) Peripheral arterial disease–epidemiological aspects. Vasc Med 6:3–7

    PubMed  CAS  Google Scholar 

  28. Hirsch AT, Hartman L, Town RJ, Virnig BA (2008) National health care costs of peripheral arterial disease in the Medicare population. Vasc Med 13:209–215

    PubMed  Google Scholar 

  29. Hirsch AT, Halverson SL, Treat-Jacobson D et al (2001) The Minnesota Regional Peripheral Arterial Disease Screening Program: toward a definition of community standards of care. Vasc Med 6:87–96

    PubMed  CAS  Google Scholar 

  30. McDermott MM (2006) The magnitude of the problem of peripheral arterial disease: epidemiology and clinical significance. Cleve Clin J Med 73:S2–S7

    PubMed  Google Scholar 

  31. Pell JP (1995) Impact of intermittent claudication on quality of life. The Scottish Vascular Audit Group. Eur J Vasc Endovasc Surg 9:469–472

    PubMed  CAS  Google Scholar 

  32. Izquierdo-Porrera AM, Gardner AW, Bradham DD et al (2005) Relationship between objective measures of peripheral arterial disease severity to self-reported quality of life in older adults with intermittent claudication. J Vasc Surg 41:625–630

    PubMed  Google Scholar 

  33. Tsai JC, Chan P, Wang CH et al (2002) The effects of exercise training on walking function and perception of health status in elderly patients with peripheral arterial occlusive disease. J Intern Med 252:448–455

    PubMed  CAS  Google Scholar 

  34. Gornik HL, Creager MA (2006) Contemporary management of peripheral arterial disease: I. Cardiovascular risk-factor modification. Cleve Clin J Med 73:S30–S37

    PubMed  Google Scholar 

  35. Zheng ZJ, Sharrett AR, Chambless LE et al (1997) Associations of ankle-brachial index with clinical coronary heart disease, stroke and preclinical carotid and popliteal atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 131:115–125

    PubMed  CAS  Google Scholar 

  36. Newman AB, Shemanski L, Manolio TA et al (1999) Ankle-arm index as a predictor of cardiovascular disease and mortality in the Cardiovascular Health Study. The Cardiovascular Health Study Group. Arterioscler Thromb Vasc Biol 19:538–545

    PubMed  CAS  Google Scholar 

  37. Newman AB, Sutton-Tyrrell K, Vogt MT, Kuller LH (1993) Morbidity and mortality in hypertensive adults with a low ankle/arm blood pressure index. JAMA 270:487–489

    PubMed  CAS  Google Scholar 

  38. Leng GC, Fowkes FG, Lee AJ et al (1996) Use of ankle brachial pressure index to predict cardiovascular events and death: a cohort study. Br Med J 313:1440–1444

    CAS  Google Scholar 

  39. Hirsch AT, Criqui MH, Treat-Jacobson D et al (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286:1317–1324

    PubMed  CAS  Google Scholar 

  40. Cimminiello C (2002) PAD. Epidemiology and pathophysiology. Thromb Res 106:V295–V301

    PubMed  CAS  Google Scholar 

  41. Anon (1991) Second European consensus document on chronic critical leg ischemia. Circulation 84:IV1–IV26

    Google Scholar 

  42. Tapp RJ, Zimmet PZ, Harper CA et al (2004) Diabetes care in an Australian population: frequency of screening examinations for eye and foot complications of diabetes. Diabetes Care 27:688–693

    PubMed  Google Scholar 

  43. Gregg EW, Sorlie P, Paulose-Ram R et al (2004) Prevalence of lower-extremity disease in the US adult population >=40 years of age with and without diabetes: 1999-2000 National Health and Nutrition Examination Survey. Diabetes Care 27:1591–1597

    PubMed  Google Scholar 

  44. Dolan NC, Liu K, Criqui MH et al (2002) Peripheral artery disease, diabetes, and reduced lower extremity functioning. Diabetes Care 25:113–120

    PubMed  Google Scholar 

  45. Prompers L, Schaper N, Apelqvist J et al (2008) Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 51:747–755

    PubMed  CAS  Google Scholar 

  46. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570–2581

    PubMed  CAS  Google Scholar 

  47. Lanzer P (2001) Topographic distribution of peripheral arteriopathy in non-diabetics and type 2 diabetics. Z Kardiol 90:99–103

    PubMed  CAS  Google Scholar 

  48. Faglia E, Clerici G, Clerissi J et al (2009) Long-term prognosis of diabetic patients with critical limb ischemia: a population-based cohort study. Diabetes Care 32:822–827

    PubMed  Google Scholar 

  49. Kamalesh M, Shen J (2009) Diabetes and peripheral arterial disease in men: trends in prevalence, mortality, and effect of concomitant coronary disease. Clin Cardiol 32:442–446

    PubMed  Google Scholar 

  50. Larsson J, Agardh CD, Apelqvist J, Stenstrom A (1998) Long-term prognosis after healed amputation in patients with diabetes. Clin Orthop Relat Res (350):149–158

    Google Scholar 

  51. Malmstedt J, Leander K, Wahlberg E et al (2008) Outcome after leg bypass surgery for critical limb ischemia is poor in patients with diabetes: a population-based cohort study. Diabetes Care 31:887–892

    PubMed  Google Scholar 

  52. Currie CJ, Morgan CL, Peters JR (1998) The epidemiology and cost of inpatient care for peripheral vascular disease, infection, neuropathy, and ulceration in diabetes. Diabetes Care 21:42–48

    PubMed  CAS  Google Scholar 

  53. De Vivo S, Palmer-Kazen U, Kalin B, Wahlberg E (2005) Risk factors for poor collateral development in claudication. Vasc Endovascular Surg 39:519–524

    PubMed  Google Scholar 

  54. Waltenberger J (2001) Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 49:554–560

    PubMed  CAS  Google Scholar 

  55. Abaci A, Oguzhan A, Kahraman S et al (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99:2239–2242

    PubMed  CAS  Google Scholar 

  56. Yan J, Tie G, Park B, Yan Y et al (2009) Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells. J Vasc Surg 50:1412–1422

    PubMed  Google Scholar 

  57. Rivard A, Silver M, Chen D et al (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 154:355–363

    PubMed  CAS  Google Scholar 

  58. Taniyama Y, Morishita R, Hiraoka K et al (2001) Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation 104:2344–2350

    PubMed  CAS  Google Scholar 

  59. Schiekofer S, Galasso G, Sato K et al (2005) Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler Thromb Vasc Biol 25:1603–1609

    PubMed  CAS  Google Scholar 

  60. van Golde JM, Ruiter MS, Schaper NC et al (2008) Impaired collateral recruitment and outward remodeling in experimental diabetes. Diabetes 57:2818–2823

    PubMed  Google Scholar 

  61. Ruiter MS, van Golde JM, Schaper NC et al (2010) Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clin Sci 119:225–238

    PubMed  CAS  Google Scholar 

  62. Malyszko J, Urano T, Knofler R et al (1994) Daily variations of platelet aggregation in relation to blood and plasma serotonin in diabetes. Thromb Res 75:569–576

    PubMed  CAS  Google Scholar 

  63. Barradas MA, Gill DS, Fonseca VA et al (1988) Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest 18:399–404

    PubMed  CAS  Google Scholar 

  64. Dallinger KJ, Jennings PE, Toop MJ et al (1987) Platelet aggregation and coagulation factors in insulin dependent diabetics with and without microangiopathy. Diabet Med 4:44–48

    PubMed  CAS  Google Scholar 

  65. Pietraszek MH, Takada Y, Takada A et al (1992) Blood serotonergic mechanisms in type 2 (non-insulin-dependent) diabetes mellitus. Thromb Res 66:765–774

    PubMed  CAS  Google Scholar 

  66. Robless PA, Okonko D, Lintott P et al (2003) Increased platelet aggregation and activation in peripheral arterial disease. Eur J Vasc Endovasc Surg 25:16–22

    PubMed  CAS  Google Scholar 

  67. Hara K, Hirowatari Y, Yoshika M et al (2004) The ratio of plasma to whole-blood serotonin may be a novel marker of atherosclerotic cardiovascular disease. J Lab Clin Med 144:31–37

    PubMed  CAS  Google Scholar 

  68. Maurer-Spurej E (2005) Serotonin reuptake inhibitors and cardiovascular diseases: a platelet connection. Cell Mol Life Sci 62:159–170

    PubMed  CAS  Google Scholar 

  69. Tanaka N (2009) Pharmacological studies on responsiveness of 5-hydroxytryptamine in overcoming perioperative spasm of coronary artery bypass graft. Yakugaku Zasshi 129:1049–1053

    PubMed  CAS  Google Scholar 

  70. Boston PC, Hodgson WC (1997) Changes in reactivity towards 5-hydroxytryptamine in the renal vasculature of the diabetic spontaneously hypertensive rat. J Hypertens 15:769–774

    PubMed  CAS  Google Scholar 

  71. Brezun JM, Daszuta A (2000) Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci 12:391–396

    PubMed  CAS  Google Scholar 

  72. Nebigil CG, Choi DS, Dierich A et al (2000) Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci U S A 97:9508–9513

    PubMed  CAS  Google Scholar 

  73. Seuwen K, Magnaldo I, Pouyssegur J (1988) Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi-protein. Nature 335:254–256

    PubMed  CAS  Google Scholar 

  74. Takuwa N, Ganz M, Takuwa Y et al (1989) Studies of the mitogenic effect of serotonin in rat renal mesangial cells. Am J Physiol 257:F431–F439

    PubMed  CAS  Google Scholar 

  75. Tutton PJ, Barkla DH (1986) Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas. Anticancer Res 6:1123–1126

    PubMed  CAS  Google Scholar 

  76. Hanley MR (1989) Mitogenic neurotransmitters. Nature 340:97

    PubMed  CAS  Google Scholar 

  77. Ishizuka J, Beauchamp RD, Townsend CM et al (1992) Receptor-mediated autocrine growth-stimulatory effect of 5-hydroxytryptamine on cultured human pancreatic carcinoid cells. J Cell Physiol 150:1–7

    PubMed  CAS  Google Scholar 

  78. Nemecek GM, Coughlin SR, Handley DA, Moskowitz MA (1986) Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc Natl Acad Sci U S A 83:674–678

    PubMed  CAS  Google Scholar 

  79. Kavanaugh WM, Williams LT, Ives HE, Coughlin SR (1988) Serotonin-induced deoxyribonucleic acid synthesis in vascular smooth muscle cells involves a novel, pertussis toxin-­sensitive pathway. Mol Endocrinol 2:599–605

    PubMed  CAS  Google Scholar 

  80. Araki S, Kawahara Y, Fukuzaki H, Takai Y (1990) Serotonin plays a major role in serum-­induced phospholipase C-mediated hydrolysis of phosphoinositides and DNA synthesis in vascular smooth muscle cells. Atherosclerosis 83:29–34

    PubMed  CAS  Google Scholar 

  81. Lee SL, Wang WW, Moore BJ, Fanburg BL (1991) Dual effect of serotonin on growth of bovine pulmonary artery smooth muscle cells in culture. Circ Res 68:1362–1368

    PubMed  CAS  Google Scholar 

  82. Pakala R, Willerson JT, Benedict CR (1994) Mitogenic effect of serotonin on vascular endothelial cells. Circulation 90:1919–1926

    PubMed  CAS  Google Scholar 

  83. Pakala R, Sheng WL, Benedict CR (1999) Serotonin fails to induce proliferation of endothelial cells preloaded with eicosapentaenoic acid and docosahexaenoic acid. Atherosclerosis 145:137–146

    PubMed  CAS  Google Scholar 

  84. Pakala R, Benedict CR (1998) Effect of serotonin and thromboxane A2 on endothelial cell proliferation: effect of specific receptor antagonists. J Lab Clin Med 131:527–537

    PubMed  CAS  Google Scholar 

  85. Asada M, Ebihara S, Yamanda S et al (2009) Depletion of serotonin and selective inhibition of 2B receptor suppressed tumor angiogenesis by inhibiting endothelial nitric oxide synthase and extracellular signal-regulated kinase 1/2 phosphorylation. Neoplasia 11:408–417

    PubMed  CAS  Google Scholar 

  86. Tutton PJ, Steel GG (1979) Influence of biogenic amines on the growth of xenografted human colorectal carcinomas. Br J Cancer 40:743–749

    PubMed  CAS  Google Scholar 

  87. McDuffie JE, Motley ED, Limbird LE, Maleque MA (2000) 5-Hydroxytryptamine stimulates phosphorylation of p44/p42 mitogen-activated protein kinase activation in bovine aortic endothelial cell cultures. J Cardiovasc Pharmacol 35:398–402

    PubMed  CAS  Google Scholar 

  88. Nishikawa T, Tsuno NH, Shuno Y et al (2010) Antiangiogenic effect of a selective 5-HT4 receptor agonist. J Surg Res 159:696–704

    PubMed  CAS  Google Scholar 

  89. Humphrey PP, Feniuk W, Perren MJ et al (1988) GR43175, a selective agonist for the 5-HT1-like receptor in dog isolated saphenous vein. Br J Pharmacol 94:1123–1132

    PubMed  CAS  Google Scholar 

  90. Launay JM, Herve P, Peoc’h K et al (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 8:1129–1135

    PubMed  CAS  Google Scholar 

  91. Fujita M, Minamino T, Sanada S et al (2004) Selective blockade of serotonin 5-HT2A receptor increases coronary blood flow via augmented cardiac nitric oxide release through 5-HT1B receptor in hypoperfused canine hearts. J Mol Cell Cardiol 37:1219–1223

    PubMed  CAS  Google Scholar 

  92. Takano S, Hoshino Y, Li L et al (2004) Dual roles of 5-hydroxytryptamine in ischemia-­reperfusion injury in isolated rat hearts. J Cardiovasc Pharmacol Ther 9:43–50

    PubMed  CAS  Google Scholar 

  93. MacLean MR, Deuchar GA, Hicks MN et al (2004) Overexpression of the 5-­hydroxytryptamine transporter gene: effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension. Circulation 109:2150–2155

    PubMed  CAS  Google Scholar 

  94. Esteve JM, Launay JM, Kellermann O, Maroteaux L (2007) Functions of serotonin in hypoxic pulmonary vascular remodeling. Cell Biochem Biophys 47:33–44

    PubMed  CAS  Google Scholar 

  95. Kahn AM, Allen JC, Seidel CL, Song T (1994) Insulin inhibits serotonin-induced Ca2+ influx in vascular smooth muscle. Circulation 90:384–390

    PubMed  CAS  Google Scholar 

  96. Ohkura M, Tanaka N, Kobayashi H et al (2005) Insulin induces internalization of the 5-HT2A receptor expressed in HEK293 cells. Eur J Pharmacol 518:18–21

    PubMed  CAS  Google Scholar 

  97. Bir SC, Fujita M, Marui A et al (2008) New therapeutic approach for impaired arteriogenesis in diabetic mouse hindlimb ischemia. Circulation 72:633–640

    CAS  Google Scholar 

  98. Li TS, Furutani A, Takahashi M et al (2006) Impaired potency of bone marrow mononuclear cells for inducing therapeutic angiogenesis in obese diabetic rats. Am J Physiol Heart Circ Physiol 290:H1362–H1369

    PubMed  CAS  Google Scholar 

  99. Iwabayashi M, Taniyama Y, Sanada F et al (2012) Role of serotonin in angiogenesis: induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis 220:337–342

    PubMed  CAS  Google Scholar 

  100. Murohara T, Asahara T, Silver M et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    PubMed  CAS  Google Scholar 

  101. Zehender M, Meinertz T, Hohnloser S et al (1989) Incidence and clinical relevance of QT prolongation caused by the new selective serotonin antagonist ketanserin. Am J Cardiol 63:826–832

    PubMed  CAS  Google Scholar 

  102. Ito K, Notsu T (1991) Effect of sarpogrelate hydrochloride (MCI-9042) on peripheral circulation of chronic arterial occlusive disease. J Clin Ther Med 7:1243–1251

    Google Scholar 

  103. Norgren L, Jawien A, Matyas L et al (2006) Sarpogrelate, a 5-hT2A receptor antagonist in intermittent claudication. A Phase II European Study. Vasc Med 11:75–83

    PubMed  CAS  Google Scholar 

  104. Miyazaki M, Higashi Y, Goto C et al (2007) Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol 49:221–227

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Morishita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iwabayashi, M. et al. (2013). Role of Serotonin in Angiogenesis in Diabetes. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_13

Download citation

Publish with us

Policies and ethics